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Abstract: Two distinct theorems are presented in this manuscript. The first one
establishes the existence of coincidence points and the g-weakness of M b

v metric
space. The Reich contraction principle produces a unique common fixed point for
two maps, as illustrated in various examples. Second, same concept is used to
identify common fixed point for four self maps. The Kannan and Banach contrac-
tion principles were applied in conjunction with extra requirements to get the fixed
points as corollaries. This theorem’s approach was used to solve several examples.
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1. Introduction and Preliminaries
Many academics have tried to generalize and enlarge metric spaces. Take a

non-empty set M and distance function d : M × M → R+. Pick any x, y, z in
M . The pair (M,d) is a metric space if it satisfies d(x, y) = 0 ⇔ x = y; d(x, y) =
d(y, x); d(x, y) ≤ d(x, z)+ d(z, y). For example Mitrovic’ and Radenovic’ [7], Kara-
han and Isik [4], and Asim et al. [1] suggested the bv(s)- metric, pbv- metric, and Mv

- metric spaces. The generalization of bv(s)−- metric, pbv- metric, and Mv - metric
spaces is M b

v - metric space, introduced by Joshi et al. [3] in 2021. M b
v - metric
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space’s definition and theorems that aid in understanding the proof are provided
below. One of the most common real-world applications of metric spaces is dis-
tributed similarity queries [10]. However, as the internet grows, data is getting more
complex. Thus it is challenging to use traditional metric similarity searches due to
the data’s richness, and diversity in both space and time. One of the most crucial
aspects of deep metric learning is to find the correct distance metric [5] based on
the data. Distributed data processing is now seeing tremendous growth in both
the data management sector and academia due to the widespread use of mobile
devices. Scalable metric space is necessary to provide successful query services or
accurate distance metric. The structure of this work is as follows. The idea is to
explain the presence of coincidence points for self-maps in this M b

v - metric space.
If the self-maps are weakly compatible pairs, then these maps have a unique com-
mon fixed point. This claim is ascertained through resolving issues. The examples
are written in such a way that distance function between the identical locations
have a non-zero value. Inspired by Rangamma’s et al. [8] theorem, the common
fixed point for four self-maps is determined in a cone rectangular metric space, by
substituting the cone rectangular metric space with the excellent metric space in-
troduced by Joshi et al. The literature has comprehensive information[1-10]. This
theorem is shown using instances.

The following information would help to understand the theorems.

Definition 1.1. [6] Let (M,d) be a metric space and A,B : M → M be two single
valued functions. The functions A and B have coincidence point x if Ax = Bx = w
for w ∈ M , and w is called a point of coincidence of A and B. The point x is
called a common fixed point of A and B if w = x.

In 2017, Mitrovic’ and Radenovic’ initiated the bv(s) metric space.

Definition 1.2. [7] For a non-empty set M with a real number s ≥ 1, v ∈ N and
a distance functionf : M ×M → R+ satisfying
1) f(x, y) = 0⇔ x = y
2) f(x, y) ≥ 0
3) f(x, y) = f(y, x)
4) f(x, y) ≤ s[f(x, z1) + f(z1, z2) + ...+ f(zv, y)]
where x, z1, z2, ...zv, y are distinct and belong to M , the pair (M, f) is the bv(s)
-metric space.

In 2018, Karahan and Isik created the pbv partial metric space.

Definition 1.3. [4] For a non-empty set M with a real number s ≥ 1, v ∈ N and
a function h : M ×M → R+ satisfying
1) h(x, y) = h(x, x) = h(y, y) ⇔ x = y
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2) h(x, x) ≤ h(x, y)
3) h(x, y) = h(y, x)
4) h(x, y) ≤ s[h(x, z1) + ...+ h(zv, y)]−

∑v
j=1 h(zj, zj)

where {x, z1, z2, ...zv, y} ∈ M, the pair (M,h) is a pbv - partial metric space.
In 2019, Asim et al. introduced the Mv- metric space.

Definition 1.4. [1] For a non-empty set M , v ∈ N and a map g : M ×M → R+

satisfying
1) g(x, y) = g(x, x) = g(y, y) ⇔ x = y
2) gx,y = min{g(x, x), g(y, y)} and gx,y ≤ g(x, y)
3) g(x, y) = g(y, x)
4) [g(x, y)− gx,y] ≤ {[g(x, z1)− gx,z1 ] + ....+ [g(zv, y)− gzv ,y]}.
where x, z1, z2, ...zv, y are distinct and belong to M , the pair (M, g) is a Mv -metric
space.

In 2021, Joshi et al. proposed the M b
v - metric space.

Definition 1.5. [3] For a non-empty set M with a real number s ≥ 1, v ∈ N and
a distance function f b

v : M ×M → R+ satisfying.
1) f b

v(x, y) = f b
v(x, x) = f b

v(y, y) ⇔ x = y,
2) f b

vx,y ≤ f b
v(x, y)

where f b
vx,y = min{f b

v(x, x), f
b
v(y, y)}, and F b

vx,y = max{f b
v(x, x), f

b
v(y, y)}.

3) f b
v(x, y) = f b

v(y, x)
4) [f b

v(x, y)−f b
vx,y] ≤ s{[f b

v(x, z1)−f b
vx,z1

]+ ...+[f b
v(zv, y)−f b

vzv ,y]}−
∑v

j=1 f
b
v(zj, zj).

where x, z1, z2, ...zv, y are terms of M , the pair (M, f b
v) is an M b

v - metric space.

Definition 1.6. [3] i) A sequence {yp} in (M, f b
v) is f b

v -convergent to y ∈ M if
and only if lim as p tends to +infinity (f b

v(yp, y)− f b
vyp,y) tends to zero.

ii) A sequence {yp} in (M, f b
v) is f b

v - Cauchy Sequence if and only if lim as p, q
tends to +infinity (f b

v(yp, yq)− f b
vyp,yq) and (F b

vyp,yq − f b
vyp,yq) exists and are finite.

iii) Every f b
v - Cauchy sequence {yp} in (M, f b

v) converges to y ∈ M such that lim
as p, q tends to +infinity (f b

v(yp, yq)− f b
vyp,yq) and (F b

vyp,yq − f b
vp,yq) tends to zero.

Definition 1.7. [3] Let (M, f b
v) be an M b

v - metric space with coefficient s ≥ 1,
v ∈ N and self map B : M → M satisfies f b

v(Bx,By) ≤ µf b
v(x, y) with 0 < µ < 1

2s

and x, y ∈ M . Construct a sequence {yq} such that yq+1 = Byq, q ∈ Ny ∈ M. If
{yq} converges to y then {Byq} converges to By, when limit q → ∞ is applied.

Definition 1.8. [3] Let (M, f b
v) be an M b

v - metric space with coefficient s ≥ 1,
v ∈ N and self map B : M → M satisfies f b

v(Bx,By) ≤ µ[f b
v(x,Bx)+f b

v(y,By)] with
µ < 1

2s
and x, y ∈ M . Then, B has a unique fixed point y∗ such that f b

v(y
∗, y∗) = 0.

Select y0 ∈ M , the sequence of iterates {Bny0} ⊆ M converges to y∗ ∈ M.
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Definition 1.9. [6] Let (M,d) be a metric space and A,B : M → M be two single
valued maps. If the maps A and B are weakly compatible then they commute at
their coincidence point x, i.e. Ax = Bx ⇒ ABx = BAx.

Definition 1.10. [6] Let f, g : X → X be two self-mappings and (X, d) be a metric
space. The mapping f is called g-weak contraction for any x, y in X and α, β, γ ∈
[0, 1);α + β + γ < 1 satisfies d(fx, fy) ≤ αd(gx, gy) + βd(gx, fx) + γd(gy, fy).

Definition 1.11. [9] Let (X, d) be a metric space and α, β, γ ∈ [0, 1). For any
x, y ∈ X, kx, ky ∈ X Since k : X → X be a self-map. For α < 1, if k satisfies
d(kx, ky) ≤ αd(x, y) then k is known as Banach-type contraction. For β + γ < 1,
if k satisfies d(kx, ky) ≤ βd(x, kx) + γd(y, ky) then k is known as Kannan-type
contraction. For α + β + γ < 1, if k satisfies d(kx, ky) ≤ αd(x, y) + βd(x, kx) +
γd(y, ky) then k is known as Reich-type contraction.

Example 1.12. i) If W = [0, 1], and distance function d(x, y) = |x− y|2, then we
can see that (W,d) is a metric space.
ii) Let W = [0, 1], and a map is defined as nb

v(x, y) = |x−y|2. By simple calculation,
it can be shown that (W,nb

v) is an M b
v -metric space for any v and s. And it is also

a metric space.
iii) If W = [0, 1] and nb

v(x, y) = min{|x|, |y|}, then it is clear that (W,nb
v) is an

M b
v -metric space for any v and s. But (W,nb

v) fails to be a metric space because
nb
v(x, x) = |x| and nb

v(x, x) ̸= 0.
iv) Every metric space is an M b

v -metric space, but not every M b
v -metric space is a

metric space.
v) If W = [0, 1] and a map is defined as nb

v(x, y) = |x − y| + |x|, then (W,nb
v) is

neither anM b
v -metric space nor a metric space. Symmetry condition fails nb

v(x, y) =
|x− y|+ |x| ≠ nb

v(y, x) = |y − x|+ |y|.
2. Main First Result

In this section we have formulated the theorem given by Malhotra et al. [6]
within an M b

v -complete metric space, a generalized metric space.

Theorem 2.1. Let (D,mb
v) be an M b

v - complete metric space with coefficients
s ≥ 1 and v ∈ N. Let two self maps A,B : D → D satisfy

mb
v(Bx,By) ≤ α[mb

v(Ax,Ay)] + β[mb
v(Bx,Ax)] + γ[mb

v(By,Ay)].

Assume that B satisfies A -weak contraction with α+β+γ < 1
s
; α ≥ 0, β ≥ 0, γ ≥ 0

and for all x, y ∈ D.
If B(D) ⊆ A(D) and B(D) or A(D) is a complete subspace of D then the mapping
B, A have a unique coincidence point in D. Moreover, if B and A are weakly
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compatible pairs, then B and A have a unique common fixed point in D.
Proof. Let x0 represent any random point of D. Because B(D) ⊆ A(D), we may
select a point x1 ∈ D at which Bx0 = Ax1. In this manner, a sequence may be
gathered. For xn ∈ D we can locate xn+1 ∈ D such that Bxn = Axn+1. Let’s say
that the sequence be {yn} ⊂ D and that yn = Bxn = Axn+1 where n = 0, 1, 2, 3....

mb
v(yn, yn+1) = mb

v(Bxn,Bxn+1) ≤ α[mb
v(Axn,Axn+1)]

+ β[mb
v(Bxn,Axn) + γ[mb

v(Bxn+1,Axn+1)]

≤ α[mb
v(yn−1, yn)] + β[mb

v(yn, yn−1)] + γ[mb
v(yn+1, yn)]

(1− γ)mb
v(yn, yn+1) ≤ α[mb

v(yn−1, yn)] + β[mb
v(yn, yn−1)]

mb
v(yn, yn+1) ≤

α + β

(1− γ)
[mb

v(yn, yn−1)] = µ[mb
v(yn−1, yn)]

≤ (µ)n[mb
v(y0, y1)];

α + β

1− γ
< 1; µ =

α + β

1− γ
;

For any m,n as limn,m → ∞ lim
n,m→∞

mb
v(ynym) → 0; lim

n,m→∞
mb

vyn,ym → 0;

lim
n,m→∞

mb
v(ynym)−mb

vyn,ym → 0 and lim
n,m→∞

M b
vyn,ym −mb

vyn,ym = 0.

From the definition 1.6, we see that {yn} as the Cauchy sequence in the set D.
Because M b

v is a complete metric space, all Cauchy sequences are convergent. As
a result {yn} is mb

v-convergent sequence in the set D and there exists z ∈ D such
that yn → z.
If B(D) is a complete subspace of D, then z exists in B(D) ⊆ A(D) such that
yn → z and Bxn → z. In order to prove that z = Bx, we can identify x ∈ D such
that z = Ax. As inferred from the definition mb

v(z,Bx) = mb
v(z, z) or m

b
v(z,Bx) =

mb
v(Bx,Bx) is implied when mb

v(z,Bx) −mb
vz,Bx = 0. Hence, we arrive at z = Bx

and z = Bx = Ax. x is the coincidence point in D as a result. Similarly, if A(D)
is a complete subspace of D, then there exists z′ ∈ A(D) such that yn → z′ and
Axn+1 → z′. we may locate x′ ∈ D such that z′ = Ax′ to get z′ = Bx′. So,
z′ = Bx′ = Ax′. As a result x′ is the coincidence point in D. In both situations,
coincidence points x, x′ in D exist. The points of coincidence are z, z′.
To demonstrate that z = z′, and the point of coincidence z, z′ are distinct. z =
Bx = Ax and z′ = Bx′ = Ax′. mb

v(z, z) ≤ [mb
v(z, z

′)] and mb
v(z

′, z′) ≤ [mb
v(z, z

′)]
taken from the definition 1.5.
mb

v(z, z
′) ≤ α[mb

v(z
′, z)] + β[mb

v(z, z)] + γ[mb
v(z

′, z′)] ≤ {α + β + γ}[mb
v(z, z

′)] <
[mb

v(z, z
′)]. Due to α + β + γ < 1/s < 1, an inconsistency exists here. So z = z′

and z′ = Bx′ = Ax′ = z = Bx = Ax are true. Therefore z = z′ is the point of
coincidence in D and the point of coincidence in D is unique.
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If B and A are weakly compatible, then Bz = BAx = ABx = Az ⇒ Bz = Az = w.
w is another point of coincidence, however because of the uniqueness point of
coincidence w = z. There is only one point z ∈ D so that Bz = Az = z.z is the
singular common fixed point of the self-mappings B and A. Hence the theory is
established.

Example 2.2. To show the distance function between same points is not
zero. The definition of d : W×W → W is d(x, y) = max{x, y} for every x, y in the
nonempty set W = R+. d satisfies all the characteristics of definition 1.5. (W,d) is
an M b

v - metric space for any s ≥ 1 and v. Metric space means d(x, y) = 0 ⇔ x = y.
Due to the fact that d(x, y) ̸= 0 when x = y{d(2, 2) = 2 ̸= 0}, this example is not
a metric space.

Example 2.3. Let Q = {a, b, c, d} and the map mb
v : Q×Q → R+ be defined as

1) mb
v(x, y) = (0, 0) for x = y and mb

v(x, y) = mb
v(y, x).

2) mb
v(a, b) = (3, 9).

3) mb
v(a, c) = mb

v(b, c) = (1, 3).
4) mb

v(a, d) = mb
v(b, d) = mb

v(c, d) = (4, 12).
If B,A : Q → Q are self maps given by B(a) = B(b) = B(c) = c, B(d) = a and
A(a) = b, A(b) = a,A(c) = c, A(d) = d, then find the common fixed point for A
and B. Apply Theorem 2.1.
Solution. The map mb

v is expressed in Table 1.

mb
v a b c d
a (0,0) (3,9) (1,3) (4,12)
b (3,9) (0,0) (1,3) (4,12)
c (1,3) (1,3) (0,0) (4,12)
d (4,12) (4,12) (4,12) (0,0)

Table 1: The Map mb
v

With values of s = 1 and v = 2, the pair (Q,mb
v) is an M b

v -metric space. There
are several potential values for α, β, γ with α + β + γ < 1

s
; α ≥ 0, β ≥ 0, γ ≥ 0.

Specifically, pick α > 1/8 and α + β + γ = 3α < 1
s
, if α = β = γ. Select

α = 1
4
; s = 1. mb

v(Bx,By) ≤ α[mb
v(Ax,Ay)] + β[mb

v(Bx,Ax)] + γ[mb
v(By,Ay)].

(1, 3) ≤ 1/4[(4, 12) + (0, 0) + (4, 12)]. For various combinations listed in Table
2, the conditions of theorem may be confirmed. This pair (Q,mb

v) fulfils all of
Theorem 2.1’s inequalities and is an M b

v -metric space for v ∈ N; α = β = γ = 1
4

and s = 1. So the unique common fixed point is “c”.



In M b
v- Complete Metric Space, Common Fixed Point Theorems ... 337

x, y Bx,By Ax,Ay Ax,Bx Ay,By mb
v(Bx,By) mb

v(Ax,Ay) mb
v(Ax,Bx) mb

v(Ay,By)
a, a c, c b, b b, c b, c (0, 0) (0, 0) (1, 3) (1, 3)
a, b c, c b, a b, c a, c (0, 0) (3, 9) (1, 3) (1, 3)
a, c c, c b, c b, c c, c (0, 0) (1, 3) (1, 3) (0, 0)
a, d c, a b, d b, c d, a (1, 3) (4, 12) (1, 3) (4, 12)
b, b c, c a, a a, c a, c (0, 0) (0, 0) (1, 3) (1, 3)
b, c c, c a, c a, c c, c (0, 0) (1, 3) (1, 3) (0, 0)
b, d c, a a, d a, c d, a (1, 3) (4, 12) (1, 3) (4, 12)
c, c c, c c, c c, c c, c (0, 0) (0, 0) (0, 0) (0, 0)
c, d c, a c, d c, c d, a (1, 3) (4, 12) (0, 0) (4, 12)
d, d a, a d, d d, a d, a (0, 0) (4, 12) (4, 12) (4, 12)

Table 2: Different values of x, y

Example 2.4. Validate Theorem 2.1. The map mb
v : M ×M → R+, where M =

[0, 1] be defined by mb
v(x, y) = |x − y|. Let the self maps be B,A : [0, 1] → [0, 1],

where

Bx = 7/8 x ∈ [0, 1/2]

= 5/6 x ∈ (1/2, 1]

Ax = 1 x ∈ [0, 1/2]

= 5/6 x ∈ (1/2, 1)

= 7/8 x = 1

Solution. The map mb
v : M ×M → R+ is an M b

v - metric space. There are a wide
range of options for α, β, γ with α + β + γ < 1

s
; α ≥ 0, β ≥ 0, γ ≥ 0. If α = β = γ

then 1
7
< α and α + β + γ = 3α < 1

s
. Take α = 1

5
; s = 1. When x = 1, y ∈ [0, 1/2]

mb
v(Bx,By) ≤ α[mb

v(Ax,Ay)] + β[mb
v(Bx,Ax)] + γ[mb

v(By,Ay)].

|5/6− 7/8| ≤ (|7/8− 1|+ |5/6− 7/8|+ |7/8− 1|)α
1/24 ≤ (1/8 + 1/24 + 1/8)1/5

Note: mb
v(x, x) = 0.

All of Theorem 2.1’s inequalities are satisfied by this pair (M,mb
v), which is an M b

v -
metric space for v ∈ N; α = β = γ = 1

5
and s = 1. As a result, the unique common

fixed point is 5/6.(5/6 = A5/6 = B5/6). All probable instances are shown in Table
3 below for verification.
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S.N. Case |Bx − By| ≤ |Ax − Ay| |Bx − Ax| |By − Ay|
1 x, y ∈ [0, 1/2] |7/8 − 7/8| = 0 ≤ |1 − 1| = 0 |7/8 − 1| = 1/8 |7/8 − 1| = 1/8
2 x ∈ [0, 1/2], y ∈ (1/2, 1) |7/8 − 5/6| = 1/24 ≤ |1 − 5/6| = 1/6 |7/8 − 1| = 1/8 |5/6 − 5/6| = 0
3 x ∈ [0, 1/2], y = 1 |7/8 − 5/6| = 1/24 ≤ |1 − 7/8| = 1/8 |7/8 − 1| = 1/8 |5/6 − 7/8| = 1/24
4 x ∈ (1/2, 1), y ∈ [0, 1/2] |5/6 − 7/8| = 1/24 ≤ |5/6 − 1| = 1/6 |5/6 − 5/6| = 0 |7/8–1| = 1/8
5 x, y ∈ (1/2, 1) |5/6 − 5/6| = 0 ≤ |5/6 − 5/6| = 0 |5/6 − 5/6| = 0 |5/6 − 5/6| = 0
6 x ∈ (1/2, 1), y = 1 |5/6 − 5/6| = 0 ≤ |5/6 − 7/8| = 1/24 |5/6 − 5/6| = 0 |5/6 − 7/8| = 1/24
7 x = 1, y ∈ [0, 1/2] |5/6 − 7/8| = 1/24 ≤ |7/8 − 1| = 1/8 |5/6 − 7/8| = 1/24 |7/8 − 1| = 1/8
8 x = 1, y ∈ (1/2, 1) |5/6 − 5/6| = 0 ≤ |7/8 − 5/6| = 1/24 |5/6 − 7/8| = 1/24 |5/6 − 5/6| = 0
9 x = 1, y = 1 |5/6 − 5/6| = 0 ≤ |7/8 − 7/8| = 0 |5/6 − 7/8| = 1/24 |5/6 − 7/8| = 1/24

Table 3: Various values of x, y

Example 2.5. Check Theorem 2.1 for map mb
v : M × M → R+ and M = [0, 1]

satisfy the following

mb
v(x, y) =



x
2
; y = 0

0; x = y
y
2
; x = 0
x+y

x+y+1
; else

And B,A : [0, 1] → [0, 1] be such that

Bx = 6/7 x ∈ [0, 1/2]

= 5/6 x ∈ (1/2, 1]

Ax = 4/5 x ∈ [0, 1/2]

= 5/6 x ∈ (1/2, 1)

= 6/7 x = 1

Solution. Clearly, the pair (M,mb
v) is an M b

v - metric space for any v ∈ N and any
s ≥ 1. We cannot select values for α, β, γ with α+ β + γ < 1

s
; α ≥ 0, β ≥ 0, γ ≥ 0;

such that mb
v(Bx,By) ≤ α[mb

v(Ax,Ay)] + β[mb
v(Bx,Ax)] + γ[mb

v(By,Ay)]. If x ∈
(0, 1/2] and y ∈ (1/2, 1) then 71/113 ≤ α(49/79) + β(58/93). If x ∈ (0, 1/2] and
y = 1 then 71/113 ≤ α(58/93) + β(58/93) + γ(71/113). The mapping B is not
A-weak contraction. Consequently, Theorem 2.1’s requirements are not confirmed.
Despite the fact that the unique common fixed point is 5/6, (5/6 = A5/6 = B5/6),
Theorem 2.1 does not apply to this situation.

3. Second Result
As the second result, motivated by Rangamma et al [8], we show the following

theorem.

Theorem 3.1. Let (W,mb
v) be an M b

v-complete metric space, and assume that
K,L,M, and N : W → W be four self-mappings of W that satisfy either one of the
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following inequality conditions for any x, y ∈ W and α, β, γ ≥ 0 with α+β+γ < 1
s
.

mb
v(Kx,Ly) ≤ αmb

v(Mx,Ny) + βmb
v(Mx,Kx) + γmb

v(Ny,Ly). (3.1)

mb
v(Kx,Ky) ≤ αmb

v(Mx,My) + βmb
v(Mx,Kx) + γmb

v(My,Ky). (3.2)

mb
v(Lx, Ly) ≤ αmb

v(Nx,Ny) + βmb
v(Nx,Lx) + γmb

v(Ny,Ly). (3.3)

If K(W ) ⊆ N(W ), L(W ) ⊆ M(W ) and one of K(W ), N(W ), L(W ),M(W ) is a
complete subspace of W , then the pairs (K,M) and (L,N) have a unique point
of coincidence in W . Additionally, if the pairs (K,M) and (L,N) are weakly
compatible then K,L,M,N have a unique common fixed point in W .
Proof. Let x0 be any random point in W . Construct a sequence {yn} that is
applicable to every n ≥ 0 and y2n = Kx2n = Nx2n+1 and y2n+1 = Lx2n+1 =
Mx2n+2.{K(W ) ⊆ N(W ), L(W ) ⊆ M(W )}.

mb
v(y2n+1, y2n+1) = mb

v(Kx2n+1, Lx2n+1)

≤ αmb
v(Mx2n+1, Nx2n+1) + βmb

v(Mx2n+1, Kx2n+1) + γmb
v(Nx2n+1, Lx2n+1)

≤ αmb
v(y2n, y2n) + βmb

v(y2n, y2n+1) + γmb
v(y2n, y2n+1)

mb
v(y2n+1, y2n+1) = mb

v(Kx2n+1, Kx2n+1)

≤ αmb
v(Mx2n+1,Mx2n+1) + βmb

v(Mx2n+1, Kx2n+1) + γmb
v(Mx2n+1, KLx2n+1)

≤ αmb
v(y2n, y2n) + βmb

v(y2n, y2n+1) + γmb
v(y2n, y2n+1)

mb
v(y2n+1, y2n+1) = mb

v(Lx2n+1, Lx2n+1)

≤ αmb
v(Nx2n+1, Nx2n+1) + βmb

v(Nx2n+1, Lx2n+1) + γmb
v(Nx2n+1, Lx2n+1)

≤ αmb
v(y2n, y2n) + βmb

v(y2n, y2n+1) + γmb
v(y2n, y2n+1)

We reached the same findings using the three inequalities presented in the theorem
for y2n+1 and y2n+1. Likewise, for y2n and y2n+1. So, we would just take into
account the first inequality (3.1).

mb
v(y2n,y2n+1) = mb

v(Kx2n, Lx2n+1)

≤ αmb
v(Mx2n, Nx2n+1) + βmb

v(Mx2n, Kx2n) + γmb
v(Nx2n+1, Lx2n+1)

≤ αmb
v(y2n−1, y2n) + βmb

v(y2n−1, y2n) + γmb
v(y2n, y2n+1)

(1− γ)mb
v(y2n, y2n+1) ≤ (α + β)mb

v(y2n−1, y2n)

mb
v(y2n, y2n+1) ≤

α + β

1− γ
mb

v(y2n−1, y2n)

mb
v(y2n, y2n+1) ≤ µmb

v(y2n−1, y2n) where µ =
α + β

1− γ
< 1.
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Apply limit p, q → ∞ to any p, q to get lim
p,q→∞

[mb
v(yp, yq) − mb

vyp,yq ] = 0 and

lim
p,q→∞

[M b
vyp,yq −mb

vyp,yq ] = 0. The definition 1.6 gives mb
v- Cauchy sequence {yn} in

(W,mb
v). Given that W is an M b

v - complete metric space, every Cauchy sequence
must be convergent and have a finite limit. Assume g be the limit.
IfM(W ) is a complete subspace ofW , then g ∈ M(W ) exists such that lim

n→∞
y2n+1 =

lim
n→∞

Mx2n+2 = g. There is always an x in W where g = Mx be found. To establish

Kx = g, which implies that mb
v(Kx, g) = mb

v(g, g) OR mb
v(Kx, g) = mb

v(Kx,Kx),
we can demonstrate mb

v(Kx, g) − mb
vKx,g = 0. So, Kx = g and g = Kx = Mx.

Consequently, x is the coincidence point in (M,K) and g is the point of coin-
cidence in W . Considering that K(W ) ⊆ N(W ), there must be some x′ in N
where Nx′ = g. It is evident that Lx′ = g and g = Lx′ = Nx′ from definitions.
Then x′ is the coincidence point in (L,N) and g is the point of coincidence in
W.g = Mx = Kx = Nx′ = Lx′. The pairings (M,K) and (L,N) be weakly com-
patible mappings. Take g1 and g2 be two points of coincidence in W such that
Kg = KMx = MKx = Mg = g1 and Lg = LNx′ = NLx′ = Ng = g2. Simple
math indicates that mb

v(g1, g2) < mb
v(g1, g2) if g1 ̸= g2. A contradiction exists

here. g1 = g2 is therefore true, and the coincidence point is unique.
Furthermore, Kg = KMx = MKx = Mg = g1 = Lg = LNx′ = NLx′ = Ng = g2
indicates that Kg = Mg = Lg = Ng = g1 = g2 and g = Kx = Mx = Nx′ = Lx′.
The point of coincidence is unique. So, g = g1 = g2. As a result, g = Kg = Mg =
Lg = Ng is obtained. The common fixed point of K,L,M,N is then g. If h is
another common fixed point of K,L,M,N, then h = Kh = Mh = Lh = Nh. Let
g ̸= h. We can see from the definitions that it is a contradiction, hence g = h. The
unique common fixed point of K,L,M, and N is “g”.
If K(W ), N(W ), or L(W ) is a complete subspace of W , then (K,M) and (L,N)
have a unique point of coincidence in W . If the pairs (K,M) and (L,N) are weakly
compatible, then K,L,M,N have a unique common fixed point in W . Therefore, g
is the unique common fixed point of K,L,M,N . Theorem’s proof is now complete.

Corollary 3.2. Banach contraction principle
Let (W,mb

v) be an M b
v-complete metric space, and assume that K,L,M, and N :

W → W be four self-mappings of W that satisfy either one of the following in-
equality conditions for any x, y ∈ W and 0 ≤ α < 1

s
; s ≥ 1.

mb
v(Kx,Ly) ≤ αmb

v(Mx,Ny)

mb
v(Kx,Ky) ≤ αmb

v(Mx,My)

If K(W ) ⊆ N(W ), L(W ) ⊆ M(W ) and one of K(W ), N(W ), L(W ),M(W ) is a
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complete subspace of W , then the pairs (K,M) and (L,N) have a unique point of
coincidence in W . Additionally, if the pairs (K,M) and (L,N) are weakly com-
patible then K,L,M,N have a unique common fixed point in W .
Proof. The proof is obtained by inserting β = 0 and γ = 0 in Theorem 3.1.

Corollary 3.3. Kannan contraction principle
Let (W,mb

v) be an M b
v-complete metric space, and assume that K,L,M, and N :

W → W be four self-mappings of W that satisfy either one of the following in-
equality conditions for any x, y ∈ W and β, γ ≥ 0 with β + γ < 1

s
; s ≥ 1.

mb
v(Kx,Ly) ≤ βmb

v(Mx,Kx) + γmb
v(Ny,Ly).

mb
v(Kx,Ky) ≤ βmb

v(Mx,Kx) + γmb
v(My,Ky).

If K(W ) ⊆ N(W ), L(W ) ⊆ M(W ) and one of K(W ), N(W ), L(W ),M(W ) is a
complete subspace of W , then the pairs (K,M) and (L,N) have a unique point
of coincidence in W . Additionally, if the pairs (K,M) and (L,N) are weakly
compatible then K,L,M,N have a unique common fixed point in W .
Proof. We get the proof by changing α = 0 in Theorem 3.1.

Example 3.4. Find common fixed point (use Theorem 3.1). Let mb
v : Q × Q →

R+, Q = [0, 1] is defined by mb
v(x, y) = |x − y|. Let the self-maps be K,L,M,N :

[0, 1] → [0, 1], where

Kx = 7/8 x ∈ [0, 1/2]

= 5/6 x ∈ (1/2, 1]

Lx = 6/7 x ∈ [0, 1/2]

= 5/6 x ∈ (1/2, 1]

Mx = 4/5 x ∈ [0, 1/2]

= 5/6 x ∈ (1/2, 1)

= 6/7 x = 1

Nx = 1 x ∈ [0, 1/2]

= 5/6 x ∈ (1/2, 1)

= 7/8 x = 1

Solution. The map mb
v : Q × Q → R+ is a complete metric space for any s, v.

Pick s = 1 and v = 2. There are several alternative choices for α, β, γ with
α + β + γ < 1

s
; α ≥ 0; β ≥ 0; γ ≥ 0; such as (α = 0.1, β = 0.6, γ = 0.1) or

(α = 0.2, β = 0.5, γ = 0.1). Especially if α = β = γ then α + β + γ = 3α < 1
s
.



342 South East Asian J. of Mathematics and Mathematical Sciences

Select α = 1
4
, s = 1 and in the case where x ∈ [0, 1/2]; y = 1;

mb
v(Kx,Ly) ≤ α[mb

v(Mx,Ny)] + β[mb
v(Mx,Kx)] + γ[mb

v(Ny,Ly)].

|7/8− 5/6| ≤ (|4/5− 7/8|+ |4/5− 7/8|+ |7/8− 5/6|)α
1/24 ≤ (3/40 + 3/40 + 1/24)1/4

Note: mb
v(x, x) = 0.

Multiple cases of x and y are presented in Table 4, for reference.

S.N. Case |Kx − Ly| ≤ |Mx − Ny| |Mx − Kx| |Ny − Ly|
1 x, y ∈ [0, 1/2] |7/8 − 6/7| = 1/56 ≤ |4/5 − 1| = 1/5 |4/5 − 7/8| = 3/40 |1 − 6/7| = 1/7
2 x ∈ [0, 1/2], y ∈ (1/2, 1) |7/8 − 5/6| = 1/24 ≤ |4/5 − 5/6| = 1/30 |4/5 − 7/8| = 3/40 |5/6 − 5/6| = 0
3 x ∈ [0, 1/2], y = 1 |7/8 − 5/6| = 1/24 ≤ |4/5 − 7/8| = 3/40 |4/5 − 7/8| = 3/40 |7/8 − 5/6| = 1/24
4 x ∈ (1/2, 1), y ∈ [0, 1/2] |5/6 − 6/7| = 1/42 ≤ |5/6 − 1| = 1/6 |5/6 − 5/6| = 0 |1 − 6/7| = 1/7
5 x, y ∈ (1/2, 1) |5/6 − 5/6| = 0 ≤ |5/6 − 5/6| = 0 |5/6 − 5/6| = 0 |5/6 − 5/6| = 0
6 x ∈ (1/2, 1), y = 1 |5/6 − 5/6| = 0 ≤ |5/6 − 7/8| = 1/24 |5/6 − 5/6| = 0 |7/8 − 5/6| = 1/24
7 x = 1, y ∈ [0, 1/2] |5/6 − 6/7| = 1/42 ≤ |6/7 − 1| = 1/7 |6/7 − 5/6| = 1/42 |1 − 6/7| = 1/7
8 x = 1, y ∈ (1/2, 1) |5/6 − 5/6| = 0 ≤ |6/7 − 5/6| = 1/42 |6/7 − 5/6| = 1/42 |5/6 − 5/6| = 0
9 x = 1, y = 1 |5/6 − 5/6| = 0 ≤ |6/7 − 7/8| = 1/56 |6/7 − 5/6| = 1/42 |7/8 − 5/6| = 1/24

Table 4: Different cases of x, y

This pair (Q,mb
v) is an M b

v -metric space for v = 2 ∈ N;α = β = γ = 1
4
and

s = 1. Simple calculations demonstrate that (K,M) and (L,N) are compatible.
x ∈ [0, 1/2]KMx = K4/5 = 5/6;MKx = M7/8 = 5/6.
x ∈ (1/2, 1)KMx = K5/6 = 5/6;MKx = M5/6 = 5/6.
x = 1;KMx = K6/7 = 5/6;MKx = M5/6 = 5/6.
x ∈ [0, 1/2];LNx = L1 = 5/6;NLx = N6/7 = 5/6.
x ∈ (1/2, 1);LNx = L5/6 = 5/6;NLx = N5/6 = 5/6.
x = 1;LNx = L7/8 = 5/6;NLx = N5/6 = 5/6.
(5/6 = K5/6 = L5/6 = M5/6 = N5/6)
All of Theorem’s 3.1 requirements are satisfied. As a result, the unique common
fixed point is “5/6”.

Example 3.5. The distance function mb
v(x, y) = max{|x|, |y|} for any x, y in

W = [0, 1]. Let K,L,M,N : W → W be four self-mappings defined by Kx =
x/4;Lx = x/8;Nx = x/2;Mx = x. To find unique fixed point, apply Theorem
3.1.
Solution.
Note: Take notice that mb

v(x, x) = x and mb
v(x, x) ̸= 0.

(W,mb
v) is an M b

v - complete metric space for v = 2 ∈ N and s ≥ 1 is obvious.
It is clear that K(W ) ⊆ N(W ) and L(W ) ⊆ M(W ). KMx = Kx = x/4 and
MKx = Mx/4 = x/4(K,M) are compatible. LNx = Lx/2 = x/16, and NLx =
Nx/8 = x/16(L,N) are compatible. When α = 1

2
; β = γ = 0 the inequality below
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is correct. mb
v(Kx,Ly) ≤ αmb

v(Mx,Ny) + βmb
v(Mx,Kx) + γmb

v(Ny,Ly).
All of Theorem’s properties are met, and there is a unique common fixed point for
K,L,M,N, which is x = 0. Theorem 3.1 has been proven, and a common point
exists and is unique.

Example 3.6. If W = [0, 1], is defined as mb
v(x, y) = |x − y|. Let K,L,M,N :

W → W be four self mappings defined as Kx = (x/2)4;Lx = (x/2)8;Nx =
(x/2)2;Mx = (x/2)1. Show that Theorem 3.1 is true.
Solution. Note: mb

v(x, x) = 0.
(W,mb

v) is an M b
v - complete metric space for any v ∈ N and s ≥ 1. K(W ) ⊆ N(W )

and L(W ) ⊆ M(W ). KMx = K(x/2) = (x/4)4, andMKx = M(x/2)4 = (x/2)4/2
implies that (K,M) are NOT-compatible. LNx = L(x/2)2 = (x/2)16/28, and
NLx = N(x/2)8 = (x/2)16/4 implies that (L,N) are NOT-compatible. When
α = 1/2, β = γ = 0, the inequality is accurate. mb

v(Kx,Ly) ≤ αmb
v(Mx,Ny) +

βmb
v(Mx,Kx)+γmb

v(Ny,Ly). Unique common fixed point forK,L,M,N is x = 0.
None of Theorem 3.1’s criteria are true. Despite the existence and uniqueness of
the common fixed point, Theorem 3.1 cannot be applied.

Example 3.7. If W = [0, 1] and a map defined as mb
v(x, y) = |x−y|, then (W,mb

v)
is a complete metric space for any v ∈ N and s ≥ 1. Assume K,L,M,N : W → W
be the four self-mappings defined as in the following:
Kx = x4;Lx = x8, Nx = x2,Mx = x1. Can we produce a singular fixed point
under Theorem 3.1?.
Solution. Simple math indicates that K(W ) ⊆ N(W ) and L(W ) ⊆ M(W ).
KMx = Kx = x4,MKx = Mx4 = x4, and (K,M) are compatible. LNx = Lx2 =
x16;NLx = Nx8 = x16; (L,N) are compatible. A specific sample point x = 1, y = 0
violates inequality mb

v(Kx,Ly) ≤ αmb
v(Mx,Ny) + βmb

v(Mx,Kx) + γmb
v(Ny,Ly).

As a contradiction for the value of α, we arrive at 1 ≤ α. Although Theorem 3.1
cannot be proved and the point is not unique, we can clearly detect two common
fixed points x = 0 and x = 1, for K,L,M,N .

Remark 3.8. Theorem 2.1 and Theorem 3.1 requirements are necessary, but not
sufficient. If the theorem’s prerequisites are fulfilled, a unique fixed point must
exists. A common fixed point may or may not exist if the prerequisites of the
theorem are not fulfilled.
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