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Abstract: Studying an (o, §)-metrics is a central idea in Finsler geometry, which
is a generalization of Randers metric. In this paper, we have derived the Cartan
connection for the Finsler space whose metric is given by h-Randers exponential
change and also obtained the condition under which the Finslerian hypersurface to
be hyperplane of first, second and third kind.
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1. Introduction

Nearly four decades ago, C. Shibata [17] introduced the idea of g-change in
Finsler geometry. Randers change, Matsumoto change, exponential change, and
Kropina change are very important example of f-change. Among them, exponen-
tial change is one of the interesting examples with F' = Lef/ where 8 = b;(z)y’
is 1-form and @ = (a;(2)y'y*)Y/? is a Riemannian metric in the manifold M™.
In 2006, a Finsler space with metric function determined by exponential change
has been studied by Yu Yao-Yong and You Ying [20]. In 2013, G. Shankar et al.
[14] discussed Randers change of exponential metric. The first approximation of
exponential change has been studied by T. N. Pandey et al. [12]. In 2016 Gupta
and Gupta [2] have discussed h-exponential change and also obtained hypersurface
for the exponential change of Finsler metric with an h-vector, given by L = Le®/t
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3], where 8 = b;(x,y)y’ is one form and b; is an h-vector. The notion of h-vector
b;j(z,y) was introduced by H. Izumi [8], which is v-covariant constant concerning
the Cartan connection and satisfies LC :0n = phji, where p is a non-zero scalar
function and C’ ik 18 component of Cartan tensor. Thus from the above definition

of h-vector, we have L(?kbj = phji, which shows that b; is a function of direction
also. Many geometers [2-5, 18] have studied the property of h-vector in Finsler
geometry.

The notion of hypersurface in the Finslerian manifold has been initiated by E. Car-
tan [1]. Further, A. Rapcsak [13] defined three different kinds of hypersurfaces and
M. Matsumoto [11] has categorised them. A hypersurface is an (n — 1)-dimensional
manifold, embedded in an ambient space of dimension n. In 2002 M. Kitayama [9]
studied a Finslerian hypersurface given by f-change. Later on many geometers [6,
7,15, 16, 19] discussed the geometric property of the hypersurface.

In this paper, we have introduced h-Randers exponentially change of Finsler metric
defined by

L =L 4+ 3, (1.1)

where 8 = bj(x,y)y’ and b; is an h-vector.
This paper is structured as follows: We obtain the following in section 2:

(i) The fundamental geometric properties of Finsler space, with metric (1.1).

(ii) The relation between the Cartan connection coefficients for both spaces F”
and F.

In section 3, we have obtained the condition under which the hypersurface is the
hyperplane of the first, second, and third kind.
The terminologies and notations are referred to Matsumoto [10].

2. The Finsler Space F© with h-Randers Exponential Change

Let F* = (M™, L) is an n-dimensional Finsler space with the fundamental
function L(x,y). The normalized supporting element, angular metric tensor, metric
tensor, and Cartan tensor are defined by [; = 8 L, hj, = L@ 8kL 9k = 8 O L2

and Cjg, = E)kgjs respectively. The Cartan connection in F" is defined as CT' =
(P}zlw Nl ; ) - . .
The Fmsler space ' = (M", L) with the basic function L(z,y) is defined by

equation (1.1), where 8 = b;(z,y)y’, b; is h-vector defined as

(@) bjls =0, (b) LC) by = phjs, p#0. (2.1)
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As a result of the above definition, we have
Lakb] = ph]’k. (2.2)

A bar over the quantity in this paper designates the geometric objects that corre-
spond to the function F'. We have derived the normalized supporting element as
well as the angular metric tensor of F' as

li = (T + GT)li + (1 + eT)mZ-, (23)

Eij =(t+ eT){ le"(1+p—1)] hij + eTmZ-mj}, (2.4)

s

where m; = b; — 7l; and 7 = 7.

For the transformed space ' the metric tensor g;; and the Cartan tensor Uijk are
derived as follows.

ﬁij = q49ij + qllilj + qQ(Zimj + ljm1> -+ qsm;m; (25)

and
Cijk = qCiji + Uiji, (2.6)
where
Uiji. = Ur(hijmy + higmj + hjem;) + Uamymgmy,

g=(r+e)[(p+1=7)e"+pl, q=(+7)(T—p)(l+e),

1
G =(T+e)1+e") q =2 +7e" +2" +1), U =—[q+q(p—7)],

2L
Uy = %(467 + 7+ 3).
In Fn, the inverse metric tensor g* is computed as
g7 = pg” +p 'V 4+ po(I'm? + Um') + psm'n’, (2.7)
where
I U Y] Ul 01 U C e T @303 + d' Bas(a* — 203%)
4 qla*(q — a1) — 43qs] {(q +gsm?) [¢(q — @) — GBas)” + q4q%qs}

_ —49245 [4° (4 — @1) — 4345]
(¢+asm?) [¢*(a — @) — Bas]” + ' dBas’
2 2 12
-3 [¢°(¢ — ¢1) — 4343]
(g + gsm?) [®(q¢ — 1) — Bas]” + ¢*¢3qs

P3 =
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The Christoffel symbol for the Finsler space F' is defined as

_ I, _ _ _
Visk = 9 {ajgsk - asgjk + akgjs} (2'8)
Differentiating equation (2.5) with respect to %, we obtain
8k§ij =dq akgij + QZpkhij + Q(Ulhij + Uamymy) (B + Npm,.)
+ G2 (Lbjs, + by, + my Fipli +my Fj Ly + m Fipl +my i)
+ @ (Ll Ff + Ll F) + 203 (hyy Npms + hip Nmy)

+ q3(mib + mybyy, + mim, Fjy 4 mym, Fjp )

(2.9)

where we have used the following notations

pr =Pk =0kp and B = B

The coefficient of the Christoffel symbol is derived by applying the Christoffel
process to the indices 7,7,k in equation (2.9), and then putting these values in
equation (2.8), we get

Viik = ik + Aijr {%thij + (Br + Npmy) Bij + Ur(hjpm; + hirmj)N]:} + Qi Fjx
+ Qe+ Qi B+ @y — 190){ 7 + 8" (CoomN{" = CunaN* = Cum NP },
(2.10)

where the symbol 2,1, is defined as le-jkAijk = Ajji — Ajri + Agij and we have used
the following notations

Qi = @li+gsm;, By = Ujhij + Uymim;, (2.11)
2Fj = bjls = bsj,  2Ejs = bjjs + by;-
The transformed Christoffel symbol is defined as
= 1—ir — — —
Tik = 59 {8j9kr + OkGrj — argjk} .

Transvecting equation (2.10) by (2.7) we obtain
Yk = Ve + Gy — qgrj){%?l; + ¢ (CitemN{" — Cpm N]" — CitmN]:;n)} + gis{gijk

{%pkhij + (Br + Nym,.) Bij + Uy (hjrm; + hirmj)N]:} + QiFji + QuFji + QjEik}-

(2.12)
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By using G = 575y y", we obtain the spray coefficient G as follows

G =G+ D, (2.13)

where .
DﬂzéngL@F@+(@g+qw%ﬂ%d. (2.14)

Differentiating equation (2.13) with respect to 37, we obtain the Nonlinear connec-
tion N; as follows
N; = N;+ D, (2.15)

where

S 1
D;=g" {—QDm(qurj + Unirj) + @rEoj + QjFro + 2LFyj + = pryFaohy; + EOOBj'r}

2
(2.16)
The Cartan connection coefficient of the transformed Finsler space F' is defined

as i ; it~ @~ N T A~ o
F;k = 72143 + glt (CjkrNt - CtkrNj - CjtrNk)' (217)

After plugging the values of (2.6), (2.7), (2.12), (2.15) in the above equation and
calculating, we obtain the relation between the Cartan connection coefficients for
both the spaces F™ and F as follows

F=F,+Di, (2.18)
where

D]lk - gis{Qstk + QsEkj + Qijs + q (C]kngn - CskmD;n - stmDZL)
+ ngmD;n - UskmD]m - Ujstzn + Bjsﬂk - Bjkﬁs + Bskﬂj (219)

@ (pkhjs - pshjk + pjhsk) }

M

The contraction by y* is denoted as zero ‘0’ in subscript, for instance, Fjry* = Fjg .
Thus, we have

Theorem 2.1. The relation between the Cartan connection coefficients for both
the spaces F™ and ", for the h-Randers exponential change of Finsler space, is
given by (2.18).
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3. Hypersurface 7" of the Transformed Finsler Space I
The hypersurface F"~' = (M™!, L(u,v)) of the Finsler space F™ = (M™, L) is
given by the equation 2 = x%(u®), where o = 1,2.....n—1.
The supporting element 3" at a point v = (u®) of M™ ! is assumed to be tangent
to M™ 1 qe.
y' = Bi(u)v*,

where B!, = gTI; is the matrix of projection factors of rank n — 1 can be assumed

as the components of linearly independent vectors that are tangent to F .
At every point u® of F"~! a unit normal vector B’ is defined as [11],

The induced metric tensor g,5 and induced Cartan tensor Cyg, of F"~! are given
as follows [11]:

Gap = gmB&Bé and Caﬁ»y = l]kB;BéB,I:

Now we obtain the condition under which the hypersurface for the transformed
Finsler space F to be the hyperplane of the first, second and third kind.

Let 7 = (M™!, L(u,v)) be a Finslerian hypersurface of the transformed Finsler
space F'". The unit normal vector Ez(u, v) of ' lis uniquely identified as

B

, 1s the inverse projection factor of Efx, is uniquely defined by

B; = gijﬁaﬁBZ’, (3.3)

where g’ is the inverse metric tensor of the metric tensor Jop along F'l In view
of the above equation and (3.2), it follow that

—i—=a '

BB =6, BB =0, BB =0, BB =1 (3.4)
Transvecting equation (3.1) by v® and using B’v® = ¢, we obtain
y; B7 = 0. (3.5)
Contracting equation (2.5) by B*B’ and using (3.2) and (3.5), we get

gijBiBf = q+ ¢3(B'm;)?, (3.6)
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which demonstrates that B*/\/q + q3(m;B%)? is a unit normal vector. Equation
(2.5) is again contracting by B’ B’ and using (3.2), (3.5), we obtain

?ingBj = (g2l + gsmi) B, (B'm;) , (3.7)
which demonstrates that the vector B is normal to F i and only if
(qoli + gsmy) Bl (B'm;) = 0.
This implies that at least one of the following condition is correct.
(1) B (qal; +gsm;) =0 (1) B'm;=0.

Transvecting the condition (i) by v* gives L = 0, which is not possible. Therefore
the condition (ii) holds, i.e. ’
B’ m; = 0, (38)

In view of (3.5), the above equation can be equivalently written as
Bib; = 0. (3.9)

This proves that the vector B’ is normal to F  if and only if the h-vector b; is
tangent to the Finsler space Jaln According to equations (3.6), (3.7) and (3.9),
B'/\/q is a unit normal vector of '

—i B

B:¢? (3.10)

which gives

B, =3, B = /iB:. (3.11)
Thus, we have

Theorem 3.1. Let F is obtained by the h-Randers exponential change (1.1) from

o If F' s the hypersurface of the space ' then the h-vector b; is tangential
to the hypersurface F*~' if and only if each vector normal to F™~! is also normal
to Fnil.

In view of the equation g;;B'B? =1, g;; B’ B!, = 0, (3.5), and the definition of
the angular metric tensor h;; = g;; — lil;, we get

hijB.B'=0, h;B' = B,. (3.12)
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The tensors B;; and (); are given by (2.11) and satisfies the relations
B;B'B, =0, B;B'=B;, Q;B’ =0. (3.13)
Transvecting (2.7) by B; and using I'B; = 0 = m'B;, we get
9°Bi = pB°. (3.14)

For the hypersurface F™~ !  the normal curvature H, is defined as [11], H, =
Bi(N;B/, + B,). In view of equation (2.15) and (3.11), we obtain the normal

curvature H, for the hypersurface 7l oas
H, = /q(H, + BiD;Bi).
Contracting the above equation by v® and using v®B* = ¢*, we get
Hy = /q(Hy + B;D"). (3.15)
Transvecting equation (2.14) and using m; B = 0, [;B* = 0, we obtain
B;D' = pq,LF;B". (3.16)
Let the h-vector b; be gradient, i.e. b;j = by);, then
Fj, =0. (3.17)

In 2015, the following Lemma was demonstrated by M. K. Gupta and P. N. Pandey
[4],
Lemma 1. If the h-vector b; is gradient then the scalar p is constant.

In view of the above Lemma, we have

p; = 0. (3.18)
From equation (3.17), the equation (3.16) becomes
B;D' = 0. (3.19)
and then equation (3.15) reduces to
Ho = \/qH,. (3.20)

M. Matsumoto [11] has categorised the hypersurface to be hyperplane of first kind as
“A hypersurface F™"~! is a first kind hyperplane if and only if H, = 0 or equivalently
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Hy=0"
Thus, we have

Theorem 3.2. Let the h-vector b;(z,y) be gradient and tangent to the hypersurface
Fn=1 for the h-Randers exponential change. Then the hypersurface F™~ ' is a first
kind hyperplane if and only if the hypersurface F'lisa first kind hyperplane.

The second fundamental h-tensor H,s for the hypersurface F"~! is defined as
[11], Has = Mo Hg + Bi(B. 5 + F}, B} Bf), which on contraction by v, gives

Huo = Hopv® = MyHy + Hy,  Hoo = Hot” = H,,. (3.21)

where Ma = Cl]kB(llB]Bk L
In view of equation (2.18) and (3.11), the second fundamental h-tensor H .z for
hyperplane F' " is given as

Hos — MoHp = \/q(Hap + D BiB,BS) — \/qM.Hp. (3.22)

Using (3.17) and (3.18), equation (2.19) reduces to

DZk - g {QsEkj + qC]kmD + U]km qukm - Uskijm ( )
3.23
- qC]st]T - UjSmDZL + Bjsﬁk + Bskﬂj - Bjkﬁs}-

Transvecting above equation by BZ»BgZB’Iﬁ€ and using g”B; = pB",

B°Qs=0, BskBsB’g =0,

we get

DZkB B] Bﬁ - szB] Bﬂ{qukmD + Ujkm qukm - UskmD;ﬂ

(3.24)

- chstzn - UjstZL - Bjkﬁs}~

Equation (2.14) can be rewritten as

D' = %{ [(p+D1)da+pagsm?] E00+QPQQQLFﬂO}lZ+%{ME00+2Z73(]2LF60}mz‘{‘p%Fg[a

(3.25)
where = (pgq; + pagy + p3gsm?) and Fpg = Fyom®. In view of the above equation
and applying the indicatory property of Ujg, Cjsk, mj, hjs, the equation (2.16) can
be transformed as

D" = _W{)\hm +QuEy + <z>m,,ms}, (3.26)
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where

A== (B m20) + U] B and 6= [~ (201 + Uam?) + U] Bp.

L
(3.27)
Transvecting the equation (3.26) by Cjim, we get

CikmDy' = Cikm {pgmr+p1lmlr+p2 (I"mm" + lrmm)+p3mmmr}{)\hrs+QrE50+qurms},

(3.28)
which can be simplified as
CiimD2" = PACjor + LB+ | (p+pam?) 6+ p,A| Shyms. (3.29)
Similarly we can write the expressions for C’skmD}” and Cj,, D} as
Cotm D} = PACot + 2t By + [ (p+psm?) 6+ 31 Dhoemg, (3.30)
and
CiomD = PXCjoc + TithoiBro + | (p+psm?) 6+ pA| Zhome. (3.31)

Transvecting equations (3.29), (3.30) and (3.31) by B*B] B, and using (3.12), we
get respectively

B Cin D3 BLBly = pAMag + Lt BLBS B Evo (3.32)
B*Cun D' B B = pAMaz, (3.33)
BststL”BZ,B'E = pAMap, (3.34)

where M, is the second fundamental v-tensor for the hypersurface F"~! is defined
as [11] . A
Mz = Cyj Bl B5B'. (3.35)

Again, transvecting Equation (3.26) by Ujky,, we get
U]kngn = Ujkm {pgmr + (p2lr +p3mr) mm}{)\hrs + QTESO + ¢mrms}- (336)
Uiji is an indicatory tensor and satisfies;

(1) kaml = (2U1 + Ung)mjmk + U1m2hjk,
(ii) Uijkgw =U; (hjkm" + h};mj + h;"mk) + Ugmjmkm”,
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where h} = hjpg"".
By using the property of indicatory tensor Uk, equation (3.36) can be rewritten
as

Ujkm DY = [p {U1 [hjrm” + himy, + hiym;| + Ugmjmkmr} + (pol” 4 pym”)
[(2U1 + U2m2)mjmk + Ulmthk] i| {)\hsr + qusmr + QTESO},
which can be simplified as

Uipm D" = {¢1U1hjk + (1 Us + 2¢2U1)mjmk}ms + g\Uy (hjsmy, + hskmj)( )
3.37
+ {/J, [szlhjk + (2U1 + Ugmz)mjmk] }E307

where

Yy = (>\ + qu2) (p + pgmz) and thy = (>\ + ¢m2) p3 + po.

Similarly we can write the expression for Uskm D7 and U, D)l as

Uskm D7" = {%Ulhsk + (Y Uz + Q%Ul)msmk}mj + qAU;y (hjsmy + hjkms)( )
3.38
+ {/L [szlhsk + (2U; + Ugmz)msmk} }Ejo,

and

Uy DI = {¢1U1hsj + (0, Us + 2¢2U1)mjms}mk + qAUL (hgem; + hjkms)(3 "
+ {,U [mZUlhsj + (2U1 + U2m2)msmj} }EkO

Contracting equation (3.37), (3.38), (3.39) by B*B}Bj and using B'm; = 0 =
h;;B'BJ | we get respectively
B*Ujim DY BLBS = pn{Uim*hy, + (2Uy + Usm®)mjmy } BLB5B*Ey,  (3.40)
B*Usm D' BLBj = 0, (3.41)
B*UjsmDy'BLBj; = 0. (3.42)
Using equations (3.32), (3.33), (3.34), (3.40), (3.41) and (3.42) in equation (3.24),
we get
D BiBLBY = |52 —p {[(201 + Um?)ymymi] + Urm?hji} + Byx| BABEB* Eo—pAMag.
(3.43)
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The relative h- derivative of BY, and the normal vector B* are given by [11]
By = HuopB', B3 =—HasBg". (3.44)

Consider the h-covariant differentiation of Bb; = 0 with respect to the Cartan
connection of the hypersurface F"~!, we obtain

B'by; 4+ biBls = 0. (3.45)
In view of equation (3.44), equation (3.45) becomes
(b“ijHﬁ n biUBg> B — biH,3B%" =0,
Contracting the above equation by v” and using (3.21), gives
B'byg = (Ho + Mo Ho) BV — by ;HyB'B’.

If the hypersurface is first kind hyperplane then Hy = 0 = H,. Thus the above
equation reduces to Bibi‘o = 0. The h-vector b, is gradient, i.e. bj, = by|;, then we
have

EwB® = byoB° = 0. (3.46)
Therefore equation (3.43) reduces to
Dl BBl Bf = —pAMag. (3.47)

In view of the above equation and (3.22), we get
Has — MoHg = /q(Has — pAMag) — \/aMoHs. (3.48)

Now transvecting (2.6) by BgBéBk and in view of equations (3.9) and (3.12), we
obtain

CijuB,B}B* = qCi;. B, B} B". (3.49)
From equation (3.7) and (3.35), equation (3.49) may be written as
Mo = \/qMap. (3.50)

M. Matsumoto [11] has categorised the hypersurface to be hyperplane of second
kind as “A hypersurface F"~' is a second kind hyperplane if and only if Hog =07
and the hypersurface to be hyperplane of third kind as “A hypersurface F"~ ' is a
hyperplane of third kind if and only if Hog = 0 = Myg.”

Thus, we have

Theorem 3.3. Let the h-vector b; is gradient and tangential to the hypersurface
F™=1 for the h-Randers exponential change and satisfies the condition (3.46). Then
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(i) If F*~ 1 is a second kind hyperplane with Mys = 0 then F s also second
kind hyperplane.

(1) If F*~1 is a third kind hyperplane then F Y is also third kind hyperplane.
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