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1. Introduction
Nearly four decades ago, C. Shibata [17] introduced the idea of β-change in

Finsler geometry. Randers change, Matsumoto change, exponential change, and
Kropina change are very important example of β-change. Among them, exponen-
tial change is one of the interesting examples with F = Leβ/α, where β = bj(x)y

j

is 1-form and α = (ajk(x)y
jyk)1/2 is a Riemannian metric in the manifold Mn.

In 2006, a Finsler space with metric function determined by exponential change
has been studied by Yu Yao-Yong and You Ying [20]. In 2013, G. Shankar et al.
[14] discussed Randers change of exponential metric. The first approximation of
exponential change has been studied by T. N. Pandey et al. [12]. In 2016 Gupta
and Gupta [2] have discussed h-exponential change and also obtained hypersurface
for the exponential change of Finsler metric with an h-vector, given by L = Leβ/L
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[3], where β = bj(x, y)y
j is one form and bj is an h-vector. The notion of h-vector

bj(x, y) was introduced by H. Izumi [8], which is v-covariant constant concerning
the Cartan connection and satisfies LCh

jkbh = ρhjk, where ρ is a non-zero scalar

function and Ch
jk is component of Cartan tensor. Thus from the above definition

of h-vector, we have L∂̇kbj = ρhjk, which shows that bj is a function of direction
also. Many geometers [2-5, 18] have studied the property of h-vector in Finsler
geometry.
The notion of hypersurface in the Finslerian manifold has been initiated by E. Car-
tan [1]. Further, A. Rapcsàk [13] defined three different kinds of hypersurfaces and
M. Matsumoto [11] has categorised them. A hypersurface is an (n−1)-dimensional
manifold, embedded in an ambient space of dimension n. In 2002 M. Kitayama [9]
studied a Finslerian hypersurface given by β-change. Later on many geometers [6,
7, 15, 16, 19] discussed the geometric property of the hypersurface.
In this paper, we have introduced h-Randers exponentially change of Finsler metric
defined by

L = Leβ/L + β, (1.1)

where β = bj(x, y)y
j and bj is an h-vector.

This paper is structured as follows: We obtain the following in section 2:

(i) The fundamental geometric properties of Finsler space, with metric (1.1).

(ii) The relation between the Cartan connection coefficients for both spaces F n

and F
n
.

In section 3, we have obtained the condition under which the hypersurface is the
hyperplane of the first, second, and third kind.
The terminologies and notations are referred to Matsumoto [10].

2. The Finsler Space F
n
with h-Randers Exponential Change

Let F n = (Mn, L) is an n-dimensional Finsler space with the fundamental
function L(x, y). The normalized supporting element, angular metric tensor, metric
tensor, and Cartan tensor are defined by lj = ∂̇jL, hjk = L∂̇j ∂̇kL, gjk = 1

2
∂̇j ∂̇kL

2

and Cjsk = 1
2
∂̇kgjs respectively. The Cartan connection in F n is defined as CΓ =

(F i
jk, N

i
j , C

i
jk).

The Finsler space F
n
= (Mn, L) with the basic function L(x, y) is defined by

equation (1.1), where β = bj(x, y)y
j, bj is h-vector defined as

(a) bj|s = 0, (b) LCh
jsbh = ρhjs, ρ ̸= 0 . (2.1)



On h-Randers Exponential Change of Finsler Metric 347

As a result of the above definition, we have

L∂̇kbj = ρhjk. (2.2)

A bar over the quantity in this paper designates the geometric objects that corre-
spond to the function F

n
. We have derived the normalized supporting element as

well as the angular metric tensor of F
n
as

li = (τ + eτ )li + (1 + eτ )mi, (2.3)

hij = (τ + eτ )
{
[eτ (1 + ρ− τ)]hij + eτmimj

}
, (2.4)

where mi = bi − τ li and τ = β
L
.

For the transformed space F
n
the metric tensor gij and the Cartan tensor Cijk are

derived as follows.

gij = qgij + q1lilj + q2(limj + ljmi) + q3mimj (2.5)

and
Cijk = qCijk + Uijk, (2.6)

where
Uijk = U1(hijmk + hikmj + hjkmi) + U2mimjmk,

q = (τ + eτ ) [(ρ+ 1− τ)eτ + ρ] , q1 = (eτ + τ)(τ − ρ)(1 + eτ ),

q2 = (τ + eτ )(1 + eτ ) q3 = (2e2τ + τeτ + 2eτ + 1), U1 =
1

2L
[q2 + q3(ρ− τ)],

U2 =
eτ

2L
(4eτ + τ + 3).

In F
n
, the inverse metric tensor gij is computed as

gij = pgij + p1l
ilj + p2(l

imj + ljmi) + p3m
imj, (2.7)

where

p =
1

q
, p1 = −(q2q1 − q22q3)(q + q3m

2) [q2(q − q1)− q22q3]
2
+ q4q22q3(q

3 − 2q22q3)

q [q2(q − q1)− q22q3]
{
(q + q3m2) [q2(q − q1)− q22q3]

2
+ q4q22q3

} ,

p2 =
−qq2q3 [q2(q − q1)− q22q3]

(q + q3m2) [q2(q − q1)− q22q3]
2
+ q4q22q3

,

p3 =
−q3 [q2(q − q1)− q22q3]

2

q(q + q3m2) [q2(q − q1)− q22q3]
2
+ q4q22q3

.
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The Christoffel symbol for the Finsler space F
n
is defined as

γjsk =
1

2

{
∂jgsk − ∂sgjk + ∂kgjs

}
(2.8)

Differentiating equation (2.5) with respect to xk, we obtain

∂kgij = q ∂kgij + q2ρkhij + 2(U1hij + U2mimj)(βk +N r
kmr)

+ q2(libj|k + ljbi|k +mrF
r
jkli +mrF

r
iklj +miF

r
jklr +mjF

r
iklr)

+ q1(lilrF
r
jk + ljlrF

r
ik) + 2U1(hjrN

r
kmi + hirN

r
kmj)

+ q3(mibj|k +mjbi|k +mimrF
r
jk +mjmrF

r
ik) ,

(2.9)

where we have used the following notations

ρk = ρ|k = ∂kρ and βk = β|k.

The coefficient of the Christoffel symbol is derived by applying the Christoffel
process to the indices i , j , k in equation (2.9), and then putting these values in
equation (2.8), we get

γijk = qγijk + Aijk

{q2
2
ρkhij + (βk +N r

kmr)Bij + U1(hjrmi + hirmj)N
r
k

}
+QiFjk

+QkFji +QjEik + (grj − q grj)
{
γ r
ik + grt(CikmN

m
t − CtkmN

m
i − CitmN

m
k )

}
,

(2.10)

where the symbol Aijk is defined as AijkAijk = Aijk−Ajki+Akij and we have used
the following notations

Qi = q2li + q3mi , Bij = U1hij + U2mimj , (2.11)

2Fjs = bj|s − bs|j, 2Ejs = bj|s + bs|j.

The transformed Christoffel symbol is defined as

γijk =
1

2
gir

{
∂jgkr + ∂kgrj − ∂rgjk

}
.

Transvecting equation (2.10) by (2.7) we obtain

γijk = qγijk + (grj − q grj)
{
γ r
ik + grt(CikmN

m
t − CtkmN

m
i − CitmN

m
k )

}
+ gis

{
Sijk

{q2
2
ρkhij + (βk +N r

kmr)Bij + U1(hjrmi + hirmj)N
r
k

}
+QiFjk +QkFji +QjEik

}
.

(2.12)
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By using G
i
= 1

2
γijky

jyk, we obtain the spray coefficient G
i
as follows

G
i
= Gi +Di, (2.13)

where

Di =
1

2
gis {2Lq2Fs0 + (q2ls + q3ms)E00} . (2.14)

Differentiating equation (2.13) with respect to yj, we obtain the Nonlinear connec-

tion N
i

j as follows

N
i

j = N i
j +Di

j, (2.15)

where

Di
j = gir

{
−2Dm(qCmrj + Umrj) +QrE0j +QjFr0 + q2LFrj +

1

2
ρky

kq2hrj + E00Bjr

}
.

(2.16)

The Cartan connection coefficient of the transformed Finsler space F
n
is defined

as
F

i

jk = γijk + git
(
CjkrN

r

t − CtkrN
r

j − CjtrN
r

k

)
. (2.17)

After plugging the values of (2.6), (2.7), (2.12), (2.15) in the above equation and
calculating, we obtain the relation between the Cartan connection coefficients for
both the spaces F n and F

n
as follows

F
i

jk = F i
jk +Di

jk, (2.18)

where

D i
jk = g is

{
QjFsk +QsEkj +QkFjs + q

(
CjkmD

m
s − CskmD

m
j − CjsmD

m
k

)
+ UjkmD

m
s − UskmD

m
j − UjsmD

m
k +Bjsβk −Bjkβs +Bskβj

+
q2
2
(ρkhjs − ρshjk + ρjhsk)

}
.

(2.19)

The contraction by yk is denoted as zero ‘0’ in subscript, for instance, Fjky
k = Fj0 .

Thus, we have

Theorem 2.1. The relation between the Cartan connection coefficients for both
the spaces F n and F

n
, for the h-Randers exponential change of Finsler space, is

given by (2.18).
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3. Hypersurface F
n−1

of the Transformed Finsler Space F
n

The hypersurface F n−1 = (Mn−1, L(u, v)) of the Finsler space F n = (Mn, L) is
given by the equation xi = xi(uα), where α = 1, 2..... n−1.
The supporting element yi at a point u = (uα) of Mn−1 is assumed to be tangent
to Mn−1, i.e.

yi = Bi
α(u)v

α,

where Bi
α = ∂xi

∂uα is the matrix of projection factors of rank n − 1 can be assumed
as the components of linearly independent vectors that are tangent to F n−1.
At every point uα of F n−1, a unit normal vector Bi is defined as [11],

gijB
iBj = 1 and gijB

jBi
α = 0. (3.1)

The induced metric tensor gαβ and induced Cartan tensor Cαβγ of F n−1 are given
as follows [11]:

gαβ = gijB
i
αB

j
β and Cαβγ = CijkB

i
αB

j
βB

k
γ .

Now we obtain the condition under which the hypersurface for the transformed
Finsler space F

n
to be the hyperplane of the first, second and third kind.

Let F
n−1

= (Mn−1, L(u, v)) be a Finslerian hypersurface of the transformed Finsler

space F
n
. The unit normal vector B

i
(u, v) of F

n−1
is uniquely identified as

gijB
i
αB

j
= 0, gijB

i
B

j
= 1. (3.2)

B
α

i is the inverse projection factor of B
i

α, is uniquely defined by

B
α

i = gijg
αβBj

β, (3.3)

where gαβ is the inverse metric tensor of the metric tensor gαβ along F
n−1

. In view
of the above equation and (3.2), it follow that

B
i

αB
β

i = δβα, B
i

αBi = 0, B
i
B

α

i = 0, B
i
Bi = 1. (3.4)

Transvecting equation (3.1) by vα and using Bi
αv

α = yi, we obtain

yjB
j = 0. (3.5)

Contracting equation (2.5) by BiBj and using (3.2) and (3.5), we get

gijB
iBj = q + q3(B

imi)
2, (3.6)
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which demonstrates that Bi/
√
q + q3(miBi)2 is a unit normal vector. Equation

(2.5) is again contracting by Bi
αB

j and using (3.2), (3.5), we obtain

gijB
i
αB

j = (q2li + q3mi)B
i
α (B

jmj) , (3.7)

which demonstrates that the vector Bj is normal to F
n−1

if and only if

(q2li + q3mi)B
i
α(B

jmj) = 0 .

This implies that at least one of the following condition is correct.

(i) Bi
α(q2li + q3mi) = 0 (ii) Bjmj = 0 .

Transvecting the condition (i) by vα gives L = 0, which is not possible. Therefore
the condition (ii) holds, i.e.

Bjmj = 0 , (3.8)

In view of (3.5), the above equation can be equivalently written as

Bjbj = 0. (3.9)

This proves that the vector Bj is normal to F
n−1

if and only if the h-vector bj is

tangent to the Finsler space F
n−1

. According to equations (3.6), (3.7) and (3.9),

Bi/
√
q is a unit normal vector of F

n−1
i.e.

B
i
=
Bi

√
q
, (3.10)

which gives

Bi = gijB
j
=

√
q Bi . (3.11)

Thus, we have

Theorem 3.1. Let F
n
is obtained by the h-Randers exponential change (1.1) from

F n. If F
n−1

is the hypersurface of the space F
n
then the h-vector bj is tangential

to the hypersurface F n−1 if and only if each vector normal to F n−1 is also normal

to F
n−1

.
In view of the equation gijB

iBj = 1, gijB
jBi

α = 0, (3.5), and the definition of
the angular metric tensor hij = gij − lilj, we get

hijB
j
αB

i = 0, hijB
i = Bj. (3.12)
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The tensors Bij and Qi are given by (2.11) and satisfies the relations

BijB
iBj

α = 0, BijB
i = Bj, QjB

j = 0. (3.13)

Transvecting (2.7) by Bi and using liBi = 0 = miBi, we get

gisBi = pBs. (3.14)

For the hypersurface F n−1, the normal curvature Hα is defined as [11], Hα =
Bi(N

i
jB

j
α + Bi

0α). In view of equation (2.15) and (3.11), we obtain the normal

curvature Hα for the hypersurface F
n−1

as

Hα =
√
q(Hα +BiD

i
jB

j
α).

Contracting the above equation by vα and using vαBk
α = yk, we get

H0 =
√
q(H0 +BiD

i). (3.15)

Transvecting equation (2.14) and using miB
i = 0, liB

i = 0, we obtain

BiD
i = pq2LFi0B

i. (3.16)

Let the h-vector bj be gradient, i.e. bj|k = bk|j, then

Fjk = 0. (3.17)

In 2015, the following Lemma was demonstrated by M.K.Gupta and P.N. Pandey
[4],

Lemma 1. If the h-vector bj is gradient then the scalar ρ is constant.
In view of the above Lemma, we have

ρj = 0. (3.18)

From equation (3.17), the equation (3.16) becomes

BiD
i = 0. (3.19)

and then equation (3.15) reduces to

H0 =
√
qH0. (3.20)

M.Matsumoto [11] has categorised the hypersurface to be hyperplane of first kind as
“A hypersurface F n−1 is a first kind hyperplane if and only if Hα = 0 or equivalently
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H0 = 0.”
Thus, we have

Theorem 3.2. Let the h-vector bi(x, y) be gradient and tangent to the hypersurface
F n−1, for the h-Randers exponential change. Then the hypersurface F n−1 is a first

kind hyperplane if and only if the hypersurface F
n−1

is a first kind hyperplane.
The second fundamental h-tensor Hαβ for the hypersurface F n−1 is defined as

[11], Hαβ =MαHβ +Bi(B
i
αβ + F i

jkB
j
αB

k
β), which on contraction by vβ, gives

Hα0 = Hαβv
β =MαH0 +Hα, H0α = Hβαv

β = Hα. (3.21)

where Mα = CijkB
i
αB

jBk.
In view of equation (2.18) and (3.11), the second fundamental h-tensor Hαβ for

hyperplane F
n−1

is given as

Hαβ −MαHβ =
√
q(Hαβ +Di

jkBiB
j
αB

k
β)−

√
qMαHβ. (3.22)

Using (3.17) and (3.18), equation (2.19) reduces to

Di
jk = gis

{
QsEkj + qCjkmD

m
s + UjkmD

m
s − qCskmD

m
j − UskmD

m
j

− qCjsmD
m
k − UjsmD

m
k +Bjsβk +Bskβj −Bjkβs

}
.

(3.23)

Transvecting above equation by BiB
j
αB

k
β and using gijBj = pBi,

BsQs = 0 , BskB
sBk

β = 0 ,
we get

Di
jkBiB

j
αB

k
β = pBsBj

αB
k
β

{
qCjkmD

m
s + UjkmD

m
s − qCskmD

m
j − UskmD

m
j

− qCjsmD
m
k − UjsmD

m
k −Bjkβs

}
.

(3.24)

Equation (2.14) can be rewritten as

Di =
1

2

{[
(p+p1)q2+p2q3m

2
]
E00+2p2q2LFβ0

}
li+

1

2

{
µE00+2p3q2LFβ0

}
mi+pq2F

i
0L,

(3.25)
where µ = (pq3 + p2q2 + p3q3m

2) and Fβ0 = Fs0m
s. In view of the above equation

and applying the indicatory property of Ujsk, Cjsk, mj, hjs, the equation (2.16) can
be transformed as

Dm
s = gmr

{
λhrs +QrEs0 + ϕmrms

}
, (3.26)
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where

λ =
[
−µ

(qρ
L

+m2U1

)
+ U1

]
E00 and ϕ =

[
−µ

(
2U1 + U2m

2
)
+ U2

]
E00.

(3.27)
Transvecting the equation (3.26) by Cjkm, we get

CjkmDm
s = Cjkm

{
pgmr+p1l

mlr+p2 (l
mmr + lrmm)+p3m

mmr
}{

λhrs+QrEs0+ϕmrms

}
,

(3.28)

which can be simplified as

CjkmD
m
s = pλCjsk +

ρ

L
µhjkEs0 +

[ (
p+ p3m

2
)
ϕ+ p3λ

] ρ
L
hjkms. (3.29)

Similarly we can write the expressions for CskmD
m
j and CjsmD

m
k as

CskmD
m
j = pλCjsk +

ρ

L
µhskEj0 +

[ (
p+ p3m

2
)
ϕ+ p3λ

] ρ
L
hskmj, (3.30)

and

CjsmD
m
k = pλCjsk +

ρ

L
µhsjEk0 +

[ (
p+ p3m

2
)
ϕ+ p3λ

] ρ
L
hsjmk. (3.31)

Transvecting equations (3.29), (3.30) and (3.31) by BsBj
αB

k
β, and using (3.12), we

get respectively

BsCjkmD
m
s B

j
αB

k
β = pλMαβ +

ρ

L
µhjkB

j
αB

k
βB

sEs0 , (3.32)

BsCskmD
m
j B

j
αB

k
β = pλMαβ , (3.33)

BsCjsmD
m
k B

j
αB

k
β = pλMαβ, (3.34)

whereMαβ is the second fundamental v-tensor for the hypersurface F n−1 is defined
as [11]

Mαβ = CijkB
j
αB

k
βB

i. (3.35)

Again, transvecting Equation (3.26) by Ujkm, we get

UjkmD
m
s = Ujkm

{
pgmr + (p2l

r + p3m
r)mm

}{
λhrs +QrEs0 + ϕmrms

}
. (3.36)

Uijk is an indicatory tensor and satisfies;

(i) Uijkm
i = (2U1 + U2m

2)mjmk + U1m
2hjk,

(ii) Uijkg
ir = U1

(
hjkm

r + hrkmj + hrjmk

)
+ U2mjmkm

r,
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where hrk = hikg
ir.

By using the property of indicatory tensor Uijk, equation (3.36) can be rewritten
as

UjkmD
m
s =

[
p
{
U1[hjkm

r + hrjmk + hrkmj] + U2mjmkm
r
}
+ (p2l

r + p3m
r)[

(2U1 + U2m
2)mjmk + U1m

2hjk
] ]{

λhsr + ϕmsmr +QrEs0

}
,

which can be simplified as

UjkmD
m
s =

{
ψ1U1hjk + (ψ1U2 + 2ψ2U1)mjmk

}
ms + qλU1 (hjsmk + hskmj)

+
{
µ
[
m2U1hjk + (2U1 + U2m

2)mjmk

] }
Es0,

(3.37)

where

ψ1 =
(
λ+ ϕm2

) (
p+ p3m

2
)

and ψ2 =
(
λ+ ϕm2

)
p3 + pϕ.

Similarly we can write the expression for UskmD
m
j and UjsmD

m
k as

UskmD
m
j =

{
ψ1U1hsk + (ψ1U2 + 2ψ2U1)msmk

}
mj + qλU1 (hjsmk + hjkms)

+
{
µ
[
m2U1hsk + (2U1 + U2m

2)msmk

] }
Ej0,

(3.38)

and

UjsmD
m
k =

{
ψ1U1hsj + (ψ1U2 + 2ψ2U1)mjms

}
mk + qλU1 (hskmj + hjkms)

+
{
µ
[
m2U1hsj + (2U1 + U2m

2)msmj

] }
Ek0.

(3.39)

Contracting equation (3.37), (3.38), (3.39) by BsBj
αB

k
β and using Bimi = 0 =

hijB
iBj

α , we get respectively

BsUjkmD
m
s B

j
αB

k
β = µ

{
U1m

2hjk + (2U1 + U2m
2)mjmk

}
Bj

αB
k
βB

sEs0, (3.40)

BsUskmD
m
j B

j
αB

k
β = 0, (3.41)

BsUjsmD
m
k B

j
αB

k
β = 0. (3.42)

Using equations (3.32), (3.33), (3.34), (3.40), (3.41) and (3.42) in equation (3.24),
we get

Di
jkBiB

j
αB

k
β =

[µρ
L

−p
{[
(2U1 + U2m

2)mjmk

]
+ U1m

2hjk
}
+Bjk

]
Bj

αB
k
βB

sEs0−pλMαβ.

(3.43)
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The relative h- derivative of Bi
α and the normal vector Bi are given by [11]

Bi
α|β = HαβB

i, Bi
|β = −HαβB

α
j g

ij. (3.44)

Consider the h-covariant differentiation of Bibi = 0 with respect to the Cartan
connection of the hypersurface F n−1, we obtain

Bibi|j + biB
i
|β = 0 . (3.45)

In view of equation (3.44), equation (3.45) becomes(
bi|jB

jHβ + bi|jB
j
β

)
Bi − biHαβB

α
j g

ij = 0,

Contracting the above equation by vβ and using (3.21), gives

Bibi|0 = (Hα +MαH0)B
α
j b

j − bi|jH0B
iBj.

If the hypersurface is first kind hyperplane then H0 = 0 = Hα. Thus the above
equation reduces to Bibi|0 = 0. The h-vector bj is gradient, i.e. bj|s = bs|j, then we
have

Es0B
s = bs|0B

s = 0. (3.46)

Therefore equation (3.43) reduces to

Di
jkBiB

j
αB

k
β = −pλMαβ. (3.47)

In view of the above equation and (3.22), we get

Hαβ −MαHβ =
√
q(Hαβ − pλMαβ)−

√
qMαHβ. (3.48)

Now transvecting (2.6) by Bi
αB

j
βB

k and in view of equations (3.9) and (3.12), we
obtain

CijkB
i
αB

j
βB

k = qCijkB
i
αB

j
βB

k. (3.49)

From equation (3.7) and (3.35), equation (3.49) may be written as

Mαβ =
√
qMαβ. (3.50)

M.Matsumoto [11] has categorised the hypersurface to be hyperplane of second
kind as “A hypersurface F n−1 is a second kind hyperplane if and only if Hαβ = 0”
and the hypersurface to be hyperplane of third kind as “A hypersurface F n−1 is a
hyperplane of third kind if and only if Hαβ = 0 =Mαβ.”
Thus, we have

Theorem 3.3. Let the h-vector bj is gradient and tangential to the hypersurface
F n−1 for the h-Randers exponential change and satisfies the condition (3.46). Then
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(i) If F n−1 is a second kind hyperplane with Mαβ = 0 then F
n−1

is also second
kind hyperplane.

(ii) If F n−1 is a third kind hyperplane then F
n−1

is also third kind hyperplane.
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