South East Asian J. of Mathematics and Mathematical Sciences Vol. 19, No. 2 (2023), pp. 359-378

DOI: 10.56827/SEAJMMS.2023.1902.27

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

QUARTER SYMMETRIC NON-METRIC CONNECTION ON A (k, μ) -CONTACT METRIC MANIFOLD

R. P. S. Yadav and B. Prasad

Department of Mathematics, S. M. M. Town P. G. College, Ballia - 277001, Uttar Pradesh, INDIA

E-mail: rana_2181@rediffmail.com, bhagwatprasad2010@rediffmail.com

(Received: Mar. 30, 2023 Accepted: Jul. 29, 2023 Published: Aug. 30, 2023)

Abstract: The object of the present paper is to introduce a new type of quarter symmetric non-metric connection on a (k, μ) -contact metric manifold and study some properties of quarter symmetric non-metric connection on a (k, μ) -contact metric manifold. Further, we obtain some properties of nearly Ricci recurrent on a (k, μ) -contact metric manifold with respect to quarter symmetric non-metric connection. Finally, we present an example to verify our result.

Keywords and Phrases: (k, μ) -contact metric manifold, quarter symmetric non-metric connection, Curvature tensor, symmetric and skew-symmetric and nearly Ricci recurrent.

2020 Mathematics Subject Classification: 53C25, 53D15...

1. Introduction

The notion of (k, μ) -contact metric manifolds was introduced by Blair, Koufogiorgos and Papantoniou [2] where k and μ are real constants. A class of contact manifolds with contact metric structure (ϕ, ξ, η, g) in which the curvature tensor R satisfies the condition:

$$R(X,Y)\xi = k[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY],$$

 $\forall X, Y \in TM$, where k and μ are real constants, is called (k, μ) -contact metric manifold. The class of (k, μ) -contact metric manifolds contains both the class of

Sasakian (k = 1 and h = 0) and non-Sasakian $(k \neq 1 \text{ and } h \neq 0)$ manifolds. For example, the unit tangent sphere bundle of a flat Riemannian manifold with the usual contact metric structure is a non-Sasakian (k, μ) -contact metric manifold. The properties of (k, μ) -contact metric manifold have been studied by many authors such as Koufogiorgos [14], Shaikh and Baishya [27], Shaikh and Jana [26], Sharma and Vranckew [28], Majhi and Ghosh [16], Ghosh and Sharma [10], De and Sarkar [5], Yildiz and De [34] etc.

Let \overline{D} be a linear connection in a Riemannian manifold M. The torsion tensor \overline{T} is given by

$$\overline{T}(X,Y) = \overline{D}_X Y - \overline{D}_Y X - [X,Y].$$

The connection \overline{D} is symmetric if its torsion tensor vanishes, otherwise it is nonsymmetric. The connection \overline{D} is a metric connection if there is a Riemannian metric g in M such that $\overline{D}_X g = 0$, otherwise it is non-metric. It is well known that a linear connection is symmetric and metric if and only if it is the Levi-Civita connection.

A. Friedmann and J.A. Schouten introduced the idea of a semi-symmetric linear connection [9]. A linear connection \overline{D} is said to be a semi-symmetric connection if its torsion tensor \overline{T} is of the form

$$\overline{T}(X,Y) = \eta(Y)X - \eta(X)Y,$$

 $\forall X, Y \in TM.$

S. Golab introduced the idea of a quarter symmetric linear connection in a differentiable manifold [11]. A linear connection is said to be a quarter-symmetric connection if its torsion tensor \overline{T} is of the form

$$\overline{T}(X,Y) = \eta(Y)\phi X - \eta(X)\phi Y,$$

where η is a 1-form and ϕ is a (1, 1) tensor field. If we put $\phi X = X$ and $\phi Y = Y$, then the quarter-symmetric metric connection reduces to the semi-symmetric metric connection [9]. Thus the notion of the quarter-symmetric connection generalizes the notion of the semi-symmetric connection. Further in 1980, Mishra and Pandey [17] have studied quarter symmetric metric connection in Riemannian, Kähler and Sasakain manifolds.

A relation between the quarter-symmetric metric connection \overline{D} and the Levi-Civita connection D in an n-dimensional SP-Sasakian manifold is given by [6]

$$\overline{D}_X Y = D_X Y + \eta(Y)\phi X - F(X,Y)\xi,$$

whose torsion and metric are $\overline{T}(X,Y) = \eta(Y)\phi X - \eta(X)\phi Y$ and $(\overline{D}_X g)(Y,Z) = 0$. In this paper, the author proved that in an SP-Sasakian manifold, the Ricci tensor of the quarter symmetric metric connection is symmetric and found some interesting results.

Recently, in 2000, De and Sengupta [7] studied a quarter symmetric metric connection on a Sasakian manifold as

$$\overline{D}_X Y = D_X Y - \eta(X)\phi Y.$$

The quarter symmetric metric connection have been developed by several authors such as Srivastava, Sharma and Prasad [30], Prakash and Narain [23], Kumar, Bagewadi and Venkatesha [15], Haseeb [12], Prasad and Haseeb [25] etc. On the other hand, quarter symmetric non-metric connection have been studied by various authors such as Dwivedi [8], Mondal [18], Patra and Bhattacharyya [21], Somashekhara, Praveena and Venkatesha et al [29].

In recent paper, Shaikh and Jana [26] introduced and studied a new type of quarter symmetric metric connection on a (k, μ) -contact metric manifold as

$$\overline{D}_X Y = D_X Y + \eta(Y)hX - g(hX, Y)\xi,$$

 $\forall X, Y \in TM$, whose torsion tensor and metric are

$$\overline{T}(X,Y) = \eta(Y)hX - \eta(X)hY$$

and

$$(\overline{D}_X g)(Y, Z) = 0,$$

where h is a (1, 1) tensor field. They proved that the Ricci tensor of a non-Sasakian (k, μ) -contact metric manifold (M^{2n+1}, g) with respect to the quarter-symmetric metric connection is symmetric if and only if the contact form η is closed and found many others results.

The motivation of the above ideas, we define a new type of quarter symmetric non-metric connection on a (k, μ) -contact metric manifold as follows

$$\overline{D}_X Y = D_X Y + \eta(X)hY - \eta(Y)hX,$$

 $\forall X, Y \in TM$, whose torsion tensor and metric are

$$\overline{T}(X,Y) = 2[\eta(X)hY - \eta(Y)hX]$$

and

$$(\overline{D}_X g)(Y, Z) = \eta(Y)g(hX, Z) + \eta(Z)g(hX, Y).$$

In 1952, Paatterson [19] introduced Ricci recurrent manifolds. According to him a manifold (M^n, g) was called "Ricci recurrent" if

$$(D_X S)(Y, Z) = A(X)S(Y, Z), \tag{1.1}$$

for some 1-form A where D and S denote the operator of covariant differentiation with respect to metric tensor g and Ricci tensor respectively. He denoted such a manifold by R_n . Ricci recurrent manifolds have been studied by several authors such as Roter [31], Chaki [4], Prakash [22], Venkatesha et al [32].

Very recently Prasad and Yadav [24] introduced a new type of non-flat Ricci recurrent manifold whose Ricci tensor S satisfies the condition:

$$(D_X S)(Y, Z) = [A(X) + B(X)]S(Y, Z) + B(X)g(Y, Z),$$
(1.2)

 $\forall X, Y, Z \in TM$, where A and B non-zero 1-forms, ρ_1 and ρ_2 be two vector fields such that

$$A(X) = g(\rho_1, X), \qquad B(X) = g(\rho_2, X).$$
 (1.3)

Such a manifold called as a nearly Ricci recurrent manifold and 1-forms A and B be its associated 1-form. Nearly Ricci recurrent manifolds of this kind were denoted by him as a $N\{R(R_n)\}$. The name nearly Ricci recurrent Riemannian manifold was chosen because if B = 0 in (1.2) then the manifold reduces to a Ricci recurrent manifold which is very close to Ricci recurrent space. This justified the name "Nearly Ricci recurrent manifold" for a manifold defined by (1.2) and the use of the symbol $N\{R(R_n)\}$ for it.

2. Preliminaries

A (2n+1) dimensional Riemannian manifold (M^{2n+1}, g) is said to be an almost contact metric manifold if it admits a tensor ϕ of type (1,1), ξ is a contravariant vector fields of type (0,1) and 1-form η is a covariant tensor of the type (1,0) satisfying (Blair, [1], [3]):

$$\phi^2 X = -X + \eta(X)\xi, \ \eta(\xi) = 1, \ \phi\xi = 0, \ \eta(\phi X) = 0, \ trace\phi = 0,$$
 (2.1)

$$g(X,\xi) = \eta(X)$$
 $g(\phi X, \phi Y) = g(X,Y) - \eta(X)\eta(Y),$ (2.2)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \qquad (2.3)$$

$$g(\phi X, Y) = -g(X, \phi Y), \qquad (2.4)$$

 $\forall X, Y \in TM.$

An almost contact metric structure becomes a contact metric structure if

$$d\eta(X,Y) = g(X,\phi Y), \qquad (2.5)$$

 $\forall X, Y \in \text{TM. In a contact metric manifold we define a (1,1) tensor field h by <math>h = \frac{1}{2}\mathcal{L}_{\xi}\phi$, where \mathcal{L} denotes the Lie differentiation. Then h is symmetric and satisfies

$$h\phi = -\phi h, \quad h\xi = 0, \quad trace(h) = trace(\phi h) = 0, \quad trace\phi = 0.$$
 (2.6)

Also

$$D_X \xi = -\phi X - \phi h X, \tag{2.7}$$

$$(D_X\eta) = g(X + hX, \phi Y). \tag{2.8}$$

Blair, Koufogiorgos and Papantoniou [2] considered the (k, μ) -nullity condition on a contact metric manifold. The (k, μ) -nullity distribution $N(k, \mu)$ of a contact metric manifold M is defined by ([2], [20])

$$N(k,\mu): p \to N_p(k,\mu) = [Z \to T_pM: R(X,Y)Z = k \{g(Y,Z)X - g(X,Z)Y\} + \mu \{g(Y,Z)hX - g(X,Z)hY\}],$$

 $\forall X, Y, Z \in \text{TM.}$ A contact metric manifold M with $\xi \in N(k, \mu)$ is known as (k, μ) -contact metric manifold if ([2], [20])

$$R(X,Y)\xi = k[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY].$$
 (2.9)

Also in (k, μ) -contact metric manifold, the following holds:

$$h^2 = (k-1)\phi^2, \quad k \le 1,$$
 (2.10)

$$(D_X\phi)(Y) = g(X + hX, Y)\xi - \eta(Y)(X + hX),$$
(2.11)

$$(D_X h)(Y) = (1 - k)[g(X, \phi Y)\xi - \eta(Y)\phi X] + g(X, h\phi Y)\xi + \eta(Y)h\phi X - \mu\eta(X)\phi hX,$$
 (2.12)

$$R(\xi, X)Y = k[g(X, Y)\xi - \eta(Y)X] + \mu[g(hX, Y)\xi - \eta(Y)hX], \quad (2.13)$$

$$S(X,Y) = [2(n-1) - n\mu]g(X,Y) + [2(n-1) + \mu]g(hX,Y) + [2(1-n) + n(2k + \mu)]\eta(X)\eta(Y), \ n \ge 1,$$
(2.14)

$$S(X,\xi) = 2nk\eta(X), \qquad (2.15)$$

$$Q\phi - \phi Q = 2[2(n-1) + \mu]h\phi, \qquad (2.16)$$

where Q is the Ricci operator, i.e. g(QX, Y) = S(X, Y),

$$S(\phi X, \phi Y) = S(X, Y) - 2nk\eta(X)\eta(Y) - 2(2n - 2 + \mu)g(hX, Y), \quad (2.17)$$

 $\forall X, Y \in TM.$

A Riemannian manifold is an Einstein manifold if

$$S(X,Y) = \lambda g(X,Y). \tag{2.18}$$

After introduction and preliminaries, we introduced a new type of quarter symmetric non-metric connection on a (k, μ) -contact metric manifold with respect to the quarter symmetric non-metric connection \overline{D} in section 3. In section 4, we find the curvature tensor of (k, μ) -contact metric manifold with respect to the quarter symmetric non-metric connection \overline{D} and its some proprieties. Section 5 is devoted to skew-symmetric and symmetric condition of Ricci tensor \overline{S} of \overline{D} on a (k, μ) -contact metric manifold. Section 6 deals with nearly Ricci recurrent (k, μ) -contact metric manifold with respect to quarter symmetric non-metric connection \overline{D} . Finally, the existence of nearly Ricci recurrent non-Sasakain (k, μ) -contact metric manifold with respect to quarter symmetric connection \overline{D} is ensured by a non-trivial example.

3. Quarter Symmetric Non-metric Connection \overline{D} on a (k, μ) -contact Metric Manifold

Let (M^{2n+1}, g) be a (k, μ) -contact metric manifold with Levi-Civita connection D, we define a linear connection \overline{D} on M^{2n+1} by

$$\overline{D}_X Y = D_X Y + \eta(X)hY - \eta(Y)hX \tag{3.1}$$

where η be 1-form associated with vector field ξ on M^{2n+1} given by

$$g(X,\xi) = \eta(X), \tag{3.2}$$

 $\forall X, Y \in TM.$

Using (3.1), the torsion tensor \overline{T} on M^{2n+1} with respect to the connection \overline{D} is given by

$$\overline{T}(X,Y) = \overline{D}_X Y - \overline{D}_Y X - [X,Y],$$

which gives

$$\overline{T}(X,Y) = 2[\eta(X)hY - \eta(Y)hX].$$
(3.3)

A linear connection satisfying (3.3) is called quarter symmetric connection. Again using (3.1), we have

$$(\overline{D}_X g)(Y, Z) = \eta(Y)g(hX, Z) + \eta(Z)g(hX, Y).$$
(3.4)

A linear connection \overline{D} defined by (3.1) satisfying (3.3) and (3.4) is called quarter symmetric non-metric connection. Conversely, we will show that a linear connection \overline{D} define on M^{2n+1} satisfying (3.3) and (3.4) is given by (3.1).

Let \overline{D} is a linear connection M^{2n+1} given by

$$\overline{D}_X Y = D_X Y + H(X, Y). \tag{3.5}$$

Now, we shall determined the tensor field H such that \overline{D} satisfies (3.3) and (3.4). In view of (3.5), we get

$$\overline{T}(X,Y) = H(X,Y) - H(Y,X).$$
(3.6)

We have

$$(\overline{D}_X g)(Y, Z) = \overline{D}_X g(Y, Z) - g(\overline{D}_X Y, Z) - g(Y, \overline{D}_X Z),$$
(3.7)

In view of (3.5) and (3.7), We get

$$g(H(X,Y),Z) + g(H(X,Z),Y) = -[\eta(Y)g(hX,Z) + \eta(Z)g(hX,Y)].$$
(3.8)

From (3.5), (3.6) and (3.8), we get

$$g(\overline{T}(X,Y),Z) + g(\overline{T}(Z,X),Y) + g(\overline{T}(Z,Y),X) = 2g(H(X,Y),Z) + 2\eta(Y)g(hX,Z) + 2\eta(X)g(hY,Z),$$

which gives

$$H(X,Y) = \frac{1}{2} [\overline{T}(X,Y) + '\overline{T}(X,Y) + '\overline{T}(Y,X)] - \eta(Y)hX - \eta(X)hY, \quad (3.9)$$

where \overline{T} be a tensor field of type (1, 2) defined by

$$g(\overline{T}(X,Y),Z) = g(T(Z,X),Y) = 2[\eta(Z)g(hX,Y) - \eta(X)g(hZ,Y)].$$
(3.10)

In view of (3.9) and (3.10), we get

$$H(X,Y) = \eta(X)hY - \eta(Y)hX.$$

This implies that

$$\overline{D}_X Y = D_X Y + \eta(X)hY - \eta(Y)hX.$$

Hence we have the following theorem:

Theorem 3.1. Let (M^{2n+1}, g) be a (k, μ) -contact metric manifold with (k, μ) -contact

structure (ϕ, ξ, η, g) admitting a quarter symmetric non-metric connection \overline{D} which satisfies (3.3) and (3.4). Then the quarter symmetric non-metric connection is given by $\overline{D}_X Y = D_X Y + \eta(X)hY - \eta(Y)hX$.

4. Curvature Tensor of (k, μ) -contact Metric Manifold with respect to the Quarter Symmetric Non-metric Connection \overline{D}

Let R and \overline{R} be the curvature tensor of the connection D and \overline{D} respectively, then

$$\overline{R}(X,Y)Z = \overline{D}_X\overline{D}_YZ - \overline{D}_Y\overline{D}_XZ - \overline{D}_{[X,Y]}Z.$$
(4.1)

In view of (3.1) and (4.1), we have

$$\overline{R}(X,Y)Z = R(X,Y)Z + [(D_X\eta)(Y)hZ - (D_Y\eta)(X)hZ] + [\eta(Y)(D_Xh)(Z) - \eta(X)(D_Yh)(Z)] - [(D_X\eta)(Z)hY - (D_Y\eta)(Z)hX] - \eta(Z)[(D_Xh)(Y) - (D_Yh)(X)].$$
(4.2)

Using (2.8) and (2.12) in (4.2), we get

$$\begin{split} \overline{R}(X,Y)Z = & R(X,Y)Z - [2g(\phi X,Y)hZ - g(\phi X,Z)hY + g(\phi Y,Z)hX + g(\phi hX,Y)hZ - g(\phi hY,X)hZ - g(\phi hX,Z)hY + g(\phi hY,Z)hX] \\ &+ (1-k)[\{g(X,\phi Z)\eta(Y) - g(Y,\phi Z)\eta(X)\} - 2g(X,\phi Y)\eta(Z)]\xi(4.3) \\ &+ [g(X,h\phi Z)\eta(Y) - g(Y,h\phi Z)\eta(X) - g(X,h\phi Y)\eta(Z) + g(Y,h\phi X)\eta(Z)]\xi + \mu[\eta(X)\phi hY - \eta(Y)\phi hX]\eta(Z). \end{split}$$

Hence we have have the following theorem:

Theorem 4.1. The curvature tensor $\overline{R}(X,Y)Z$ of (k,μ) -contact metric manifold with respect to quarter symmetric non-metric connection \overline{D} is given by (4.3).

In view of (2.5) and (4.3), we get

$$\overline{R}(X,Y,Z,W) + \overline{R}(Y,X,Z,W) = 0, \qquad (4.4)$$

where $\overline{R}(X, Y, Z, W) = g(\overline{R}(X, Y)Z, W)$ and R(X, Y, Z, W) = g(R(X, Y)Z, W). We also have

$$\overline{R}(X,Y)Z + \overline{R}(Y,Z)X + \overline{R}(Z,X)Y = -4[d\eta(Y,X)hZ + d\eta(Z,Y)hX + d\eta(X,Z)hY] + 4(1-k)[d\eta(X,Y)\eta(Z) + d\eta(X,Z)\eta(Y) + d\eta(Z,Y)\eta(X)]\xi - 2[\{d\eta(Z,hY) - d\eta(Y,hZ)\}\eta(X) + \{d\eta(X,hZ) + d\eta(Z,hX)\}\eta(Y) + \{d\eta(Y,hX) - d\eta(X,hY)\}\eta(Z)]\xi.$$
(4.5)

Hence we have the following theorem:

Theorem 4.2. The curvature tensor $\overline{R}(X, Y)Z$ of (k, μ) -contact metric manifold with respect to quarter symmetric non-metric connection satisfies

$$\overline{R}(X,Y,Z,W) + \overline{R}(Y,X,Z,W) = 0,$$

and

$$\begin{aligned} \overline{R}(X,Y)Z + \overline{R}(Y,Z)X + \overline{R}(Z,X)Y &= -4[d\eta(Y,X)hZ + \\ d\eta(Z,Y)hX + d\eta(X,Z)hY] + 4(1-k)[d\eta(X,Y)\eta(Z) + d\eta(X,Z)\eta(Y) \\ &+ d\eta(Z,Y)\eta(X)]\xi - 2[\{d\eta(Z,hY) - d\eta(Y,hZ)\}\eta(X) + \\ \{d\eta(X,hZ) + d\eta(Z,hX)\}\eta(Y) + \{d\eta(Y,hX) - d\eta(X,hY)\}\eta(Z)]\xi, \end{aligned}$$

 $\forall X, Y, Z, W \in TM.$

Again if the 1-form η is closed i.e. if $d\eta(X, Y) = 0 \ \forall X, Y \in TM$; then (4.5) implies that

$$\overline{R}(X,Y)Z + \overline{R}(Y,Z)X + \overline{R}(Z,X)Y = 0.$$
(4.6)

Hence we have the following theorem:

Theorem 4.3. The curvature tensor $\overline{R}(X,Y)Z$ of (k,μ) -contact metric manifold with respect to quarter symmetric non-metric connection \overline{D} satisfies the Bianchi identity if and only if the 1-form η is closed.

Contracting (4.2), we have

$$S(Y,Z) = S(Y,Z) + 3g(Y,\phi hZ) + g(\phi hY,Z) + g(\phi hY,hZ) - 3(1-k)g(Y,\phi Z),$$
(4.7)

In view of (2.5) and (4.7), we get

$$\overline{S}(Y,Z) = S(Y,Z) + 3d\eta(Y,hZ) + d\eta(Z,hY) + d\eta(hZ,hY) - 3(1-k)d\eta(Y,Z),$$
(4.8)

$$\overline{S}(Y,\xi) = 2nk\eta, \tag{4.9}$$

and

$$\overline{r} = r. \tag{4.10}$$

From (4.7) and (4.8), we have have the following theorem:

Theorem 4.4. The Ricci tensor \overline{S} of (k, μ) -contact metric manifold with respect

to \overline{D} is equal to Ricci tensor S of (k, μ) -contact metric manifold with respect to D if and only if the 1-form η is closed.

Theorem 4.5. The scalar curvature \overline{r} of (k, μ) -contact metric manifold with respect to quarter symmetric non-metric connection \overline{D} is equal to scalar curvature of manifold with respect to D.

5. Skew-symmetric and Symmetric Condition of Ricci Tensor \overline{S} of \overline{D} on a (k, μ) -contact Metric Manifold

From (4.7), we get

$$\overline{S}(Z,Y) = S(Z,Y) + 3g(Z,\phi hY) + g(\phi hZ,Y) + g(\phi hZ,hY) - 3(1-k)g(Z,\phi Y),$$
(5.1)

In view of (4.7) and (5.1), we have

$$\overline{S}(Y,Z) + \overline{S}(Z,Y) = 2S(Y,Z) + 4[g(Y,\phi hZ) + g(\phi hY,Z)].$$
(5.2)

Using (2.5) in (5.2), we obtain

$$\overline{S}(Y,Z) + \overline{S}(Z,Y) = 2S(Y,Z) + 4[d\eta(Y,hZ) + d\eta(Z,hY)].$$
(5.3)

If $\overline{S}(Y,Z)$ is skew-symmetric then left hand side of (5.3) vanishes and we have

$$S(Y,Z) = -2[d\eta(Y,hZ) + d\eta(Z,hY)].$$
(5.4)

On the other hand if S(Y, Z) is given by (5.4), then from (5.3), we get

$$\overline{S}(Y,Z) + \overline{S}(Z,Y) = 0.$$

Hence we have the following theorem:

Theorem 5.1. Let (M^{2n+1}, g) be a (k, μ) -contact metric manifold with respect to quarter symmetric non-metric connection \overline{D} . Then the Ricci tensor \overline{S} of \overline{D} is skew-symmetric if and only if the Ricci tensor S of the Levi-Civita connection Dis given by (5.4).

Again from (4.7) and (5.1), we have

$$\overline{S}(Y,Z) - \overline{S}(Z,Y) = 2[d\eta(Y,hZ) - d\eta(Z,hY) + d\eta(hZ,hY) - 3(1-k)d\eta(Y,Z)].$$
(5.5)

If the 1-form η is closed, then the equation (5.5) will be

$$\overline{S}(Y,Z) - \overline{S}(Z,Y) = 0.$$

Hence we have the following theorem:

Theorem 5.2. Let (M^{2n+1}, g) be a (k, μ) -contact metric manifold with respect to quarter symmetric non-metric connection \overline{D} . Then the Ricci tensor \overline{S} of \overline{D} is symmetric if and only if the 1-form η is closed.

6. Nearly Ricci Recurrent (k, μ) -contact Metric Manifold with respect to Quarter Symmetric Non-metric Connection

Analogous to the definition of (1.3), we define nearly Ricci recurrent non-Sasakain (k, μ) -contact metric manifold with respect to quarter symmetric nonmetric connection \overline{D} as follows

$$(\overline{D}_X\overline{S})(Y,Z) = [A(X) + B(X)]\overline{S}(Y,Z) + B(X)g(Y,Z).$$
(6.1)

Using (4.7) in (6.1), we get

$$(\overline{D}_X \overline{S})(Y, Z) = [A(X) + B(X)][S(Y, Z) - 3g(Y, h\phi Z) + g(\phi hY, Z) + g(\phi hY, hZ) - 3(1 - k)g(Y, \phi Z)] + B(X)g(Y, Z).$$
(6.2)

Putting ξ for Z in (6.2) and using (2.1), (2.2) and (2.15), we get

$$(\overline{D}_X\overline{S})(Y,\xi) = [A(X) + (2nk+1)B(X)]\eta(Y).$$
(6.3)

Now, we have

$$(\overline{D}_X\overline{S})(Y,\xi) = \overline{D}_X\overline{S}(Y,\xi) - \overline{S}(\overline{D}_XY,\xi) - \overline{S}(Y,\overline{D}_X\xi).$$
(6.4)

Using (2.3), (2.7), (3.1) and (4.7) in (6.4), we obtain

$$(\overline{D}_X\overline{S})(Y,\xi) = 2\overline{S}(Y,\phi X) - \overline{S}(Y,h\phi X) - 4nkg(Y,\phi X) + 2nkg(Y,h\phi X).$$
(6.5)

From (6.3) and (6.5), we have

$$[A(X) + (2nk+1)B(X)]\eta(Y) = 2\overline{S}(Y,\phi X) - \overline{S}(Y,h\phi X) - 4nkg(Y,\phi X) + 2nkg(Y,h\phi X).$$
(6.6)

Further Y is replaced by ϕY in (6.6), we get

$$2\overline{S}(\phi Y, \phi X) - \overline{S}(\phi Y, h\phi X) = 4nkg(\phi Y, \phi X) - 2nkg(\phi Y, h\phi X).$$
(6.7)

Again X is replaced by hX in (6.7) and using (2.1), (2.6) and (2.10), we get

$$-2\overline{S}(\phi Y, h\phi X) + (1-k)\overline{S}(\phi Y, \phi X) = -4nkg(\phi Y, h\phi X) -2nk(1-k)g(\phi Y, \phi X).$$
(6.8)

In view of (6.7) and (6.8), we obtain

$$\overline{S}(\phi Y, \phi X) = 2nkg(\phi Y, \phi X), \ 3 + k \neq 0.$$
(6.9)

Using (2.3) and (4.7) in (6.9), we get

$$S(\phi Y, \phi X) = 3(1-k)g(\phi Y, X) - 3g(\phi Y, hX) - g(hY, \phi X) - g(hY, h\phi X) + 2nk[g(Y, X) - \eta(Y)\eta(X)].$$
(6.10)

From (2.17) and (6.10), we have

$$S(Y,X) = 2nkg(Y,X) + 3(1-k)g(\phi Y,X) - 3g(\phi Y,hX) - g(hY,\phi X) - g(hY,h\phi X) + 2(2n-2+\mu)kg(hY,X).$$
(6.11)

Using (2.5) in (6.11), we have

$$S(X,Y) = 2nkg(X,Y) + 3(1-k)d\eta(X,Y) - 3d\eta(hX,Y) - d\eta(hY,X) + d\eta g(hX,hY) + 2(2n-2+\mu)kg(hY,X).$$
(6.12)

Hence we have the following theorem:

Theorem 6.1. Let M^{2n+1} be a nearly Ricci recurrent (k, μ) -contact metric manifold with respect to quarter symmetric non-metric connection \overline{D} . Then the Ricci tensor S of the Levi-Civita connection D is equal to Einstein manifold where $\lambda = 2nk$ if and only if $\mu = 2(1 - n)$ and the 1-form η is closed, provided $k + 3 \neq 0$.

Again Putting $Y = \xi$ in (6.6), we get

$$B(X) = -\frac{1}{2nk+1}A(X).$$
(6.13)

Hence we have the following theorem:

Theorem 6.2. Let M^{2n+1} be a nearly Ricci recurrent (k, μ) -contact metric manifold with respect to quarter symmetric non-metric connection \overline{D} . Then $B(X) = -\frac{1}{2nk+1}A(X)$ hold on M^{2n+1} .

7. Conclusion

- 1. For (k, μ) -contact metric manifold (M^{2n+1}, g) admitting quarter symmetric non-metric connection \overline{D} ,
 - (i) The curvature tensor \overline{R} of \overline{D} is given by (4.3).
 - (ii) $\overline{R}(X, Y, Z, W) + \overline{R}(Y, X, Z, W) = 0.$

- (iii) $\overline{R}(X,Y)Z + \overline{R}(Y,Z)X + \overline{R}(Z,X)Y = 0$ if and only if 1-form η is closed.
- (iv) The Ricci tensor \overline{S} of \overline{D} is given by (4.7).
- (v) The Ricci tensor \overline{S} of \overline{D} is equal to the Ricci tensor S of D if and only if 1-form η is closed.
- (vi) The Ricci tensor \overline{S} of \overline{D} is skew-symmetric if and only if the Ricci tensor S of D is given by (5.4).
- (iv) The Ricci tensor \overline{S} of \overline{D} is symmetric if and only if 1-form η is closed.
- 2. For nearly Ricci recurrent (k, μ) -contact metric manifold (M^{2n+1}, g) admitting quarter symmetric non-metric connection \overline{D} ,
 - (i) The Ricci tensor S of D is equal to Einstein manifold where $\lambda = 2nk$ if and only if $\mu = 2(1-n)$ and the 1-form η is closed, provided $k+3 \neq 0$.

(ii)
$$B(X) = -\frac{1}{2nk+1}A(X).$$

8. Example

Let us consider the 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3, z \neq 0\}$, where (x, y, z) are standard co-ordinate of \mathbb{R}^3 . We choose the vector fields

$$e_1 = e^{-2z} \frac{\partial}{\partial x}, \ e_2 = e^{-2z} \frac{\partial}{\partial y}, \ e_3 = \frac{\partial}{\partial z},$$
 (8.1)

which are linearly independent at each point of M.

Let g be the Riemannian metric denoted by

$$g(e_i, e_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j, \end{cases}$$
(8.2)

where i, j = 1, 2, 3.

Let η be the 1-form defined by $\eta(U) = g(U, e_3)$ and $\eta(e_3) = 1$ for any $U \in \chi(M^3)$. Let ϕ be tensor field of type (1,1) defined by

 $\phi e_1 = e_2, \quad \phi e_2 = -e_1, \quad \phi e_3 = 0.$ (8.3)

From the properties of ϕ and η , we obtain

$$g(e_i, \phi e_i) = d\eta(e_i, e_i), \ i, j = 1, 2, 3.$$

Then we have

$$\phi^2 U = -U + \eta(U)e_3 \quad g(\phi U, \phi W) = g(U, W) - \eta(U)\eta(W), \tag{8.4}$$

 $\forall U, W \in \chi(M)$. Thus for $e_3 = \xi$, the structure (ϕ, ξ, η, g) defined an almost contact metric structure on M.

Let D be the Levi-Civita connection with respect to the Riemannian metric g. Then from equation (8.1), we have

$$[e_1, e_2] = 0 \quad [e_1, e_3] = 2e_1, \quad [e_2, e_3] = 2e_2.$$
 (8.5)

The Riemannian connection D of the metric g is given by

$$2g(D_XY,Z) = Xg(Y,Z) + Yg(X,Z) - Zg(X,Y) - g(X,[Y,Z]) - g(Y,[X,Z]) + g(Z,[X,Y]),$$
(8.6)

which is known as Koszul's formula. Using (8.2) and (8.5) in (8.6), we get

Also we know

$$D_{e_1}e_2 = -\phi e_1 - \phi h e_1$$

Comparing two relations for $D_{e_1}e_2$ and using (8.3), we have

 $he_1 = -e_1.$

Similarly

$$he_2 = -e_2$$
 and $he_3 = 0$.

Also

$$\left. \begin{array}{l} \overline{D}_{e_1}e_3 = 3e_1, \quad \overline{D}_{e_2}e_3 = 3e_2, \quad \overline{D}_{e_3}e_3 = 0, \\ \overline{D}_{e_1}e_2 = 0, \quad \overline{D}_{e_2}e_2 = 2e_3, \quad \overline{D}_{e_3}e_2 = -e_2, \\ \overline{D}_{e_1}e_1 = 2e_3, \quad \overline{D}_{e_2}e_1 = 0, \quad \overline{D}_{e_3}e_1 = -e_1. \end{array} \right\}$$
(8.8)

Use of (8.4) and (8.7), we can easily calculate the curvature tensor as follows:

$$\left. \begin{array}{l}
R\left(e_{1},e_{2}\right)e_{3}=0, \quad R\left(e_{2},e_{3}\right)e_{3}=-4e_{2}, \quad R\left(e_{1},e_{3}\right)e_{3}=-4e_{1}, \\
R\left(e_{1},e_{2}\right)e_{2}=4e_{1}, \quad R\left(e_{2},e_{3}\right)e_{2}=-4e_{3}, \quad R\left(e_{1},e_{3}\right)e_{2}=0, \\
R\left(e_{1},e_{2}\right)e_{1}=-4e_{2}, \quad R\left(e_{2},e_{3}\right)e_{1}=0, \quad R\left(e_{1},e_{3}\right)e_{1}=-4e_{3}.
\end{array}\right\}$$

$$(8.9)$$

From (8.9), we have

$$\begin{aligned} R\left(e_{1},e_{2}\right)e_{3} &= 0 = 4[\eta(e_{2})e_{1} - \eta(e_{1})e_{2}] + 8[\eta(e_{2})he_{1} - \eta(e_{1})he_{2}],\\ R\left(e_{2},e_{3}\right)e_{3} &= -4e_{2} = 4[\eta(e_{3})e_{2} - \eta(e_{2})e_{3}] + 8[\eta(e_{3})he_{2} - \eta(e_{2})he_{3}],\\ R\left(e_{1},e_{3}\right)e_{3} &= -4e_{1} = 4[\eta(e_{3})e_{1} - \eta(e_{1})e_{3}] + 8[\eta(e_{3})he_{1} - \eta(e_{1})he_{3}]. \end{aligned}$$

In view of above the expression of the curvature tensor we can easily conclude that the manifold is a (k, μ) -contact metric manifold with k = 4 and $\mu = 8$.

From (8.8), we have $\overline{T}(e_1, e_3) = 2e_1$ and $2[\eta(e_1)he_3 - \eta(e_3)he_1] = 2e_1$. This show that the linear connection \overline{D} defined as (3.1) is a quarter symmetric connection on (M^3, g) . Also

$$\left(\overline{D}_{e_1}g\right)\left(e_1,e_3\right) = -1 \neq 0.$$

Hence the above show that the quarter symmetric connection \overline{D} is non-metric on (M^3, g) . This verifies Theorem 3.1.

In view of (8.9), we obtain

$$S(e_1, e_1) = 8,$$
 $S(e_1, e_2) = 8,$ $S(e_2, e_2) = -8.$ (8.10)

Similarly, we can obtain the non-vanishes components of the curvature tensor \overline{R} and Ricci tensor \overline{S} with respect to quarter symmetric non-metric connection \overline{D} on a (k, μ) -contact metric manifold as

$$\frac{\overline{R}(e_1, e_2) e_3 = 0, \quad \overline{R}(e_2, e_3) e_3 = -3e_2, \quad \overline{R}(e_1, e_3) e_3 = -3e_1, \\
\overline{R}(e_1, e_2) e_2 = 6e_1, \quad \overline{R}(e_2, e_3) e_2 = -6e_3, \quad \overline{R}(e_1, e_3) e_2 = 0, \\
\overline{R}(e_1, e_2) e_1 = -6e_2, \quad \overline{R}(e_2, e_3) e_1 = 0, \quad \overline{R}(e_1, e_3) e_1 = -6e_3, \quad \right\}$$
(8.11)

and

$$\overline{S}(e_1, e_1) = 12, \qquad \overline{S}(e_1, e_2) = 12, \qquad \overline{S}(e_2, e_2) = -6.$$
 (8.12)

Since $\{e_1, e_2, e_3\}$ forms a basis of non-Sasakaian (k, μ) -contact metric manifold any vector field $X, Y, Z \in \chi(M)$ can be written as

$$X = a_1e_1 + b_1e_2 + c_1e_3, \quad Y = a_2e_1 + b_2e_2 + c_2e_3,$$

where $a_i, b_i, c_i \in \mathbf{R}^+$ (the set of all positive real numbers), i = 1, 2, 3. This implies that

$$S(X,Y) = 8(a_1a_2 + b_1b_2 - c_1c_2), \quad g(X,Y) = a_1a_2 + b_1b_2 + c_1c_2, \quad (8.13)$$

and

$$\overline{S}(X,Y) = 8(a_1a_2 + b_1b_2 - c_1c_2).$$
(8.14)

In view of (8.7), (8.12) and (8.14), we get

$$\left(\begin{array}{c} \overline{D}_{e_1} \overline{S} \end{array} \right) = -24(a_1 c_2 + a_2 c_1), \\ (\overline{D}_{e_2} \overline{S}) = -24(b_1 c_2 + b_2 c_1), \\ (\overline{D}_{e_3} \overline{S}) = -24(a_1 a_2 + b_1 b_2). \end{array} \right\}$$
(8.15)

Consequently, the manifold under consideration is neither Ricci symmetric nor Ricci recurrent. Let us now consider 1-forms A and B non vanishes

$$A(e_1) = \frac{-24(6k+1)(a_1c_2+a_2c_1)}{6(k+1)(2a_1a_2+2b_1b_2-c_1c_2)-1}$$

$$B(e_1) = \frac{24(a_1c_2+a_2c_1)}{6(k+1)(2a_1a_2+2b_1b_2-c_1c_2)-1}$$

$$A(e_2) = \frac{-24(6k+1)(b_1c_2+b_2c_1)}{6(k+1)(2a_1a_2+2b_1b_2-c_1c_2)-1}$$

$$B(e_2) = \frac{24(b_1c_2+b_2c_1)}{6(k+1)(2a_1a_2+2b_1b_2-c_1c_2)-1}$$

$$A(e_3) = \frac{-24(6k+1)(a_1a_2+b_1b_2)}{6(k+1)(2a_1a_2+2b_1b_2-c_1c_2)-1}$$

$$B(e_3) = \frac{24(a_1a_2+b_1b_2)}{6(k+1)(2a_1a_2+2b_1b_2-c_1c_2)-1},$$

where k = 4, at any point $x \in M$. From (1.3), we have

$$\left(\overline{D}_{e_j}\overline{S}\right)(X,Y) = [A(e_j) + B(e_j)]\overline{S}(X,Y) + B(e_j)g(X,Y), \quad j = 1, 2, 3.$$
(8.16)

It can be easily seen that the manifold with 1-forms satisfies relation (8.16). Hence the manifold under consideration is a nearly Ricci recurrent (k, μ) -contact metric manifold (M^3, g) with respect to quarter symmetric non-metric connection, which is neither Ricci recurrent nor Ricci symmetric. Thus we have the following theorem:

Theorem 8.1. There exist a nearly Ricci recurrent (k, μ) -contact metric manifold (M^3, g) with respect to quarter symmetric non-metric connection \overline{D} , which is neither Ricci recurrent nor Ricci symmetric.

9. Application

We will continue the research on this quarter symmetric non-metric connection on the generalized (k, μ) -contact metric manifold, (k, μ) -paracontact metric manifold, almost Kenmotsu manifold with nullity distribution and deal with the application of the results obtained in this paper.

Acknowledgement

The authors would like to express their deep thanks to the referee for his careful reading and many valuable suggestions towards the improvement of this paper.

References

- [1] Blair, D. E., Lecture notes in Mathematics, 509, springer verleg, Berlin, 1976.
- [2] Blair, D. E., Koufogiorgos, T. and Papantoniou, B. J., Contact metric manifold satisfying a nullity condition, Isarael J. Math., 91 (1995), 189-214.
- [3] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Birkhauser, 2002.
- [4] Chaki, M. C., Some theorem on recurrent and Ricci recurrent spaces, Rendicoti Seminario Math. Della universita Di Padova, 26 (1956), 168-176.
- [5] De, U. C. and Sarkar, A., On the quasi-conformal curvature tensor of a (k, μ) -contact metric manifold, Math. Reports, 14 (64) 2 (2012), 115-129.
- [6] De, U.C. and Biswas, S. C., Quarter symmetric metric connection in an SP-Sasakain manifold, Commun. Fac. Sci. Uni. Ank. series A₁, 46 (1997), 49-56.
- [7] De, U. C. and Sengupta, J., Quarter symmetric metric connection on a Sasakain manifold, Commun. Fac. Sci. Uni. Ank. series A₁, 49 (2000), 7-13.
- [8] Dwivedi, M. K., A quarter symmetric non-metric connection in a Kenmotsu manifold, Int. Ele. J. of geometry, 4 (1) (2011), 115-124.
- [9] Friedmann, A. and Schouten, J. A., Uber die Geometric der halbsymmetrischen Ubertragung, Math. Zeitschr, 21 (1924), 211-223.
- [10] Ghosh, A. and Sharma, R., Classification of (k, μ) -contact metric manifolds with divergence freecotton tensor and vanishing bach tensor, Annales Polonici Mathematici, 122 (2019), 153-163.
- [11] Golab, S., On semi-symmetric and quarter symmetric linear connections, Tensor, N. S., 29 (1975), 249-254.
- [12] Haseeb, A., Some new results on para-Sasakian manifolds with a quarter symmetric metric connection, Facta Universitatis (NIS), Ser. Math. Inform., 30 (5) (2015), 765-776.
- [13] Hayden, H. A., Subspaces of a space with torsion, Proc. London Math. Soc., 34 (1932), 27-50.

- [14] Koufogiorgos, T., Contact Riemannian manifolds with constant ϕ -sectional curvature, Tokyo J. Math., 20 (1) (1997), 13-22.
- [15] Kumar, K. T. P., Bagewadi, C. S. and Venkatesha, Projective ϕ -symmetric K-contact manifold admitting quarter-symmetric metric connection, Differential Geometry-Dynamical system, 13 (2011), 128-137.
- [16] Majhi, P. and Ghosh G., Concircular vector field in (k, μ) -contact metric manifolds, Int. elect. J. of geometry, 11 (1) (2018), 52-56.
- [17] Mishra, R. S. and Pandey, S. N., On quarter symmetric metric φ-connections, Tensor, N. S., 34 (1980), 1-7.
- [18] Mondal, A. K., Quarter-symmetric non-metric connection on P-Sasakian Manifolds, International Scholarly Research Network ISRN Geometry, Article ID 659430, doi:10.5402/2012/659430.
- [19] Paatterson, E. M., Some theorem on Ricci-recurrent space, J. London. Math. Soc., 27 (1952), 287-295.
- [20] Papantoniou, B. J., Contact Riemannian manifolds satisfying $R(\xi, X).R = 0$ and $\xi \in (k, \mu)$ nullity distribution, Yokohama Math. J., 40 (2) (1993), 149-161.
- [21] Patra, C. and Bhattacharyya, A., Quarter-Symmetric non-metric connection on pseudo symmetric Kenmotsu Manifolds, Bulletin of TICMI, 17 (2) (2013), 1-14.
- [22] Prakash, N., A note on Ricci recurrent and recurrent spaces, Bull. Cal. Math. Soc., 54 (1962), 1-7.
- [23] Prakash, A. and Narain, D., On a quarter symmetric non-metric connection in an LP-Sasakian manifolds, Int. Electronic Journal of Geometry, 4 (1) (2011), 129-137.
- [24] Prasad, B. and Yadav, R. P. S., On nearly Ricci recurrent Riemannian manifolds, Malaya J. Mat., 09 (02) (2021), 55-63.
- [25] Prasad, R. and Haseeb, A., On a Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection, Novi Sad J. Math., 46 (2) (2016), 103-116.

- [26] Shaikh, A. A. and Jana, S. K., Quarter-symmetric non-metric p-connection on a (k, μ) contact metric manifold, Commun. Fac. Univ. Ank. Series A_1 , 55 (1) (2006), 33-45.
- [27] Shaikh, A. A. and Baishya, K. K., On (k, μ) -contact metric manifolds, " Analele STIITIFICE ALE UNIVERSITAH AL. I CUZA" IAS. Tomul LI, S.I. C. Mathematica 2005, f_2 , (2017), 405-416.
- [28] Sharma, R. and Vranckew, L. L., Conformal classification of (k, μ) -contact metric manifolds, Kodai Math. J., 33 (2010), 267-282.
- [29] Somashekhara, P., Praveena, M. M. and Venkatesha, Quarter Symmetric non-metric connection on Lorentzian α-Sasakian Manifolds, Quest Journals Journal of Research in Applied Mathematics, 6 (5) (2020), 42-51.
- [30] Srivastava, J. P., Sharma, S. and Prasad, B., A semi-symmetric non-metric SP-connection in an SP-Sasakian manifold, Varahmihir Journal of Mathematical sciences, 8 (1) (2008), 129-136.
- [31] Roter, W., On Conformally symmetric Ricci recurrent spaces, Colloquium Mathematicum., 31 (1974), 87-96.
- [32] Venkatesha, V., Kumara, H. Aruna and Naik, D. M., Ricci recurrent almost Kenmotsu 3-manifolds, Filomat, 35 (7) (2021), 2293-2301.
- [33] Yano, K., On semi-symmetric connections, Revue Roumaine de Math. Pure Appl., 15 (1970), 1579-1586.
- [34] Yildiz, A. and De, U. C., A classification of (k, μ) -contact metric manifolds, Commun. Korean Math. Soc., 27 (2) (2012), 327-339.

This page intentionally left blank.