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Abstract: Exponential algebra is a new algebraic structure consisting of a semi-
group structure, a scalar multiplication, an internal multiplication and a partial or-
der [introduced in [4]]. This structure is based on the structure ‘exponential vector
space’ which is thoroughly developed by Priti Sharma et. al. in [11] [This struc-
ture was actually proposed by S. Ganguly et. al. in [1] with the name ‘quasi-vector
space’] Exponential algebra can be considered as an algebraic ordered extension
of the concept of algebra. In the present paper we have shown that the function
space C+(X) of all non-negative continuous functions on a topological space X is
a topological exponential algebra under the compact open topology. Also we have
discussed the ideals and maximal ideals of C+(X). We find an ideal of C+(X)
which is not a maximal ideal in general; actually maximality of that ideal depends
on the topology of X. The concept of ideals of exponential algebra was introduced
by us in [4].
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1. Introduction
S. Ganguly et al. in [1] introduced a new algebraic structure called ‘quasi

vector space’ or ‘qvs’ in short which consists of a semigroup structure, a partial
order and a scalar multiplication. This structure has been topologised in [1] so that
the topology becomes compatible with the operations and partial order. Although
the study of this structure was initiated with hyperspace in [1], a large number
of such algebraic structures have been found in [2], [3], [5] and [10] from various
branches of mathematics. Later Priti Sharma and Sandip Jana further studied
the same structure in [11] with a new nomenclature ‘exponential vector space’ (in
short ‘evs’), since elements of this space behave exponentially due to the presence
of the partial order, as explained in that paper. Let us first give the definition of
exponential vector space.

Definition 1.1. [11] Let (X,≤) be a partially ordered set, ‘+’ be a binary operation
on X [called addition] and ‘·’: K ×X −→ X be another composition [called scalar
multiplication, K being a field]. If the operations and partial order satisfy the
following axioms then (X,+, ·,≤) is called an exponential vector space (in short
evs) over K [This structure was initiated with the name quasi-vector space or qvs
by S. Ganguly et al. in [1]].

A1 : (X,+) is a commutative semigroup with identity θ

A2 : x ≤ y (x, y ∈ X) ⇒ x+ z ≤ y + z and α · x ≤ α · y, ∀z ∈ X, ∀α ∈ K

A3 : (i) α · (x+ y) = α · x+ α · y
(ii) α · (β · x) = (α · β) · x
(iii) (α + β) · x ≤ α · x+ β · x
(iv) 1 · x = x, where ‘1’ is the multiplicative identity in K,

∀x, y ∈ X, ∀α, β ∈ K

A4 : α · x = θ iff α = 0 or x = θ

A5 : x+ (−1) · x = θ iff x ∈ X0 :=
{
z ∈ X : y ̸≤ z, ∀y ∈ X ∖ {z}

}
A6 : For each x ∈ X, ∃ y ∈ X0 such that y ≤ x.

In the above definition, X0 is precisely the set of all minimal elements of the
evs X with respect to the partial order on X and forms the maximum vector
space (within X) over the same field as that of X [1]. In [11] the authors call this
vector space X0 as ‘primitive space’ or ‘zero space’ of X and the elements of X0 as
‘primitive elements ’.
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After that in [4] we have introduced the concept of exponential algebra (or ealg
in short) by defining an internal multiplication on an evs. Let us first write the
definition of exponential algebra.

Definition 1.2. [4] Let (X,+, ·,≤) be an exponential vector space over some field
K and ‘∗’: X × X −→ X be a binary operation [called internal multiplication]
satisfying the following axioms. Then (X,+, ·,≤, ∗) is called an exponential algebra
(in short ealg) over K.

EA1 : (x ∗ y) ∗ z = x ∗ (y ∗ z), ∀x, y, z ∈ X

EA2 : x ≤ y =⇒ z ∗ x ≤ z ∗ y & x ∗ z ≤ y ∗ z, ∀ z ∈ X

EA3 : x ∗ (y + z) ≤ x ∗ y + x ∗ z & (y + z) ∗ x ≤ y ∗ x+ z ∗ x,
eqality holds if x ∈ X0.

EA4 : α · (x ∗ y) = (α · x) ∗ y = x ∗ (α · y), ∀α ∈ K, ∀x, y ∈ X

EA5 : x ∗ θ = θ ∗ x = θ, ∀x ∈ X, θ being the additive identity of X.

For convenient, henceforth we shall write ‘xy’ instead of ‘x ∗ y’ and ‘αx’ instead of
‘α · x’, ∀x, y ∈ X and ∀α ∈ K.

In [4] it has been shown that X0 is an algebra over the same field K. The
algebra X0 is called the ‘primitive algebra’ of X. In [4] it has been shown that the
converse of this is also true; given any algebra A over some field K, an exponential
algebra X can be constructed such that X0 is isomorphic with A as an algebra.

Definition 1.3. [4] An exponential algebra X is said to be a unital exponential
algebra if there exists an element e ∈ X, called unity in X, such that xe = ex =
x,∀x ∈ X.

An exponential algebra X is said to be a commutative exponential algebra if
xy = yx,∀x, y ∈ X.

To define a topological exponential algebra we need the following concept.

Definition 1.4. [8] Let ‘≤’ be a preorder in a topological space Z; the preorder is
said to be closed if its graph G≤(Z) :=

{
(x, y) ∈ Z ×Z : x ≤ y

}
is closed in Z ×Z

(endowed with the product topology).

Theorem 1.5. [8] A partial order ‘≤’ in a topological space Z will be a closed
order iff for any x, y ∈ Z with x ̸≤ y, ∃ open nbds U, V of x, y respectively in Z
such that (↑ U) ∩ (↓ V ) = ∅.

[
Here ↑ A := {x ∈ X : x ≥ a for some a ∈ A} and

↓ A := {x ∈ X : x ≤ a for some a ∈ A} for any A ⊆ X
]
.

Definition 1.6. [4] An exponential algebra X over the field K of real or complex
numbers is said to be a topological exponential algebra if X has a topological struc-
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ture with respect to which the addition, scalar multiplication, internal multiplication
are continuous and the partial order ‘≤’ is closed (Here K is equipped with the usual
topology).

In view of Theorem 1.5 we can say that every topological exponential algebra
is Hausdorff and hence X0 is a Hausdorff topological algebra.

In [4] we have also introduced the concept of ideal and maximal ideal in an
exponential algebra. In the present paper we consider the function space C+(X),
the collection of all non-negative continuous functions on a topological space X.
We prove that it is an exponential algebra under suitably defined operations and
partial order. We use compact open topology [6] to make C+(X) a topological ealg
over the field K. In the final section of this article we find some important ideals of
C+(X). We have obtained the representation of a maximal ideal of C+(X) under
some suitable condition.

2. The structure of topological ealg in the function space C+(X)

Let X be a topological space and C+(X) be the set of all non-negative con-
tinuous functions on X. The addition, scalar multiplication and partial order on
C+(X) are defined as follows :
(i) (f + g)(x) := f(x) + g(x), ∀x ∈ X
(ii) (αf)(x) := |α|f(x), ∀x ∈ X, ∀α ∈ K, the field of real or complex numbers.
(iii) f ≤ g ⇔ f(x) ≤ g(x), ∀x ∈ X

In [10] it has been shown that C+(X) forms an exponential vector space with
respect to the operations and partial order defined as above.

We now define an internal multiplication ‘∗’ on C+(X) as follows: For any
f, g ∈ C+(X), (f ∗ g)(x) := f(x)g(x), ∀x ∈ X. Then by the following theo-
rem we show that C+(X) forms an ealg with the additive identity being given by
θX(x) := 0,∀x ∈ X and the primitive algebra [C+(X)]0 = {θX}.

Theorem 2.1.
(
C+(X),+, ·,≤, ∗

)
is a commutative unital exponential algebra

over K.
Proof. Let f, g ∈ C+(X) and a ∈ X. Then |f(x)g(x)− f(a)g(a)| = |f(x){g(x)−
g(a)}+g(a){f(x)−f(a)}| ≤ |f(x)||g(x)−g(a)|+|g(a)||f(x)−f(a)|, ∀x ∈ X · · · · (1)
Since f, g are continuous at a, for any ϵ > 0,∃ open nbds. U, V of a in X such that
|f(x)− f(a)| < ϵ,∀x ∈ U——(i) and |g(x)− g(a)| < ϵ,∀x ∈ V——(ii)
Again, f being continuous at a, ∃ an open nbd. W of a in X and M > 0
such that |f(x)| ≤ M, ∀x ∈ W [By nbd. property of continuous function]. Let
N := U ∩ V ∩W . Then N is an open nbd. of a in X. Now from (1) using (i) and
(ii) we have |f(x)g(x)− f(a)g(a)| < Mϵ+ |g(a)|ϵ,∀x ∈ N . This shows that f ∗ g
is continuous at a. Arbitrariness of a ∈ X justifies that f ∗ g is continuous on X
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and hence f ∗ g ∈ C+(X).
EA1: For f, g, h ∈ C+(X) we get

(
(f ∗g)∗h

)
(x) = (f ∗g)(x)h(x) = f(x)g(x)h(x) =(

f ∗ (g ∗ h)
)
(x), ∀x ∈ X.

EA2: Let f ≤ g. Then f(x) ≤ g(x), ∀x ∈ X.
Now (h ∗ f)(x) = h(x)f(x) ≤ h(x)g(x) = (h ∗ g)(x)& (f ∗ h)(x) = f(x)h(x) ≤
g(x)h(x) = (g ∗ h)(x), ∀x ∈ X
EA3: For any f, g, h ∈ C+(X) we get

(
f ∗ (g + h)

)
(x) = f(x)(g + h)(x) =

f(x)
(
g(x)+h(x)

)
= (f∗g)(x)+(f∗h)(x), ∀x ∈ X. Therefore f∗(g+h) = f∗g+f∗h.

Similarly, (g + h) ∗ f = g ∗ f + h ∗ f
EA4:

(
α · (f ∗ g)

)
(x) = |α|(f ∗ g)(x) = |α|f(x)g(x) = (α · f)(x)g(x) =

(
(α · f) ∗

g
)
(x) =

(
f ∗ (α · g)

)
(x), ∀x ∈ X,∀α ∈ K.

EA5: For any f ∈ C+(X), we get (θX ∗ f)(x) = θX(x)f(x) = 0 = f(x)θX(x) =
(f ∗ θX)(x), ∀x ∈ X =⇒ θX ∗ f = f ∗ θX = θX.

Thus according to definition 1.2,
(
C+(X),+, ·,≤, ∗

)
is an exponential algebra over

the field K (real or complex number field).

Clearly C+(X) is commutative and unital, the function given by e(x) := 1
∀x ∈ X being the unity.

Let us consider the compact open topology on C+(X). For each subset K of X
and each subset U of R, we define

W (K,U) :=
{
f ∈ C+(X) : f(K) ⊆ U

}
The family of all sets of the form W (K,U), where K is a compact subset of X and
U is an open set in R, is a subbase for the compact open topology for C+(X) [6].
Therefore for any ϵ > 0 and any compact set K of X, the family of sets of the form

V (f,K, ϵ) :=
{
g ∈ C+(X) : |f(x)− g(x)| < ϵ, ∀x ∈ K

}
is a subbase for the neighbourhood system of f ∈ C+(X) in the compact open
topology. The following result is very much useful in handling the compact open
topology.

Result 2.2. [10] A net (fn)n∈D in C+(X), D being a directed set, converges to
f in the compact open topology of C+(X) iff fn → f uniformly on every compact
subset of X.

Theorem 2.3. [10] (1) The addition ‘+’ : C+(X)×C+(X) −→ C+(X) is contin-
uous.
(2) The scalar multiplication ‘·’ : K × C+(X) −→ C+(X) is continuous, where K
is endowed with the usual topology.
(3) The partial order ‘≤’ is closed.

Theorem 2.4. The internal multiplication ‘∗’ : C+(X) × C+(X) −→ C+(X) is
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continuous and hence C+(X) is a topological ealg.
Proof. Let (fn)n∈D and (gn)n∈D be two nets in C+(X), D being a directed set,
such that fn −→ f and gn −→ g in C+(X) with compact open topology. Then
by Result 2.2 we can say that fn −→ f and gn −→ g uniformly on every compact
set in X. Let K be a compact set in X. So for any ϵ > 0, ∃ p1, p2 ∈ D such that
|fn(x) − f(x)| < ϵ, ∀n ≥ p1 · · · · · · (i) and |gn(x) − g(x)| < ϵ, ∀n ≥ p2 · · · · · · (ii).
This is true for any x ∈ K. Now, D being a directed set, ∃ p ∈ D such that
p ≥ p1, p2. So

∥fn ∗ gn − f ∗ g∥K := max
x∈K

|(fn ∗ gn)(x)− (f ∗ g)(x)|

= max
x∈K

|fn(x)gn(x)− f(x)g(x)|

≤ max
x∈K

|fn(x)||gn(x)− g(x)|+max
x∈K

|g(x)||fn(x)− f(x)|

≤ ϵ ·max
x∈K

|fn(x)|+ ϵ ·max
x∈K

|g(x)|,∀n ≥ p [by (i) & (ii)]

≤ ϵ ·max
x∈K

{|fn(x)− f(x)|+ |f(x)|}+ ϵ · ∥g∥K ,∀n ≥ p

= ϵ · {ϵ+ ∥f∥K}+ ϵ · ∥g∥K ,∀n ≥ p

Since f and g are continuous and K is compact in X, ∥f∥K and ∥g∥K are finite.
Thus it follows that fn ∗ gn −→ f ∗ g uniformly on the compact set K in X. So by
2.2 the internal multiplication ∗ is continuous. Therefore using the Theorem 2.3
we can say that C+(X) is a topological ealg.

Definition 2.5. [4] A subset Y of an exponential algebra X is said to be a sub
exponential algebra (subealg in short) if Y itself is an exponential algebra with all
the compositions of X being restricted to Y .

Note 2.6. Looking at the definition and necessary and sufficient condition of sub
exponential vector space in [5] we have the following analogue for sub exponential
algebra.

A subset Y of an exponential algebra X over the field K is a sub exponential
algebra iff Y satisfies the following :
(i) αx+ y, xy ∈ Y, ∀α ∈ K, ∀x, y ∈ Y .
(ii) Y0 ⊆ X0

⋂
Y , where Y0 :=

{
z ∈ Y : y ≰ z,∀ y ∈ Y ∖ {z}

}
(iii) ∀ y ∈ Y , ∃ p ∈ Y0 such that p ≤ y.

If Y is a subealg of X then actually Y0 = X0 ∩Y , since for any Y ⊆ X we have
X0 ∩ Y ⊆ Y0.

Remark 2.7. From above Note we can easily say that if Y is a subealg of an ealg
X and Z is another subealg of X such that Z ⊆ Y ⊆ X then Z is a subealg of Y
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also. In fact, Z0 = Z ∩X0 = (Z ∩ Y )∩X0 = Z ∩ (Y ∩X0) = Z ∩ Y0. This identity
immediately suggests that if Z is a subealg of Y and Y is a subealg of an ealg X
then Z is also a subealg of X.

3. Ideals of C+(X)

Definition 3.1. [4] Let X be an ealg over the field K. Then a subealg I of X is
said to be an ideal of X if XI ⊆ I, IX ⊆ I and ↓ I = I.

In the above definition if we omit the condition ↓ I = I then I is called a
semiideal of X. Clearly, every ideal is a semiideal, but converse may not be true.

Theorem 3.2. Let C+
b (X) := {f ∈ C+(X) : f is bounded on X}. Then C+

b (X) is
a subealg of C+(X). But not an ideal of C+(X).
Proof. Let f, g ∈ C+

b (X) and α ∈ K. Then αf + g, f ∗ g are bounded on X
justifying that αf + g, f ∗ g ∈ C+

b (X).

Now [C+
b (X)]0 = {θX} = C+

b (X)∩ [C+(X)]0. Also for any f ∈ C+
b (X), f ≥ θX.

Thus in view of Note 2.6, C+
b (X) is a subealg of C+(X).

Remark 3.3. C+
b (X) is not an ideal of C+(X); it is not even a semiideal of

C+(X). In fact, if f ∈ C+(X) and g ∈ C+
b (X) then f ∗ g need not be bounded. For

example, let X = (0,∞) with usual subspace topology inherited from the real line
R, f(x) = x2, g(x) = 1,∀x ∈ X.

Definition 3.4. [9] Let X be a topological space. A function f : X → R is said
to be vanishing at infinity if for any ϵ > 0,∃ a compact set K in X such that
|f(x)| < ϵ,∀x /∈ K.

Theorem 3.5. Let C+
0 (X) := {f ∈ C+(X) : f vanishes at infinity}. Then C+

0 (X)
is a subealg of C+(X).
Proof. Let f, g ∈ C+

0 (X) and α ∈ K. Then C+(X) being an ealg, αf + g,
f ∗ g ∈ C+(X). Let ϵ > 0 be any number. Then ∃ compact sets K,F in X such
that |f(x)| < ϵ, ∀x /∈ K and |g(x)| < ϵ, ∀x /∈ F . Therefore

∣∣|α|f(x) + g(x)
∣∣ ≤

|α||f(x)| + |g(x)| < |α|ϵ + ϵ,∀x /∈ K ∪ F , where K ∪ F is compact in X. Also
|f(x)g(x)| < ϵ2,∀x /∈ K ∪ F . This shows that αf + g, f ∗ g ∈ C+

0 (X).

Since for any f ∈ C+
0 (X), we have f ≥ θX, it follows that [C

+
0 (X)]0 = {θX} =

C+
0 (X) ∩ [C+(X)]0. Therefore by Note 2.6, we can say that C+

0 (X) is a subealg of
C+(X).

Remark 3.6. (i) C+
0 (X) is neither an ideal nor a semiideal of C+(X). In fact, if

f ∈ C+(X) and g ∈ C+
0 (X) then f ∗ g need not vanish at infinity. For example, let

X = [0,∞) with usual subspace topology inherited from the real line R, f(x) = x2,
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g(x) =

{
1
x
, if x ≥ 1

x, if 0 ≤ x < 1
.

(ii) Let f ∈ C+
0 (X). Then for ϵ = 1,∃ a compact set K in X such that

|f(x)| < 1,∀x /∈ K. Again f being continuous and K being compact, ∥f∥K :=
max
x∈K

|f(x)| is finite. So |f(x)| ≤ max{1, ∥f∥K}, ∀x ∈ X =⇒ f ∈ C+
b (X). Thus

C+
0 (X) ⊆ C+

b (X). So by Theorems 3.2, 3.5 and Remark 2.7 we can say that C+
0 (X)

is a subealg of C+
b (X).

We now show that C+
0 (X) is an ideal of C+

b (X).

Theorem 3.7. C+
0 (X) is an ideal of C+

b (X).
Proof. By Remark 3.6 (ii), C+

0 (X) is a subealg of C+
b (X). Now let f ∈ C+

b (X) and
g ∈ C+

0 (X). Then ∥f∥ := max
x∈X

|f(x)| < ∞. Also for any ϵ > 0,∃ a compact set K

in X such that |g(x)| < ϵ,∀x /∈ K. Therefore |f(x)g(x)| < |f(x)|ϵ ≤ ϵ∥f∥,∀x /∈ K
=⇒ f ∗ g ∈ C+

0 (X). Similarly we can show that g ∗ f ∈ C+
0 (X).

Now let f ∈↓ C+
0 (X). Then ∃ g ∈ C+

0 (X) such that f ≤ g =⇒ f(x) ≤ g(x),
∀x ∈ X. So for any ϵ > 0,∃ a compact set F in X such that 0 ≤ g(x) < ϵ,∀x /∈ F
=⇒ 0 ≤ f(x) ≤ g(x) < ϵ, ∀x /∈ F =⇒ f ∈ C+

0 (X). Consequently, ↓ C+
0 (X) =

C+
0 (X). Thus C+

0 (X) is an ideal of C+
b (X).

Definition 3.8. [4] A proper ideal M of an ealg X is said to be a maximal ideal if
it is not contained in any other proper ideal of X.

We now consider another subealg of C+(X) and show that it is an ideal. For
this we need the following concept.

Definition 3.9. [9] Let X be a topological space and f : X → R be a function. By
support of f we define supp(f) := {x ∈ X : f(x) ̸= 0}.
Theorem 3.10. Let C+

c (X) := {f ∈ C+(X) : supp(f) is compact in X}. Then
C+

c (X) is an ideal of C+(X).
Proof. We fist show that C+

c (X) is a subealg of C+(X). For this let f, g ∈ C+
c (X)

and α ∈ K. Then αf + g, f ∗ g ∈ C+(X), since C+(X) is an ealg. Now supp(αf) =
{x ∈ X : |α|f(x) ̸= 0}. If α = 0 then (αf)(x) = 0, ∀x ∈ X. So supp(αf) = ∅,
a compact subset in X trivially. If α ̸= 0, then supp(f) = {x ∈ X : f(x) ̸= 0} =
{x ∈ X : |α|f(x) ̸= 0} = supp(αf). So f ∈ C+

c (X) ⇒ αf ∈ C+
c (X).

We first note that f(x) + g(x) ̸= 0 ⇒ f(x) ̸= 0 or g(x) ̸= 0 [∵ f, g both are
non-negative] =⇒ supp(f + g) ⊆ supp(f) ∪ supp(g). Since supp(f) and supp(g)
both are compact and supp(f + g) = {x ∈ X : f(x) + g(x) ̸= 0} is a closed subset
of the compact set supp(f) ∪ supp(g), it follows that supp(f + g) is compact in
X. Thus f, g ∈ C+

c (X) ⇒ f + g ∈ C+
c (X).
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Now f(x)g(x) ̸= 0 =⇒ f(x) ̸= 0 and g(x) ̸= 0. Therefore {x ∈ X : f(x)g(x) ̸=
0} ⊆ {x ∈ X : f(x) ̸= 0} ∩ {x ∈ X : g(x) ̸= 0}. Consequently, supp(f ∗ g) =
{x ∈ X : f(x)g(x) ̸= 0} ⊆ {x ∈ X : f(x) ̸= 0} ∩ {x ∈ X : g(x) ̸= 0} = supp(f) ∩
supp(g). Since supp(f) and supp(g) are compact sets, it follows that supp(f ∗ g)
is a compact subset in X. Thus f, g ∈ C+

c (X) ⇒ f ∗ g ∈ C+
c (X).

Clearly, θX ∈ C+
c (X), since supp(θX) = ∅, a trivial compact set in X. Also

[C+
c (X)]0 =

{
θX

}
= [C+(X)]0 ∩ C+

c (X) and for any f ∈ C+
c (X), θX ≤ f .

Therefore by Note 2.6, C+
c (X) is a subealg of C+(X).

We now show that C+
c (X) is an ideal of C+(X). For this let h ∈ C+(X) and

f ∈ C+
c (X). Since C+(X) is an ealg, we have f ∗ h, h ∗ f ∈ C+(X). Now by above

discussion, supp(h ∗ f) ⊆ supp(h) ∩ supp(f) ⊆ supp(f). So supp(h ∗ f) being a
closed subset of the compact set supp(f), is also a compact subset in X. Thus
h ∗ f ∈ C+

c (X). Similarly we can show that f ∗ h ∈ C+
c (X).

Now let h ∈↓ C+
c (X). Then ∃ f ∈ C+

c (X) such that h ≤ f =⇒ h(x) ≤ f(x),
∀x ∈ X. So supp(h) = {x ∈ X : h(x) ̸= 0} ⊆ {x ∈ X : f(x) ̸= 0} = supp(f).
Since supp(h) is a closed subset of the compact set supp(f) [∵ f ∈ C+

c (X)], we
have h ∈ C+

c (X). Thus ↓ C+
c (X) = C+

c (X).
Therefore according to the Definition 3.1, C+

c (X) is an ideal of C+(X).

Remark 3.11. (i) Let f ∈ C+
c (X). Then supp(f) = K (say) is compact in X.

So f(x) = 0, ∀x /∈ K. Therefore, for any ϵ > 0 we have |f(x)| = 0 < ϵ, ∀x /∈ K.
This justifies that f ∈ C+

0 (X). Thus C+
c (X) ⊆ C+

0 (X).
(ii) From above discussion we have the following hierarchy for any topological

space X :
C+

c (X) ⊆ C+
0 (X) ⊆ C+

b (X) ⊆ C+(X)
Here each smaller space is a subealg of the larger one [by Remark 2.7].

(iii) If X is a compact topological space then clearly, C+
c (X) = C+

0 (X) =
C+

b (X) = C+(X).
(iv) Let X = [0,∞) equipped with the subspace topology inherited from the real

line R. Let f(x) :=

{
1
x
, if x ≥ 1

x, if 0 ≤ x < 1

Then f ∈ C+
0 (X)∖ C+

c (X). Next consider g(x) := 1,∀x ∈ X. Then g ∈ C+
b (X)∖

C+
0 (X). If we consider the function h(x) := x2,∀x ∈ X then h ∈ C+(X)∖C+

b (X).
(v) Since C+

c (X) is an ideal of C+(X) [by Theorem 3.10] and C+
c (X) ⊆ C+

b (X) ⊆
C+(X), we can say that C+

c (X) is an ideal of C+
b (X) also. Thus in view of the

Theorem 3.7, if C+
c (X) ⫋ C+

0 (X) ⫋ C+
b (X) then C+

c (X) is not a maximal ideal.
We now construct some more ideals of C+(X).

Theorem 3.12. Let X be a topological space and A ⊆ X. Then
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IA := {f ∈ C+(X) : f(a) = 0,∀ a ∈ A} is an ideal of C+(X). Moreover IA is
proper if A ̸= ∅.
Proof. Let f, g ∈ IA. Then f(x) = 0 = g(x),∀x ∈ A. Now (f + g)(x) =
f(x) + g(x) = 0, ∀x ∈ A ⇒ f + g ∈ IA. For any α ∈ K we have (αf)(x) =
|α|f(x) = 0, ∀x ∈ A ⇒ α · f ∈ IA. Again (f ∗ g)(x) = f(x)g(x) = 0, ∀x ∈ A. Thus
f ∗ g ∈ IA.

Clearly θX ∈ IA. So [IA]0 = {θX} = [C+(X)]0 ∩ IA. Also for any f ∈ IA we
have f ≥ θX. Thus in view of Note 2.6, IA is a subealg of C+(X).

Now let f ∈ C+(X) and g ∈ IA. Since (f ∗ g)(a) = f(a)g(a) = 0,∀ a ∈ A, we
have f ∗ g, g ∗ f ∈ IA.

Again for ϕ ∈↓ IA, ϕ ≤ f for some f ∈ IA ⇒ ϕ(x) ≤ f(x), ∀x ∈ X. Since
f(x) = 0, ∀x ∈ A and ϕ(x) ≥ 0,∀x ∈ X [∵ ϕ ∈ C+(X)] we have ϕ(x) = 0, for all
x ∈ A =⇒ ϕ ∈ IA. Thus ↓ IA = IA. Therefore according to the Definition 3.1, IA
is an ideal of C+(X).

Let f(x) := 1,∀x ∈ X. If A ̸= ∅ then f ∈ C+(X)∖ IA. Clearly I∅ = C+(X).

Proposition 3.13. Let A ⊆ B ⊆ X. Then IA ⊇ IB.
Proof. Immediate from the construction of IA.

Note 3.14. For any c ∈ X we define Ic := I{c} = {f ∈ C+(X) : f(c) = 0}.
Theorem 3.15. Let X be a compact topological space and F be a maximal ideal
of C+(X) such that for any finite subset {f1, . . . , fn} ⊆ F ,∃ p ∈ X such that
fi(p) = 0,∀ i = 1, . . . , n. Then ∃ c ∈ X such that F = Ic.
Proof. For f ∈ F define Z(f) := {x ∈ X : f(x) = 0}. Then each Z(f) is
closed [∵ f is continuous]. By given hypothesis, for any finite subset {f1, . . . , fn} ⊆

F ,∃ p ∈ X such that fi(p) = 0,∀ i = 1, . . . , n. This implies that p ∈
n⋂

i=1

Z(fi). This

justifies that {Z(f) : f ∈ F} is a family of closed sets having finite intersection

property. So X being compact,
⋂
f∈F

Z(f) ̸= ∅. Define A :=
⋂
f∈F

Z(f)

Let f ∈ F . Then A ⊆ Z(f) =⇒ f(A) = {0} =⇒ f ∈ IA. Thus F ⊆ IA.
Again by Theorem 3.12, IA is a proper ideal of C+(X). So maximality of F implies
that F = IA.

Let c ∈ A and if possible let A contains more points other than c. Then
F = IA ⫋ Ic [By Proposition 3.13]. This contradicts the maximality of F , since
Ic is a proper ideal of C+(X) [by Theorem 3.12 and Note 3.14]. So A = {c}.
Therefore F = Ic.
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