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Abstract: The object of the present paper is to introduce a new type of quarter
symmetric non-metric connection on a (k, µ)−contact metric manifold and study
some properties of quarter symmetric non-metric connection on a (k, µ)−contact
metric manifold. Further, we obtain some properties of nearly Ricci recurrent on
a (k, µ)−contact metric manifold with respect to quarter symmetric non-metric
connection. Finally, we present an example to verify our result.
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1. Introduction
The notion of (k, µ)−contact metric manifolds was introduced by Blair, Koufo-

giorgos and Papantoniou [2] where k and µ are real constants. A class of contact
manifolds with contact metric structure (ϕ, ξ, η, g) in which the curvature tensor
R satisfies the condition:

R(X, Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ],

∀ X, Y ∈TM, where k and µ are real constants, is called (k, µ)−contact metric
manifold. The class of (k, µ)−contact metric manifolds contains both the class of
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Sasakian (k = 1 and h = 0) and non-Sasakian (k ̸= 1 and h ̸= 0) manifolds. For
example, the unit tangent sphere bundle of a flat Riemannian manifold with the
usual contact metric structure is a non-Sasakian (k, µ)−contact metric manifold.
The properties of (k, µ)−contact metric manifold have been studied by many au-
thors such as Koufogiorgos [14], Shaikh and Baishya [27], Shaikh and Jana [26],
Sharma and Vranckew [28], Majhi and Ghosh [16], Ghosh and Sharma [10], De and
Sarkar [5], Yildiz and De [34] etc.

Let D be a linear connection in a Riemannian manifold M . The torsion tensor
T is given by

T (X, Y ) = DXY −DYX − [X, Y ].

The connection D is symmetric if its torsion tensor vanishes, otherwise it is non-
symmetric. The connection D is a metric connection if there is a Riemannian
metric g in M such that DXg = 0, otherwise it is non-metric. It is well known
that a linear connection is symmetric and metric if and only if it is the Levi-Civita
connection.

A. Friedmann and J.A. Schouten introduced the idea of a semi-symmetric linear
connection [9]. A linear connection D is said to be a semi-symmetric connection if
its torsion tensor T is of the form

T (X, Y ) = η(Y )X − η(X)Y,

∀ X, Y ∈TM.

S. Golab introduced the idea of a quarter symmetric linear connection in a
differentiable manifold [11]. A linear connection is said to be a quarter-symmetric
connection if its torsion tensor T is of the form

T (X, Y ) = η(Y )ϕX − η(X)ϕY,

where η is a 1-form and ϕ is a (1, 1) tensor field. If we put ϕX = X and ϕY = Y ,
then the quarter-symmetric metric connection reduces to the semi-symmetric met-
ric connection [9]. Thus the notion of the quarter-symmetric connection generalizes
the notion of the semi-symmetric connection. Further in 1980, Mishra and Pandey
[17] have studied quarter symmetric metric connection in Riemannian, K

..
ahler and

Sasakain manifolds.

A relation between the quarter-symmetric metric connection D and the Levi-
Civita connection D in an n-dimensional SP-Sasakian manifold is given by [6]

DXY = DXY + η(Y )ϕX − F (X, Y )ξ,
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whose torsion and metric are T (X, Y ) = η(Y )ϕX − η(X)ϕY and (DXg)(Y, Z) =
0. In this paper, the author proved that in an SP-Sasakian manifold, the Ricci
tensor of the quarter symmetric metric connection is symmetric and found some
interesting results.

Recently, in 2000, De and Sengupta [7] studied a quarter symmetric metric
connection on a Sasakian manifold as

DXY = DXY − η(X)ϕY.

The quarter symmetric metric connection have been developed by several authors
such as Srivastava, Sharma and Prasad [30], Prakash and Narain [23], Kumar,
Bagewadi and Venkatesha [15], Haseeb [12], Prasad and Haseeb [25] etc. On
the other hand, quarter symmetric non-metric connection have been studied by
various authors such as Dwivedi [8], Mondal [18], Patra and Bhattacharyya [21],
Somashekhara , Praveena and Venkatesha et al [29].

In recent paper, Shaikh and Jana [26] introduced and studied a new type of
quarter symmetric metric connection on a (k, µ)−contact metric manifold as

DXY = DXY + η(Y )hX − g(hX, Y )ξ,

∀ X, Y ∈TM, whose torsion tensor and metric are

T (X, Y ) = η(Y )hX − η(X)hY

and
(DXg)(Y, Z) = 0,

where h is a (1, 1) tensor field. They proved that the Ricci tensor of a non-Sasakian
(k, µ)−contact metric manifold (M2n+1, g) with respect to the quarter-symmetric
metric connection is symmetric if and only if the contact form η is closed and found
many others results.

The motivation of the above ideas, we define a new type of quarter symmetric
non-metric connection on a (k, µ)−contact metric manifold as follows

DXY = DXY + η(X)hY − η(Y )hX,

∀ X, Y ∈TM, whose torsion tensor and metric are

T (X, Y ) = 2[η(X)hY − η(Y )hX]

and
(DXg)(Y, Z) = η(Y )g(hX,Z) + η(Z)g(hX, Y ).
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In 1952, Paatterson [19] introduced Ricci recurrent manifolds. According to
him a manifold (Mn, g) was called “Ricci recurrent” if

(DXS)(Y, Z) = A(X)S(Y, Z), (1.1)

for some 1-form A where D and S denote the operator of covariant differentiation
with respect to metric tensor g and Ricci tensor respectively. He denoted such a
manifold by Rn. Ricci recurrent manifolds have been studied by several authors
such as Roter [31], Chaki [4], Prakash [22], Venkatesha et al [32].

Very recently Prasad and Yadav [24] introduced a new type of non-flat Ricci
recurrent manifold whose Ricci tensor S satisfies the condition:

(DXS)(Y, Z) = [A(X) +B(X)]S(Y, Z) +B(X)g(Y, Z), (1.2)

∀ X, Y, Z ∈TM, where A and B non-zero 1-forms, ρ1 and ρ2 be two vector fields
such that

A(X) = g(ρ1, X), B(X) = g(ρ2, X). (1.3)

Such a manifold called as a nearly Ricci recurrent manifold and 1-forms A and
B be its associated 1-form. Nearly Ricci recurrent manifolds of this kind were
denoted by him as a N {R(Rn)}. The name nearly Ricci recurrent Riemannian
manifold was chosen because if B = 0 in (1.2) then the manifold reduces to a Ricci
recurrent manifold which is very close to Ricci recurrent space. This justified the
name “Nearly Ricci recurrent manifold” for a manifold defined by (1.2) and the
use of the symbol N {R(Rn)} for it.

2. Preliminaries
A (2n+1) dimensional Riemannian manifold (M2n+1, g) is said to be an almost

contact metric manifold if it admits a tensor ϕ of type (1,1), ξ is a contravariant
vector fields of type (0,1) and 1-form η is a covariant tensor of the type (1,0)
satisfying (Blair, [1], [3]):

ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η(ϕX) = 0, traceϕ = 0, (2.1)

g(X, ξ) = η(X) g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ), (2.2)

g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ), (2.3)

g(ϕX, Y ) = −g(X,ϕY ), (2.4)

∀ X, Y ∈TM.
An almost contact metric structure becomes a contact metric structure if

dη(X, Y ) = g(X,ϕY ), (2.5)
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∀ X, Y ∈TM. In a contact metric manifold we define a (1,1) tensor field h by
h = 1

2
Lξϕ, where L denotes the Lie differentiation. Then h is symmetric and

satisfies

hϕ = −ϕh, hξ = 0, trace(h) = trace(ϕh) = 0, traceϕ = 0. (2.6)

Also
DXξ = −ϕX − ϕhX, (2.7)

(DXη) = g(X + hX, ϕY ). (2.8)

Blair, Koufogiorgos and Papantoniou [2] considered the (k, µ)−nullity condition
on a contact metric manifold. The (k, µ)−nullity distribution N(k, µ) of a contact
metric manifold M is defined by ([2], [20])

N(k, µ) : p → Np(k, µ) =

[Z → TpM : R(X, Y )Z = k {g(Y, Z)X − g(X,Z)Y }+ µ {g(Y, Z)hX − g(X,Z)hY }],

∀ X, Y, Z ∈TM. A contact metric manifold M with ξ ∈ N(k, µ) is known as
(k, µ)−contact metric manifold if ([2], [20])

R(X, Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ]. (2.9)

Also in (k, µ)−contact metric manifold, the following holds:

h2 = (k − 1)ϕ2, k ≤ 1, (2.10)

(DXϕ)(Y ) = g(X + hX, Y )ξ − η(Y )(X + hX), (2.11)

(DXh)(Y ) =(1− k)[g(X,ϕY )ξ − η(Y )ϕX]+

g(X, hϕY )ξ + η(Y )hϕX − µη(X)ϕhX,
(2.12)

R(ξ,X)Y = k[g(X, Y )ξ − η(Y )X] + µ[g(hX, Y )ξ − η(Y )hX], (2.13)

S(X, Y ) =[2(n− 1)− nµ]g(X, Y ) + [2(n− 1) + µ]g(hX, Y )

+ [2(1− n) + n(2k + µ)]η(X)η(Y ), n ≥ 1,
(2.14)

S(X, ξ) = 2nkη(X), (2.15)

Qϕ− ϕQ = 2[2(n− 1) + µ]hϕ, (2.16)

where Q is the Ricci operator, i.e. g(QX, Y ) = S(X, Y ),

S(ϕX, ϕY ) =S(X, Y )− 2nkη(X)η(Y )− 2(2n− 2 + µ)g(hX, Y ), (2.17)
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∀ X, Y ∈TM.

A Riemannian manifold is an Einstein manifold if

S(X, Y ) = λg(X, Y ). (2.18)

After introduction and preliminaries, we introduced a new type of quarter sym-
metric non-metric connection on a (k, µ)−contact metric manifold with respect
to the quarter symmetric non-metric connection D in section 3. In section 4,
we find the curvature tensor of (k, µ)−contact metric manifold with respect to
the quarter symmetric non-metric connection D and its some proprieties. Sec-
tion 5 is devoted to skew-symmetric and symmetric condition of Ricci tensor S
of D on a (k, µ)−contact metric manifold. Section 6 deals with nearly Ricci re-
current (k, µ)−contact metric manifold with respect to quarter symmetric non-
metric connection D. Finally, the existence of nearly Ricci recurrent non-Sasakain
(k, µ)−contact metric manifold with respect to quarter symmetric non-metric con-
nection D is ensured by a non-trivial example.

3. Quarter Symmetric Non-metric Connection D on a (k, µ)−contact
Metric Manifold

Let (M2n+1, g) be a (k, µ)−contact metric manifold with Levi-Civita connection
D, we define a linear connection D on M2n+1 by

DXY = DXY + η(X)hY − η(Y )hX (3.1)

where η be 1-form associated with vector field ξ on M2n+1 given by

g(X, ξ) = η(X), (3.2)

∀ X, Y ∈TM.

Using (3.1), the torsion tensor T on M2n+1 with respect to the connection D is
given by

T (X, Y ) = DXY −DYX − [X, Y ],

which gives

T (X, Y ) = 2[η(X)hY − η(Y )hX]. (3.3)

A linear connection satisfying (3.3) is called quarter symmetric connection. Again
using (3.1), we have

(DXg)(Y, Z) = η(Y )g(hX,Z) + η(Z)g(hX, Y ). (3.4)
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A linear connectionD defined by (3.1) satisfying (3.3) and (3.4) is called quarter
symmetric non-metric connection. Conversely, we will show that a linear connec-
tion D define on M2n+1 satisfying (3.3) and (3.4) is given by (3.1).

Let D is a linear connection M2n+1 given by

DXY = DXY +H(X, Y ). (3.5)

Now, we shall determined the tensor field H such that D satisfies (3.3) and (3.4).
In view of (3.5), we get

T (X, Y ) = H(X, Y )−H(Y,X). (3.6)

We have
(DXg)(Y, Z) = DXg(Y, Z)− g(DXY, Z)− g(Y,DXZ), (3.7)

In view of (3.5) and (3.7), We get

g(H(X, Y ), Z) + g(H(X,Z), Y ) = −[η(Y )g(hX,Z) + η(Z)g(hX, Y )]. (3.8)

From (3.5), (3.6) and (3.8), we get

g(T (X, Y ), Z) + g(T (Z,X), Y ) + g(T (Z, Y ), X) =

2g(H(X, Y ), Z) + 2η(Y )g(hX,Z) + 2η(X)g(hY, Z),

which gives

H(X, Y ) =
1

2
[T (X, Y ) +′ T (X, Y ) +′ T (Y,X)]− η(Y )hX − η(X)hY, (3.9)

where ′T be a tensor field of type (1, 2) defined by

g(′T (X, Y ), Z) = g(T (Z,X), Y ) = 2[η(Z)g(hX, Y )− η(X)g(hZ, Y )]. (3.10)

In view of (3.9) and (3.10), we get

H(X, Y ) = η(X)hY − η(Y )hX.

This implies that
DXY = DXY + η(X)hY − η(Y )hX.

Hence we have the following theorem:

Theorem 3.1. Let (M2n+1, g) be a (k, µ)−contact metric manifold with (k, µ)−contact
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structure (ϕ, ξ, η, g) admitting a quarter symmetric non-metric connection D which
satisfies (3.3) and (3.4). Then the quarter symmetric non-metric connection is
given by DXY = DXY + η(X)hY − η(Y )hX.

4. Curvature Tensor of (k, µ)−contact Metric Manifold with respect to
the Quarter Symmetric Non-metric Connection D

Let R and R be the curvature tensor of the connection D and D respectively,
then

R(X, Y )Z = DXDYZ −DYDXZ −D[X,Y ]Z. (4.1)

In view of (3.1) and (4.1), we have

R(X, Y )Z =R(X, Y )Z + [(DXη)(Y )hZ − (DY η)(X)hZ]+

[η(Y )(DXh)(Z)− η(X)(DY h)(Z)]−
[(DXη)(Z)hY − (DY η)(Z)hX]−
η(Z)[(DXh)(Y )− (DY h)(X)].

(4.2)

Using (2.8) and (2.12) in (4.2), we get

R(X, Y )Z =R(X, Y )Z − [2g(ϕX, Y )hZ − g(ϕX,Z)hY + g(ϕY, Z)hX+

g(ϕhX, Y )hZ − g(ϕhY,X)hZ − g(ϕhX,Z)hY + g(ϕhY, Z)hX]

+ (1− k)[{g(X,ϕZ)η(Y )− g(Y, ϕZ)η(X)} − 2g(X,ϕY )η(Z)]ξ

+ [g(X, hϕZ)η(Y )− g(Y, hϕZ)η(X)− g(X, hϕY )η(Z)+

g(Y, hϕX)η(Z)]ξ + µ[η(X)ϕhY − η(Y )ϕhX]η(Z).

(4.3)

Hence we have have the following theorem:

Theorem 4.1. The curvature tensor R(X, Y )Z of (k, µ)−contact metric manifold
with respect to quarter symmetric non-metric connection D is given by (4.3).

In view of (2.5) and (4.3), we get

′R(X, Y, Z,W ) + ′R(Y,X,Z,W ) = 0, (4.4)

where ′R(X, Y, Z,W ) = g(R(X, Y )Z,W ) and ′R(X, Y, Z,W ) = g(R(X, Y )Z,W ).
We also have

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = −4[dη(Y,X)hZ+

dη(Z, Y )hX + dη(X,Z)hY ] + 4(1− k)[dη(X, Y )η(Z) + dη(X,Z)η(Y )

+ dη(Z, Y )η(X)]ξ − 2[{dη(Z, hY )− dη(Y, hZ)} η(X)+

{dη(X, hZ) + dη(Z, hX)} η(Y ) + {dη(Y, hX)− dη(X, hY )} η(Z)]ξ.

(4.5)
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Hence we have the following theorem:

Theorem 4.2. The curvature tensor R(X, Y )Z of (k, µ)−contact metric manifold
with respect to quarter symmetric non-metric connection satisfies

′R(X, Y, Z,W ) + ′R(Y,X,Z,W ) = 0,

and

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = −4[dη(Y,X)hZ+

dη(Z, Y )hX + dη(X,Z)hY ] + 4(1− k)[dη(X, Y )η(Z) + dη(X,Z)η(Y )

+ dη(Z, Y )η(X)]ξ − 2[{dη(Z, hY )− dη(Y, hZ)} η(X)+

{dη(X, hZ) + dη(Z, hX)} η(Y ) + {dη(Y, hX)− dη(X, hY )} η(Z)]ξ,

∀ X, Y, Z,W ∈TM.
Again if the 1-form η is closed i.e. if dη(X, Y ) = 0 ∀ X, Y ∈TM; then (4.5)

implies that

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0. (4.6)

Hence we have the following theorem:

Theorem 4.3. The curvature tensor R(X, Y )Z of (k, µ)−contact metric manifold
with respect to quarter symmetric non-metric connection D satisfies the Bianchi
identity if and only if the 1-form η is closed.

Contracting (4.2), we have

S(Y, Z) =S(Y, Z) + 3g(Y, ϕhZ) + g(ϕhY, Z)+

g(ϕhY, hZ)− 3(1− k)g(Y, ϕZ),
(4.7)

In view of (2.5) and (4.7), we get

S(Y, Z) =S(Y, Z) + 3dη(Y, hZ) + dη(Z, hY ) + dη(hZ, hY )− 3(1− k)dη(Y, Z),

(4.8)

S(Y, ξ) = 2nkη, (4.9)

and
r = r. (4.10)

From (4.7) and (4.8), we have have the following theorem:

Theorem 4.4. The Ricci tensor S of (k, µ)−contact metric manifold with respect
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to D is equal to Ricci tensor S of (k, µ)−contact metric manifold with respect to
D if and only if the 1-form η is closed.

Theorem 4.5. The scalar curvature r of (k, µ)−contact metric manifold with
respect to quarter symmetric non-metric connection D is equal to scalar curvature
of manifold with respect to D .

5. Skew-symmetric and Symmetric Condition of Ricci Tensor S of D on
a (k, µ)−contact Metric Manifold

From (4.7), we get

S(Z, Y ) =S(Z, Y ) + 3g(Z, ϕhY ) + g(ϕhZ, Y )+

g(ϕhZ, hY )− 3(1− k)g(Z, ϕY ),
(5.1)

In view of (4.7) and (5.1), we have

S(Y, Z) + S(Z, Y ) =2S(Y, Z) + 4[g(Y, ϕhZ) + g(ϕhY, Z)]. (5.2)

Using (2.5) in (5.2), we obtain

S(Y, Z) + S(Z, Y ) =2S(Y, Z) + 4[dη(Y, hZ) + dη(Z, hY )]. (5.3)

If S(Y, Z) is skew-symmetric then left hand side of (5.3) vanishes and we have

S(Y, Z) = −2[dη(Y, hZ) + dη(Z, hY )]. (5.4)

On the other hand if S(Y, Z) is given by (5.4), then from (5.3), we get

S(Y, Z) + S(Z, Y ) = 0.

Hence we have the following theorem:

Theorem 5.1. Let (M2n+1, g) be a (k, µ)−contact metric manifold with respect
to quarter symmetric non-metric connection D. Then the Ricci tensor S of D is
skew-symmetric if and only if the Ricci tensor S of the Levi-Civita connection D
is given by (5.4).

Again from (4.7) and (5.1), we have

S(Y, Z)− S(Z, Y ) =2[dη(Y, hZ)− dη(Z, hY )+

dη(hZ, hY )− 3(1− k)dη(Y, Z)].
(5.5)

If the 1-form η is closed , then the equation (5.5) will be

S(Y, Z)− S(Z, Y ) = 0.
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Hence we have the following theorem:

Theorem 5.2. Let (M2n+1, g) be a (k, µ)−contact metric manifold with respect
to quarter symmetric non-metric connection D. Then the Ricci tensor S of D is
symmetric if and only if the 1-form η is closed.

6. Nearly Ricci Recurrent (k, µ)−contact Metric Manifold with respect
to Quarter Symmetric Non-metric Connection

Analogous to the definition of (1.3), we define nearly Ricci recurrent non-
Sasakain (k, µ)−contact metric manifold with respect to quarter symmetric non-
metric connection D as follows

(DXS)(Y, Z) = [A(X) +B(X)]S(Y, Z) +B(X)g(Y, Z). (6.1)

Using (4.7) in (6.1), we get

(DXS)(Y, Z) =[A(X) +B(X)][S(Y, Z)− 3g(Y, hϕZ) + g(ϕhY, Z)+

g(ϕhY, hZ)− 3(1− k)g(Y, ϕZ)] +B(X)g(Y, Z).
(6.2)

Putting ξ for Z in (6.2) and using (2.1), (2.2) and (2.15), we get

(DXS)(Y, ξ) = [A(X) + (2nk + 1)B(X)]η(Y ). (6.3)

Now, we have

(DXS)(Y, ξ) = DXS(Y, ξ)− S(DXY, ξ)− S(Y,DXξ). (6.4)

Using (2.3), (2.7), (3.1) and (4.7) in (6.4), we obtain

(DXS)(Y, ξ) = 2S(Y, ϕX)− S(Y, hϕX)− 4nkg(Y, ϕX) + 2nkg(Y, hϕX). (6.5)

From (6.3) and (6.5), we have

[A(X) + (2nk + 1)B(X)]η(Y ) =2S(Y, ϕX)− S(Y, hϕX)−
4nkg(Y, ϕX) + 2nkg(Y, hϕX).

(6.6)

Further Y is replaced by ϕY in (6.6), we get

2S(ϕY, ϕX)− S(ϕY, hϕX) = 4nkg(ϕY, ϕX)− 2nkg(ϕY, hϕX). (6.7)

Again X is replaced by hX in (6.7) and using (2.1), (2.6) and (2.10), we get

−2S(ϕY, hϕX) + (1− k)S(ϕY, ϕX) =− 4nkg(ϕY, hϕX)

− 2nk(1− k)g(ϕY, ϕX).
(6.8)
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In view of (6.7) and (6.8), we obtain

S(ϕY, ϕX) = 2nkg(ϕY, ϕX), 3 + k ̸= 0. (6.9)

Using (2.3) and (4.7) in (6.9), we get

S(ϕY, ϕX) =3(1− k)g(ϕY,X)− 3g(ϕY, hX)− g(hY, ϕX)

− g(hY, hϕX) + 2nk[g(Y,X)− η(Y )η(X)].
(6.10)

From (2.17) and (6.10), we have

S(Y,X) =2nkg(Y,X) + 3(1− k)g(ϕY,X)− 3g(ϕY, hX)

− g(hY, ϕX)− g(hY, hϕX) + 2(2n− 2 + µ)kg(hY,X).
(6.11)

Using (2.5) in (6.11), we have

S(X, Y ) =2nkg(X, Y ) + 3(1− k)dη(X, Y )− 3dη(hX, Y )

− dη(hY,X) + dηg(hX, hY ) + 2(2n− 2 + µ)kg(hY,X).
(6.12)

Hence we have the following theorem:

Theorem 6.1. Let M2n+1 be a nearly Ricci recurrent (k, µ)−contact metric man-
ifold with respect to quarter symmetric non-metric connection D. Then the Ricci
tensor S of the Levi-Civita connection D is equal to Einstein manifold where
λ = 2nk if and only if µ = 2(1−n) and the 1-form η is closed, provided k+3 ̸= 0.

Again Putting Y = ξ in (6.6), we get

B(X) = − 1

2nk + 1
A(X). (6.13)

Hence we have the following theorem:

Theorem 6.2. Let M2n+1 be a nearly Ricci recurrent (k, µ)−contact metric man-
ifold with respect to quarter symmetric non-metric connection D. Then B(X) =
− 1

2nk+1
A(X) hold on M2n+1.

7. Conclusion

1. For (k, µ)−contact metric manifold (M2n+1, g) admitting quarter symmetric
non-metric connection D,

(i) The curvature tensor R of D is given by (4.3).

(ii) ′R(X, Y, Z,W ) + ′R(Y,X,Z,W ) = 0.
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(iii) R(X, Y )Z+R(Y, Z)X+R(Z,X)Y = 0 if and only if 1-form η is closed.

(iv) The Ricci tensor S of D is given by (4.7).

(v) The Ricci tensor S of D is equal to the Ricci tensor S of D if and only
if 1-form η is closed.

(vi) The Ricci tensor S of D is skew-symmetric if and only if the Ricci tensor
S of D is given by (5.4).

(iv) The Ricci tensor S of D is symmetric if and only if 1-form η is closed.

2. For nearly Ricci recurrent (k, µ)−contact metric manifold (M2n+1, g) admit-
ting quarter symmetric non-metric connection D,

(i) The Ricci tensor S of D is equal to Einstein manifold where λ = 2nk if
and only if µ = 2(1− n) and the 1-form η is closed, provided k+ 3 ̸= 0.

(ii) B(X) = − 1
2nk+1

A(X).

8. Example
Let us consider the 3-dimensional manifold M = {(x, y, z) ∈ R3, z ̸= 0}, where

(x, y, z) are standard co-ordinate of R3. We choose the vector fields

e1 = e−2z ∂

∂x
, e2 = e−2z ∂

∂y
, e3 =

∂

∂z
, (8.1)

which are linearly independent at each point of M .
Let g be the Riemannian metric denoted by

g(ei, ej) =

{
1, i = j

0, i ̸= j,
(8.2)

where i, j = 1, 2, 3.
Let η be the 1-form defined by η(U) = g(U, e3) and η(e3) = 1 for any U ∈

χ(M3). Let ϕ be tensor field of type (1,1) defined by

ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0. (8.3)

From the properties of ϕ and η, we obtain

g(ei, ϕei) = dη(ei, ei), i, j = 1, 2, 3.

Then we have

ϕ2U = −U + η(U)e3 g(ϕU, ϕW ) = g(U,W )− η(U)η(W ), (8.4)
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∀ U,W ∈ χ(M). Thus for e3 = ξ, the structure (ϕ, ξ, η, g) defined an almost
contact metric structure on M .

Let D be the Levi-Civita connection with respect to the Riemannian metric g.
Then from equation (8.1), we have

[e1, e2] = 0 [e1, e3] = 2e1, [e2, e3] = 2e2. (8.5)

The Riemannian connection D of the metric g is given by

2g (DXY, Z) =Xg (Y, Z) + Y g (X,Z)− Zg (X, Y )− g (X, [Y, Z])

− g (Y, [X,Z]) + g (Z, [X, Y ]) ,
(8.6)

which is known as Koszul’s formula. Using (8.2) and (8.5) in (8.6), we get

De1e3 = 2e1, De2e3 = 2e2, De3e3 = 0,
De1e2 = 0, De2e2 = 2e3, De3e2 = 0,
De1e1 = 2e3, De2e1 = 0, De3e1 = 0.

 (8.7)

Also we know
De1e2 = −ϕe1 − ϕhe1

Comparing two relations for De1e2 and using (8.3), we have

he1 = −e1.

Similarly
he2 = −e2 and he3 = 0.

Also

De1e3 = 3e1, De2e3 = 3e2, De3e3 = 0,
De1e2 = 0, De2e2 = 2e3, De3e2 = −e2,
De1e1 = 2e3, De2e1 = 0, De3e1 = −e1.

 (8.8)

Use of (8.4) and (8.7), we can easily calculate the curvature tensor as follows:

R (e1, e2) e3 = 0, R (e2, e3) e3 = −4e2, R (e1, e3) e3 = −4e1,
R (e1, e2) e2 = 4e1, R (e2, e3) e2 = −4e3, R (e1, e3) e2 = 0,
R (e1, e2) e1 = −4e2, R (e2, e3) e1 = 0, R (e1, e3) e1 = −4e3.

 (8.9)

From (8.9), we have

R (e1, e2) e3 = 0 = 4[η(e2)e1 − η(e1)e2] + 8[η(e2)he1 − η(e1)he2],

R (e2, e3) e3 = −4e2 = 4[η(e3)e2 − η(e2)e3] + 8[η(e3)he2 − η(e2)he3],

R (e1, e3) e3 = −4e1 = 4[η(e3)e1 − η(e1)e3] + 8[η(e3)he1 − η(e1)he3].
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In view of above the expression of the curvature tensor we can easily conclude that
the manifold is a (k, µ)−contact metric manifold with k = 4 and µ = 8.

From (8.8), we have T (e1, e3) = 2e1 and 2[η(e1)he3−η(e3)he1] = 2e1. This show
that the linear connection D defined as (3.1) is a quarter symmetric connection on
(M3, g). Also (

De1g
)
(e1, e3) = −1 ̸= 0.

Hence the above show that the quarter symmetric connection D is non-metric on
(M3, g). This verifies Theorem 3.1.

In view of (8.9), we obtain

S(e1, e1) = 8, S(e1, e2) = 8, S(e2, e2) = −8. (8.10)

Similarly, we can obtain the non-vanishes components of the curvature tensor R
and Ricci tensor S with respect to quarter symmetric non-metric connection D on
a (k, µ)−contact metric manifold as

R (e1, e2) e3 = 0, R (e2, e3) e3 = −3e2, R (e1, e3) e3 = −3e1,
R (e1, e2) e2 = 6e1, R (e2, e3) e2 = −6e3, R (e1, e3) e2 = 0,
R (e1, e2) e1 = −6e2, R (e2, e3) e1 = 0, R (e1, e3) e1 = −6e3,

 (8.11)

and

S(e1, e1) = 12, S(e1, e2) = 12, S(e2, e2) = −6. (8.12)

Since {e1, e2, e3} forms a basis of non-Sasakaian (k, µ)−contact metric manifold
any vector field X, Y, Z ∈ χ(M) can be written as

X = a1e1 + b1e2 + c1e3, Y = a2e1 + b2e2 + c2e3,

where ai, bi, ci ∈ R+ ( the set of all positive real numbers), i = 1, 2, 3.
This implies that

S(X, Y ) = 8(a1a2 + b1b2 − c1c2), g(X, Y ) = a1a2 + b1b2 + c1c2, (8.13)

and
S(X, Y ) = 8(a1a2 + b1b2 − c1c2). (8.14)

In view of (8.7), (8.12) and (8.14), we get

(De1S) = −24(a1c2 + a2c1),
(De2S) = −24(b1c2 + b2c1),
(De3S) = −24(a1a2 + b1b2).

 (8.15)
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Consequently, the manifold under consideration is neither Ricci symmetric nor
Ricci recurrent. Let us now consider 1-forms A and B non vanishes

A(e1) =
−24(6k + 1)(a1c2 + a2c1)

6(k + 1)(2a1a2 + 2b1b2 − c1c2)− 1

B(e1) =
24(a1c2 + a2c1)

6(k + 1)(2a1a2 + 2b1b2 − c1c2)− 1

A(e2) =
−24(6k + 1)(b1c2 + b2c1)

6(k + 1)(2a1a2 + 2b1b2 − c1c2)− 1

B(e2) =
24(b1c2 + b2c1)

6(k + 1)(2a1a2 + 2b1b2 − c1c2)− 1

A(e3) =
−24(6k + 1)(a1a2 + b1b2)

6(k + 1)(2a1a2 + 2b1b2 − c1c2)− 1

B(e3) =
24(a1a2 + b1b2)

6(k + 1)(2a1a2 + 2b1b2 − c1c2)− 1
,

where k = 4, at any point x ∈ M . From (1.3), we have(
DejS

)
(X, Y ) = [A(ej) +B(ej)]S(X, Y ) +B(ej)g(X, Y ), j = 1, 2, 3. (8.16)

It can be easily seen that the manifold with 1-forms satisfies relation (8.16).
Hence the manifold under consideration is a nearly Ricci recurrent (k, µ)−contact
metric manifold (M3, g) with respect to quarter symmetric non-metric connection,
which is neither Ricci recurrent nor Ricci symmetric. Thus we have the following
theorem:

Theorem 8.1. There exist a nearly Ricci recurrent (k, µ)−contact metric mani-
fold (M3, g) with respect to quarter symmetric non-metric connection D , which is
neither Ricci recurrent nor Ricci symmetric.

9. Application
We will continue the research on this quarter symmetric non-metric connec-

tion on the generalized (k, µ)−contact metric manifold, (k, µ)-paracontact metric
manifold, almost Kenmotsu manifold with nullity distribution and deal with the
application of the results obtained in this paper.
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