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1. Introduction
The theory of Fourier transform has wide history and application in Engineer-

ing, Technology, Physics, Mathematics, etc. In recent past, linear canonical trans-
formation was being studied by many mathematicians. Motivated by Pankaj Jain
et al. [4], we define linear canonical transform, ∆x,a, ∆

∗
x,a and obtain new results.

The Fourier transform and the related convolution respectively defined by

f̂(λ) = F [f ;λ] =

∫
R
f(x) e−i x λ dx (1.1)

and

(f ∗ g) (λ) =
∫
R
f(λ− x) g(x) dx

are important tool for solving many practical problems. To give rise more general
transforms and convolutions such as fractional Fourier transform [3], [5], [6], [12],
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these notions have been generalized and extended due to their usefulness.
Linear canonical transform (LCT) is such generalization introduced by Quesne [10].
Let A be 2× 2 matrix given by

A =

[
a b
c d

]
with ad− bc = 1.

The LCT is defined by

LA[f ;λ] =

∫
R
f(x)KA(x, λ) dx ,

where the kernal KA is defined by

KA(x, λ) =


1√
2πbi

e[
i
2 (

a
b
x2− 2

b
xλ+ d

b
λ2)] , if b ̸= 0

1√
a
ei (

c
a
)λ2

δ

(
x− λ

a

)
, if b = 0

and related convolution is defined by

(f ∗A g) (x) =
∫
R
f(λ) g(x− λ) e[i

a
b
λ(x−λ)] dλ

The inverse LCT is defined by

LA−1 [f ;x] =

∫
R
f(λ)KA−1(λ, x) dλ ,

where A−1 is the inverse of the matrix A, provided |A| ≠ 0.
LCT has a range of applications in the study of wave propagation, electromagnetic,
Harmonic oscillators and acoustic problems. There are some classical approaches
already exist in [1], as LCT is a generalized form, it will be worthwhile to figure
out and discover the relationship between LCT and those notions.

Remark. Note that if we consider A =

[
0 1
−1 0

]
then the kernel reduces to

KA(x, λ) = 1√
2πi

e−ixλ which is kernel of Fourier transform. Also, one can ver-

ify if A =

[
cost sint
−sint cost

]
then KA(x, λ) reduces to kernel of Fractional Fourier

transform.
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2. Linear Canonical Transform based Convolution and Differential Op-
erators

We recall one result from [4] as the following:

Theorem 2.1. Let 1 ≤ p <∞, f ∈ L1(R) and g ∈ Lp(R). Then (f ∗A g) ∈ Lp(R)
with

∥f ∗A g∥Lp(R) ≤ ∥f∥L1(R) ∥g∥Lp(R). (2.1)

Now, we prove the following theorem:

Theorem 2.2. Let f be continuous and g be continuous with a compact support.
Then f ∗A g is continuous.
Proof. If h ∈ R then we have

| (f ∗A g) (x+ h)− (f ∗A g) (x) |

=

∣∣∣∣∫
R
f(y) g(x+ h− y) e[i

a
b
y (x+h−y)] dy −

∫
R
f(y) g(x− y) e[i

a
b
y (x−y)] dy

∣∣∣∣
=

∣∣∣∣∫
R
f(y)

(
g(x+ h− y) e[i

a
b
y h] − g(x− y)

)
e[i

a
b
y (x−y)] dy

∣∣∣∣
≤
∫
R

∣∣∣f(y) (g(x+ h− y) e[i
a
b
y h] − g(x− y)

)∣∣∣ dy
=

∫
R

∣∣∣f(y) (g(x+ h− y) e[i
a
b
y h] − g(x− y) e[i

a
b
y h] + g(x− y) e[i

a
b
y h] − g(x− y)

)∣∣∣ dy
≤
∫
R
|f(y)| |g(x+ h− y)− g(x− y)| dy +

∫
R
|f(y)| |g(x− y)|

∣∣∣e[i a
b
y h] − 1

∣∣∣ dy
= I1 + I2,

where I1 and I2 are respectively the first and second integral in the above inequality.
IfK = supp(g) is compact then for any fixed x, x−K = {x− y : y ∈ K} is compact
and thus f is uniformly continuous on x−K.
Therefore for each ϵ > 0, there exist η > 0 such that if | h |< η then I1 → 0 as
h→ 0.
Note that as f, g are bounded on x−K,

I2 ≤
∫
R
|f(y)| |g(x− y)| 2 |sin(a/2b) y h| dy → 0 as h→ 0.

Therefore
| (f ∗A g) (x+ h)− (f ∗A g) (x) |→ 0 as h→ 0

and hence proof is completed.
Now we state and prove the following strong version of Theorem 2.2.
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Theorem 2.3. If f ∈ C∞(R) and g is continuous with a compact support, then
f ∗A g is C∞.
Proof. Consider (f ∗A g) (x+ h)− (f ∗A g) (x).
then

1

h
[(f ∗A g) (x+ h)− (f ∗A g) (x)]

=
1

h

∫
R
g(y)

[
f(x+ h− y) ei

a
b
y h − f(x− y)

]
ei

a
b
y (x−y) dy

=
1

h

∫
R
g(y)

[
f(x+ h− y) ei

a
b
y h − f(x− y) ei

a
b
y h

+f(x− y) ei
a
b
y h − f(x− y)

]
ei

a
b
y (x−y) dy

=
1

h

∫
R
g(y) [f(x+ h− y)− f(x− y)] ei

a
b
y (x+h−y) dy

+
1

h

∫
R
g(y) f(x− y)

[
ei

a
b
y h − 1

]
ei

a
b
y (x−y) dy

→ (Df ∗A g) (x) +
(
f ∗A

(
i
a

b

)
(·)g
)
(x), as h→ 0.

Therefore if f is differentiable then it follows that f ∗A g is also differentiable.
Thus by induction it is not very difficult to prove that

Dn
x (f ∗A g) (x) =

n∑
r=0

An,r

(
Dn−rf ∗A

(
i
a

b
(·)
)r
g
)
(x),

where An,r are appropriate constants.
Thus f ∗A g ∈ C∞. Hence proof is completed.

Remark. If we consider value of A as shown in earlier remark , f ∗A g will be
ordinary convolution and the result is proved in [10, chapter 3]. Now we define the
following generalized differential operators based on LCT:

∆x,a = −
(
Dx − i

a

b
x
)

∆∗
x,a =

(
Dx + i

a

b
x
)
, where Dx ≡ d

dx
.

Theorem 2.4. The following results are true.

(i) ∆x,a KA(x, λ) =
(
i
b
λ
)
KA(x, λ)

(ii) ∆λ,d KA(x, λ) =
(
i
b
x
)
KA(x, λ)
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(iii) ∆∗
x,a KA−1(x, λ) =

(
i
b
λ
)
KA−1(x, λ)

(iv) ∆∗
λ,d KA−1(x, λ) =

(
i
b
x
)
KA−1(x, λ)

Proof. We shall prove result (i).
(i) We have

∆x,a KA(x, λ) = −
(
Dx − i

a

b
x
) 1√

2πbi
e

i
2 (

a
b
x2− 2

b
xλ+ d

b
λ2)

= − 1√
2πbi

[
i

2

(
a

b
2x− 2

b
λ

)
+ i

a

b
x

]
e

i
2 (

a
b
x2− 2

b
xλ+ d

b
λ2)

=
1√
2πbi

[
−ia
b
x+

i

b
λ+ i

a

b
x

]
e

i
2 (

a
b
x2− 2

b
xλ+ d

b
λ2)

=

(
i

b
λ

)
KA(x, λ).

(ii), (iii) and (iv) can be proved similarly.

3. Schwartz type Spaces based on LCT
Let us recall the Schwartz space S(R) that consist of all functions ϕ ∈ C∞ such

that
sup
x∈R

∣∣xk ϕ(q)(x)
∣∣ ≤ mkq, k, q = 0, 1, 2, 3 . . .

Following [6, 8], we define the space S∆ as the space of all ϕ ∈ C∞ for which

sup
x∈R

∣∣xk ∆q
x,aϕ(x)

∣∣ <∞, k, q ∈ N0 ≡ N ∪ {0}.

When ∆x,a is the differential operator d
dx
, the space S∆ coincides with the stan-

dard Schwartz space S. The sequence mkq in the construction of Schwartz space S
depends on both k and q. The Gelfand and Shilov type spaces are variants of the
space S in which the sequence mkq depends only on k, or only on q or on both.
Such spaces are respectively denoted by Sα, S

β, and Sβ
α. These spaces have further

been generalized to give rise to the spaces Sα,A, S
β,B, and Sβ,B

α,A .

Further we define and study the generalizations of the spaces Sα,A, S
β,B, and Sβ,B

α,A

in which the derivative d
dx

is replaced by more general operator ∆ and ∆∗.
In [2] various spaces of type S such as Sα, S

β, and Sβ
α have been defined and stud-

ied.

Definition 3.1. Let δ > 0. We define the space S∆,α,A that consist of all ϕ ∈ C∞

such that ∣∣xk ∆q
x,aϕ(x)

∣∣ ≤ Cq,δ (A+ δ)k kk α,
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where k, q ∈ N0 and Cq,δ depends on ϕ.

Definition 3.2. Let ρ > 0. We define the space S∆,β,B that consist of all ϕ ∈ C∞

such that ∣∣xk ∆q
x,aϕ(x)

∣∣ ≤ Ck,ρ (B + ρ)q qq β,

where k, q ∈ N0 and Ck,ρ depends on ϕ.

Definition 3.3. Let δ, ρ > 0. We define the space S∆,β,B
∆,α,A that consist of all ϕ ∈ C∞

such that ∣∣xk ∆q
x,aϕ(x)

∣∣ ≤ Ck (A+ δ)k (B + ρ)q kk α qq β,

where k, q ∈ N0 and Ck depends on ϕ.
Similarly we can define the spaces S∆∗,α,A, S

∆∗,β,B and S∆∗,β,B
∆∗,α,A where ∆ be

replaced by ∆∗ in Definition 3.1, 3.2, 3.3.

Theorem 3.4. Let ϕ ∈ S∆∗,α,A. Then LA[ϕ; ·] ∈ S∆,α,B

Proof. Consider

λk ∆q
λ,d LA[ϕ;λ] = λk ∆q

λ,d

∫
R
KA(x, λ) ϕ(x) dx

= λk
∫
R
∆q

λ,d KA(x, λ) ϕ(x) dx

= λk
∫
R

(
ix

b

)q

KA(x, λ) ϕ(x) dx

=

(
i

b

)q−k ∫
R

(
iλ

b

)k

KA(x, λ) x
q ϕ(x) dx

=

(
i

b

)q−k ∫
R
(∆x,a)

k KA(x, λ) x
q ϕ(x) dx

=

(
i

b

)q−k ∫
R
KA(x, λ)

(
∆∗

x,a

)k
(xq ϕ(x)) dx

=

(
i

b

)q−k ∫
R
KA(x, λ)

(
k∑

r=0

Ak,r D
r
x x

q
(
∆∗

x,a

)k−r
ϕ(x)

)
dx

=

(
i

b

)q−k
(

k∑
r=0

Ak,r

∫
R
KA(x, λ)D

r
x x

q
(
∆∗

x,a

)k−r
ϕ(x) dx

)
so that∣∣∣λk ∆q

λ,d LA[ϕ;λ]
∣∣∣ = ∣∣∣∣∣

(
i

b

)q−k
(

k∑
r=0

Ak,r

∫
R
KA(x, λ)

q!

(q − r)!
ψ(x)q−r

(
∆∗

x,a

)k−r
ϕ(x) dx

)∣∣∣∣∣ .
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where

ψ(x) =

{
x if q − r ≥ 0

0 otherwise.

Denote
|Ak| = sup

r
|Ak,r|.

Then∣∣∣λk ∆q
λ,d LA[ϕ;λ]

∣∣∣
≤
(

1

|b|

)q−k
(

k∑
r=0

|Ak,r|
∫
R
|KA(x, λ)|

q!

(q − r)!
|ψ(x)|q−r

∣∣∣(∆∗
x,a

)k−r
ϕ(x)

∣∣∣ dx)

≤
(

1

|b|

)q−k

|Ak|

(
k∑

r=0

∫
R
|KA(x, λ)|

q!

(q − r)!
|ψ(x)|q−r

∣∣∣(∆∗
x,a

)k−r
ϕ(x)

∣∣∣ dx)

=

(
1

|b|

)q−k

|Ak| k!

(
k∑

r=0

∫
R
|KA(x, λ)|

q!

k! (q − r)!
|ψ(x)|q−r

∣∣∣(∆∗
x,a

)k−r
ϕ(x)

∣∣∣ dx)

≤
(

1

|b|

)q−k

|Ak| k!

(
k∑

r=0

∫
R
|KA(x, λ)|

q!

r! (q − r)!
|ψ(x)|q−r

∣∣∣(∆∗
x,a

)k−r
ϕ(x)

∣∣∣ dx)

=

(
1

|b|

)q−k

|Ak| k! |KA(x, λ)|

(
q∑

r=0

q!

r! (q − r)!

∫
R
|ψ(x)|q−r

∣∣∣(∆∗
x,a

)k−r
ϕ(x)

∣∣∣ dx)

=

(
1

|b|

)q−k

|Ak| k! |KA(x, λ)|

(
q∑

r=0

q!

r! (q − r)!

∫
R
(1 + |x|2) |ψ(x)|q−r

∣∣∣(∆∗
x,a

)k−r
ϕ(x)

∣∣∣ dx

(1 + |x|2)

)
=

(
1

|b|

)q−k

|Ak| k! |KA(x, λ)|

(
q∑

r=0

q!

r! (q − r)!

[∫
R
|ψ(x)|q−r

∣∣∣(∆∗
x,a

)k−r
ϕ(x)

∣∣∣ dx

(1 + |x|2)

+

∫
R
|ψ(x)|q+2−r

∣∣(∆∗
x,a)

k−r ϕ(x)
∣∣ dx

(1 + |x|2)

])

≤
(

1

|b|

)q−k

|Ak| k! |KA(x, λ)|

(
q∑

r=0

q!

r! (q − r)!

∫
R
2 |ψ(x)|q+2−r

∣∣∣(∆∗
x,a

)k−r
ϕ(x)

∣∣∣ dx

(1 + |x|2)

)

≤ 2

(
1

|b|

)q−k

|Ak| k! |KA(x, λ)|

(
q∑

r=0

q!

r! (q − r)!
Ck−r,δ (A+ δ)q+2−r (q + 2− r)(q+2−r)α

∫
R

dx

(1 + |x|2)

)
≤ 2

(
1

|b|

)q−k

|Ak| k! |KA(x, λ)|

(
q∑

r=0

q!

r! (q − r)!

∫
R
Ck−r,δ (A+ δ)q+2−r (q + 2)(q+2)α dx

(1 + |x|2)

)
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≤ 2

(
1

|b|

)q−k

|Ak| k! |KA(x, λ)|

(
q∑

r=0

q!

r! (q − r)!
Ck,δ (A+ δ)q+2−r (q + 2)(q+2)α

∫
R

dx

(1 + |x|2)

)

≤ 2

(
1

|b|

)q−k

|Ak| k! |KA(x, λ)|Ck,δ

(
q+2∑
r=0

q!

r! (q − r)!
(A+ δ)q+2−r (q + 2)(q+2)α

∫
R

dx

(1 + |x|2)

)

= 2

(
1

|b|

)q−k

|Ak| k! |KA(x, λ)|Ck,δ (1 +A+ δ)q+2 (q + 2)(q+2)α

∫
R

dx

(1 + |x|2)

= 2π

(
1

|b|

)−k−2

|Ak| k! |KA(x, λ)|Ck,δ

(
1 +A

|b|
+

δ

|b|

)q+2

(q + 2)(q+2)α

= 2π |b|k+2 |Ak| k! |KA(x, λ)|Ck,δ

(
1 +A

|b|
+

δ

|b|

)q+2

(q + 2)(q+2)α

= Dk,δ (B + ρ)q+2 (q + 2)(q+2)α

= Dk,ρ (B + ρ)q+2 (q + 2)(q+2)α

= Ek,ρ (B + ρ)q qqα. (3.1)

Thus proof is completed.

Theorem 3.5. Let ϕ ∈ S∆∗,β,B. Then LA[ϕ; ·] ∈ S∆,β,A.
Proof. If ϕ ∈ S∆∗,β,A and ρ > 0 is arbitrary then by using (3.1), we can infer that∣∣∣λk ∆q

λ,d LA[ϕ;λ]
∣∣∣

≤
(

1

|b|

)q−k

|Ak|

(
k∑

r=0

∫
R
|KA(x, λ)|

q!

(q − r)!
|ψ(x)|q−r

∣∣∣(∆∗
x,a

)k−r
ϕ(x)

∣∣∣ dx)

≤
(

1

|b|

)q−k

|Ak| |KA(x, λ)| q!

(
q∑

r=0

q!

r!(q − r)!

∫
R
|ψ(x)|q−r

∣∣∣(∆∗
x,a

)k−r
ϕ(x)

∣∣∣ dx)

≤
(

1

|b|

)q−k

|Ak| |KA(x, λ)| q!

(
q∑

r=0

q!

r!(q − r)!

∫
R
(1 + |x|2) |ψ(x)|q−r

∣∣∣(∆∗
x,a

)k−r
ϕ(x)

∣∣∣ dx

(1 + |x|2)

)

=

(
1

|b|

)q−k

|Ak| |KA(x, λ)| q!

(
q∑

r=0

q!

r!(q − r)!

[∫
R
|ψ(x)|q−r ∣∣(∆∗

x,a)
k−r ϕ(x)

∣∣ dx

(1 + |x|2)

+

∫
R
|ψ(x)|q+2−r

∣∣∣(∆∗
x,a

)q−r
ϕ(x)

∣∣∣ dx

(1 + |x|2)

])

≤
(

1

|b|

)q−k

|Ak| |KA(x, λ)| q!

(
q∑

r=0

q!

r!(q − r)!

∫
R
2 |ψ(x)|q+2−r

∣∣∣(∆∗
x,a

)k−r
ϕ(x)

∣∣∣ dx

(1 + |x|2)

)

= 2

(
1

|b|

)q−k

|Ak| |KA(x, λ)| q!

(
q∑

r=0

q!

r! (q − r)!
Cq+2−r,ρ (B + ρ)k−r (k − r)(k−r)β

∫
R

dx

(1 + |x|2)

)
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≤ 2

(
1

|b|

)q−k

|Ak| |KA(x, λ)| q!

(
q∑

r=0

q!

r! (q − r)!

∫
R
Cq+2−r,ρ (B + ρ)k (k)kβ

dx

(1 + |x|2)

)

≤ 2

(
1

|b|

)q−k

|Ak| |KA(x, λ)| q!

(
q∑

r=0

q!

r! (q − r)!
Cq,ρ (B + ρ)k (k)kβ

∫
R

dx

(1 + |x|2)

)

≤ 2

(
1

|b|

)q−k

|Ak| |KA(x, λ)|Cq,ρ

(
2q (B + ρ)k (k)kβ

∫
R

dx

(1 + |x|2)

)
= 2π

(
1

|b|

)q−k

|Ak| |KA(x, λ)| q! 2q Cq,ρ (B + ρ)k (k)kβ

= 2π

(
1

|b|

)q

|Ak| |KA(x, λ)| q! 2q Cq,ρ

(
|b| |Ak|1/k(B + ρ)

)k
(k)kβ

= Dq,ρ (A+ ρ)k (k)kβ.

Thus proof is completed.
Similarly by using the same technique as in Theorem 3.5, we can prove the

following Theorem 3.6 :

Theorem 3.6. Let ϕ ∈ S∆∗,β,B
∆∗,α,A . Then LA[ϕ; ·] ∈ S∆,α,A

∆,β,B .
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