INTUITIONISTIC FUZZY ASPECTS OF MULTIPLICATION N-GROUPS

Md Nazir Hussain, Navalakhi Hazarika* and Anuradha Devi**

Department of Mathematics, Bilasipara College, Dhubri - 783348, Assam, INDIA

E-mail : nazirh328@gmail.com
*Department of Mathematics, GL Choudhury College, Barpeta - 781315, Assam, INDIA

E-mail : navalakhmi@gmail.com
**The Assam Royal Global University,
Department of Mathematics, Betkuchi, Guwahati - 781035, Assam, INDIA

E-mail : devianuradha09@gmail.com
(Received: Feb. 08, 2023 Accepted: Aug. 20, 2023 Published: Aug. 30, 2023)

Abstract

Intuitionistic fuzzy (IF) sets were first put forward by K. Atanassov as a generalised notation for fuzzy sets in 1983. The concepts of intuitionistic fuzzy near rings, intuitionistic fuzzy N-groups, intuitionistic fuzzy N-subgroups, intuitionistic fuzzy ideals of N-group are described by P. Saikia, L. K. Barthakur and H. K. Saikia in $[10,11]$. Fuzzy distributive modules are studied by Sh. B. Semeein and I. M. A. Hadi in [4]. Intuitionistic fuzzy multiplication modules are studied by P. K. Sharma in [13]. We extend the notion of intuitionistic fuzzy multiplication modules to intuitionistic fuzzy multiplication N-groups. Here, we define intuitionistic fuzzy multiplication N-group and some basic definitions that are needed in this sequel. The relations ship of multiplication N-groups, intuitionistic fuzzy multiplication N-groups, $D N$-groups and intuitionistic fuzzy $D N$-groups are also studied.

Keywords and Phrases: Near rings, N - groups, $D N$-groups, multiplication $D N$ -
groups, intuitionistic fuzzy multiplication N-groups.
2020 Mathematics Subject Classification: 16Y30, 08A72, 03F55.

1. Preliminaries

In this study, E is taken into account as the unitary left N-group and N is thought of as a zero symmetric commutative right near ring with unity. The basic concepts used in this paper are available in [2, 11]. We defined some of the definitions and results that are needed in this sequel. Throughout this paper \wedge and \vee denote maximum and minimum in the unit interval $[0,1]$ and in general $\gamma, \lambda \in[0,1]$ with $\gamma+\lambda \leq 1$. Here, we use IF to mean intuitionistic fuzzy and the symbols $\leq_{N}, \leq_{I F N}, \unlhd_{N}, \triangleleft$ and $\triangleleft_{I F}$ are used to mean N-subgroup, intuitionistic fuzzy N-subgroup, normal N-group, ideal and intuitionistic fuzzy ideal respectively.

Definition 1.1. [10] If the following standards are satisfied, a nonempty set N combined with the binary operations "+" and "." is referred to as right near ring. i. $(N,+)$ is a group(not necessarily abelian).
ii. $(N,$.$) is a semi group.$
iii. $(p+b) c=p c+b c, \forall p, b, c \in N$.

Definition 1.2. [10] An additive group $(E,+)$ is referred to be a left N-group, if \exists a map $N \times E \rightarrow E,(n, u) \rightarrow n u$ in which the following standards are satisfiedi. $(m+n) u=m u+n u$. ii. $(m n) u=m(n u)$.

It is to be noted that N is itself an N-group over itself. If for $1 \in N$ such that $1 . u=u \forall u \in E$, then E is called an unitary N-group.
Definition 1.3. [10] In the event that A is a subgroup of $(E,+)$ and $N A \subseteq A$ for any $A \subseteq E$, then A is referred to as an N-subgroup of E.

Definition 1.4. [10] If F is a normal subgroup of $(E,+)$ with na $\in F, \forall n \in$ $N, a \in F$, then F is referred to be a normal N-subgroup of E.
Definition 1.5. [6] If D is a normal subgroup of $(E,+)$ such that $n(a+e)-n e \in D$, $\forall n \in N, a \in D, e \in E$, then D is referred to as an ideal of E.
Definition 1.6. [11] The object $A=<\phi_{A}, \psi_{A}>=\left\{<s, \phi_{A}(s), \psi_{A}(s)>\mid s \in S\right\}$ is referred to as an intuitionistic fuzzy (IF) set on a non empty set S, where ϕ_{A} and ψ_{A} are fuzzy subset of S such that $0 \leq \phi_{A}(s)+\psi_{A}(s) \leq 1$.

Some Operations on IF Sets-[11]
Let $M=<\phi_{M}, \psi_{M}>$ and $B=<\phi_{B}, \psi_{B}>$ be IF sets on S. Then
i. $M \subseteq B \Leftrightarrow \phi_{M} \leq \phi_{B}, \psi_{M} \geq \psi_{B}$.
ii. $M=B \Leftrightarrow \phi_{M}=\phi_{B}, \psi_{M}=\psi_{B}$.
iii. $M^{c}=\bar{M}=<\psi_{M}, \phi_{M}>$.
iv. $M \cup B=<\phi_{M} \vee \phi_{B}, \psi_{M} \wedge \psi_{B}>$.
v. $M \cap B=<\phi_{M} \wedge \phi_{B}, \psi_{M} \vee \psi_{B}>$.
vi. $M+B=<\phi_{M+B}, \psi_{M+B}>$, where $\phi_{M+B}(x)=\vee\left\{\phi_{M}(p) \wedge \phi_{B}(m): p, m \in\right.$ $S, x=p+m\}$ and $\psi_{M+B}(x)=\wedge\left\{\psi_{M}(p) \vee \psi_{B}(m): p, m \in S, x=p+m\right\}, \forall x \in S$. vii. $M . B=M B=<\phi_{M B}, \psi_{M B}>$, where $\phi_{M B}(x)=\vee\left\{\phi_{M}(p) \wedge \phi_{B}(m): p, m \in\right.$ $S, x=p m\}$ and $\psi_{M B}(x)=\wedge\left\{\psi_{M}(p) \vee \psi_{B}(m): p, m \in S, x=p m\right\}, \forall x \in S$.
Note that if M and H are IF sets on S, then $M^{c}, M \cup H, M \cap H, M+H, M H$, are all IF sets on S.
Definition 1.7. [12] Let $P=<\phi_{P}, \psi_{P}>$ be an IF sets in E. Then (γ, λ)-cut of P is referred by-
${ }^{(\gamma, \lambda)} P=\left\{m \in E: \phi_{P}(m) \geq \gamma, \psi_{P}(m) \leq \lambda\right\}$. ${ }^{(\gamma, \lambda)} E=\left\{{ }^{(\gamma, \lambda)} A: A=<\phi_{A}, \psi_{A}>\leq_{I F N} E\right\}$.
Note that ${ }^{(\gamma, \lambda)} P,{ }^{(\gamma, \lambda)} E \subseteq E$.
Definition 1.8. If $A \leq_{N} E$, then $(A: E)=\{n \in N: n E \subseteq A\}$.
Lemma 1.1. If $Z \leq_{N} E$, then $(Z: E) E \subseteq Z$.
Proof. Let $n \in(Z: E)$. Then $n E \subseteq Z$ and so $(Z: E) E \subseteq Z$.
Definition 1.9. [12] An IF sets $A=<\phi_{A}, \psi_{A}>$ in N is called IF N-subgroup of $N\left(A \leq_{I F N} N\right)$ if i. $\phi_{A}(p-m) \geq \phi_{A}(p) \wedge \phi_{A}(m)$. ii. $\phi_{A}(n p) \geq \phi_{A}(p)$. iii. $\psi_{A}(p-m) \leq \psi_{A}(p) \vee \psi_{A}(m)$. iv. $\psi_{A}(n p) \leq \psi_{A}(p), \forall p, m, n \in N$.

Definition 1.10. An IF sets $A=<\phi_{A}, \psi_{A}>$ in E is called IF N-subgroup of $E\left(A \leq_{I F N} E\right)$ if
i. $\phi_{A}(p-m) \geq \phi_{A}(p) \wedge \phi_{A}(m)$. ii. $\phi_{A}(n p) \geq \phi_{A}(p)$. iiii. $\psi_{A}(p-m) \leq \psi_{A}(p) \vee \psi_{A}(m)$. iv. $\psi_{A}(n p) \leq \psi_{A}(p), \forall p, m \in E, n \in N$.

Definition 1.11. [12] An IF sets $A=<\phi_{A}, \psi_{A}>$ in N is called IF ideal of $N\left(A \triangleleft_{I F} N\right)$ if
i. $\phi_{A}(p-m) \geq \phi_{A}(p) \wedge \phi_{A}(m)$. ii. $\phi_{A}(n p) \geq \phi_{A}(p)$. iii. $\phi_{A}(m+p-m) \geq \phi_{A}(p)$. iv.
$\phi_{A}(n(p+m)-n p) \geq \phi_{A}(m)$. v. $\psi_{A}(p-m) \leq \psi_{A}(p) \vee \psi_{A}(m)$. vi. $\psi_{A}(n p) \leq \psi_{A}(p)$. vii. $\psi_{A}(m+p-m) \leq \psi_{A}(p)$. viii. $\psi_{A}(n(p+m)-n p) \leq \psi_{A}(m), \forall p, m, n \in N$.

Definition 1.12. [11] An IF sets $A=<\phi_{A}, \psi_{A}>$ in E is called IF ideal of $E\left(A \triangleleft_{I F} E\right)$ if
i. $\phi_{A}(p-m) \geq \phi_{A}(p) \wedge \phi_{A}(m)$. ii. $\phi_{A}(n p) \geq \phi_{A}(p)$. iii. $\phi_{A}(m+p-m) \geq \phi_{A}(p)$. iv. $\phi_{A}(n(p+m)-n p) \geq \phi_{A}(m)$. v. $\psi_{A}(p-m) \leq \psi_{A}(p) \vee \psi_{A}(m)$. vi. $\psi_{A}(n p) \leq \psi_{A}(p)$.
vii. $\psi_{A}(m+p-m) \leq \psi_{A}(p)$. viii. $\psi_{A}(n(p+m)-n p) \leq \psi_{A}(m), \forall p, m \in E, n \in N$.

Proposition 1.1. If $L=<\phi_{L}, \psi_{L}>\leq_{I F N} E$, then ${ }^{(\gamma, \lambda)} L \leq_{N} E$.
Proof. By definition, ${ }^{(\gamma, \lambda)} L$ is a subset of E. For any $n \in N, s, y \in{ }^{(\gamma, \lambda)} L$ we have, $\phi_{L}(s), \phi_{L}(y) \geq \gamma$ and $\psi_{L}(s), \psi_{L}(y) \leq \lambda . \therefore \phi_{L}(n s) \geq \phi_{L}(s) \geq \gamma[$ since L is an IF N subgroup] and $\psi_{L}(n s) \leq \psi_{L}(s) \leq \lambda$. Also, $n s \in E . \therefore n s \in{ }^{(\gamma, \lambda)} L$. Also, $s-y \in E$ such that $\phi_{L}(s-y) \geq \phi_{L}(s) \wedge \phi_{L}(y) \geq \gamma \wedge \gamma=\gamma$ and $\psi_{L}(s-y) \leq \psi_{L}(s) \vee \psi_{L}(y) \leq$ $\lambda \vee \lambda=\lambda$. So, $s-y \in{ }^{(\gamma, \lambda)} L$. This shows that ${ }^{(\gamma, \lambda)} L$ is an N-subgroup of E.

2. Intuitionistic Fuzzy Multiplication N-groups

Definition 2.1. An IF point $d_{(\gamma, \lambda)}$ of a nonempty set K, is predicted as $\left\{d_{(\gamma, \lambda)}\right\}=<\phi_{d_{(\gamma, \lambda)}}, \psi_{d_{(\gamma, \lambda)}}>$,
where $d \in K, \phi_{d_{(\gamma, \lambda)}}(h)=\left\{\begin{array}{lc}\gamma, & \text { ifh }=d \\ 0, & \text { otherwise }\end{array}\right.$ and $\psi_{d_{(\gamma, \lambda)}}(h)=\left\{\begin{array}{cc}\lambda, & \text { ifh }=d \\ 1, & \text { otherwise. }\end{array}\right.$
Note that if for any IF set $A,\left\{d_{(\gamma, \lambda)}\right\} \subseteq A$, then it is predicted as $d_{(\gamma, \lambda)} \in A$.
Definition 2.2. If $Y \subseteq X$ (non empty), then characteristic function of Y is a $I F$ set on X and defined by $\chi Y=<\phi_{\chi Y}, \psi_{\chi Y}>$, where
$\phi_{\chi Y}(s)=\left\{\begin{array}{lc}1, & \text { if } s \in Y \\ 0, & \text { otherwise }\end{array}\right.$ and $\psi_{\chi Y}(s)=\left\{\begin{array}{lc}0, & \text { if } s \in Y \\ 1, & \text { otherwise } .\end{array}\right.$
Definition 2.3. Let K, B, C be $I F$ sets on E and C be $I F$ set on N. Then $(K: B)=\{D: D$ is IF set on N such that $D B \subseteq K\}$ i.e $(K: B)=<$ $\phi_{(K: B)}, \psi_{(K: B)}>$, where $\phi_{(K: B)}(n)=\left\{\phi_{D}(n): D\right.$ is an IF set on N such that $D B \subseteq K\}$ and $\psi_{(K: B)}(n)=\left\{\psi_{D}(n): D\right.$ is an IF set on N such that $\left.D B \subseteq K\right\}$
$(K: C)=\{F: F$ is IF set on E such that $C F \subseteq K\}$ i.e $(K: C)=<$ $\phi_{(K: C)}, \psi_{(K: C)}>$, where $\phi_{(K: C)}(n)=\left\{\phi_{F}(n): F\right.$ is an IF set on E such that $C F \subseteq K\}$ and $\psi_{(K: C)}(n)=\left\{\psi_{F}(n): F\right.$ is an IF set on E such that $\left.C F \subseteq K\right\}$. If $K \leq_{I F N} E$, then $(K: \chi E)=\left\{D: D \leq_{I F N} N\right.$ such that $\left.D \chi E \subseteq K\right\}$.

Lemma 2.1. Let Z, K be $I F$ sets on E and C be $I F$ set on N. Then (i) $(Z: K) K \subseteq Z$.
(ii) $C(Z: C) \subseteq Z$.
(iii) $C K \subseteq Z \Leftrightarrow C \subseteq(Z: K) \Leftrightarrow K \subseteq(Z: C)$.

Proof. (i) Let $Z=<\phi_{Z}, \psi_{Z}>, K=<\phi_{K}, \psi_{K}>$ be IF sets on E and $C=<$ $\phi_{C}, \psi_{C}>$ be IF set on N. Then $(Z: K) K=<\phi_{(Z: K) K}, \psi_{(Z: K) K}>$, where $\phi_{(Z: K) K}(x)=\vee\left\{\phi_{(Z: K)}(n) \wedge \phi_{K}(y): x=n y, n \in N, y \in E\right\}$ and $\psi_{(Z: K) K}(x)=$ $\wedge\left\{\psi_{(Z: K)}(n) \vee \psi_{K}(y): x=n y, n \in N, y \in E\right\}$. But $\phi_{(Z: K)}(n)=\left\{\phi_{D}(n): D\right.$ is an IF set on N such that $D K \subseteq Z\} . \therefore \phi_{(Z: K) K}(x)=\vee\left\{\phi_{D}(n) \wedge \phi_{K}(y): D\right.$ is an IF set on N such that $D K \subseteq Z, x=n y, n \in N, y \in E\} \leq \vee\left\{\phi_{D K}(x): D\right.$ is a IF set on N such that $D K \subseteq Z\} \leq \phi_{Z}(x), \forall x \in E$. Similarly, $\psi_{(Z: K) K}(x) \geq \psi_{Z}(x)$. Thus
$(Z: K) K \subseteq Z$.
(ii) We have, $C(Z: C)=<\phi_{C(Z: C)}, \psi_{C(Z: C)}>$, where $\phi_{C(Z: C)}(x)=\vee\left\{\phi_{C}(n) \wedge\right.$ $\left.\phi_{(Z: C)}(y): x=n y, n \in N, y \in E\right\}$ and $\psi_{C}(x)=\wedge\left\{\psi_{C}(n) \vee \psi_{(z: C)}(y): x=\right.$ $n y, n \in N, y \in E\}$. But $\phi_{(Z: C)}(n)=\left\{\phi_{D}(n): D\right.$ is an IF set on E such that $C D \subseteq Z\} . \therefore \phi_{C(Z: C)}(x)=\vee\left\{\phi_{C}(n) \wedge \phi_{D}(y): D\right.$ is an IF set on E such that $C D \subseteq Z, x=n y, n \in N, y \in E\} \leq \vee\left\{\phi_{C D}(x): D\right.$ is a IF set on E such that $C D \subseteq Z\} \leq \phi_{Z}(x)$. Similarly, $\psi_{C(Z: C)}(x) \geq \psi_{Z}$. Thus $C(Z: C) \subseteq Z$.
(iii) It is clear from the definition.

Definition 2.4. An N-group E is called IF multiplication N-group iff for each A $\leq_{I F N} E, \exists C \triangleleft_{I F} N$ such that $A=C . \chi E$. We denote it by $A=C \chi E$.
Lemma 2.2. If $Z=<\phi_{Z}, \psi_{Z}>\leq_{I F N} E$, then $(Z: \chi E) \triangleleft_{I F} N$.
Proof. Let $Z=<\phi_{Z}, \psi_{Z}>\leq_{I F N} E$. Then for any $u, h, n \in N$ we have, $\phi_{(Z: \chi E)}(u-h)=\left\{\phi_{D}(u-h): D \leq_{I F N} N\right.$ such that $\left.D \chi E \subseteq Z\right\} \geq\left\{\phi_{D}(u) \wedge \phi_{D}(h): D\right.$ $\leq_{I F N} N$ such that $\left.D \chi E \subseteq Z\right\}=\phi_{(Z: \chi E)}(u) \wedge \phi_{(Z: \chi E)}(h) \therefore \phi_{(Z: \chi E)}(u-h) \geq$ $\phi_{(Z: \chi E)}(u) \wedge \phi_{(Z: \chi E)}(h)$. Similarly, $\psi_{(Z: \chi E)}(u-h) \leq \psi_{(Z: \chi E)}(u) \wedge \psi_{(Z: \chi E)}(h)$. Now, $\phi_{(Z: \chi E)}(n u)=\left\{\phi_{D}(n u): D \leq_{I F N} N\right.$ such that $\left.D \chi E \subseteq Z\right\} \geq\left\{\phi_{D}(u): D\right.$ $\leq_{I F N} N$ such that $\left.D \chi E \subseteq Z\right\}=\phi_{(Z: \chi E)}(u) . \therefore \phi_{(Z: \chi E)}(n u) \geq \phi_{(Z: \chi E)}(u)$. Similarly, $\psi_{(Z: \chi E)}(n u) \leq \psi_{(Z: \chi E)}(u)$. Since N is commutative, $h+u-h=u$ and so $\phi_{(Z: \chi E)}(h+u-h)=\phi_{(Z: \chi E)}(u)$ and $\psi_{(Z: \chi E)}(h+u-h)=\psi_{(Z: \chi E)}(u)$. Again, since N is commutative, $n(u+h)-n u=n h$ and so $\phi_{(Z: \chi E)}(n(u+h)-n u=n h) \geq$ $\phi_{(Z: \chi E)}(n h) \geq \phi_{(Z: \chi E)}(h)$. Similarly, $\psi_{(Z: \chi E)}(n(u+h)-n u=n h) \leq \psi_{(Z: \chi E)}(n h) \leq$ $\psi_{(Z: \chi E)}(h)$. Thus the result.
Theorem 2.1. E is IF multiplication N-group iff for each $u \in E \exists$ an IF ideal C of N such that $\left\{u_{(\gamma, \lambda)}\right\}=C \chi E$.
Proof. Let us suppose, for each $u \in E \exists$ an IF ideal C of N such that $\left\{u_{(\gamma, \lambda)}\right\}=$ $C \chi E$. Let $A=<\phi_{A}, \psi_{A}>\leq_{I F N} E$. Choose $\gamma, \lambda \in[0,1]$ such that $\gamma+\lambda \leq$ 1 with $\phi_{A}(u)=\gamma, \psi_{A}(u)=\lambda$. Now, for any $u \in E$ we have, $u_{(\gamma, \lambda)}(u)=<$ $\phi_{u_{(\gamma, \lambda)}}(u), \psi_{u_{(\gamma, \lambda)}}(u)>=<\gamma, \lambda>=<\phi_{A}(u), \psi_{A}(u)>=A(u) . \quad \therefore\left\{u_{(\gamma, \lambda)}\right\}=A$ $\Rightarrow\left\{u_{(\gamma, \lambda)}\right\} \subseteq A \Rightarrow C \chi E \subseteq A \Rightarrow C \subseteq(A: \chi E)$ [using lemma 2.1]. Also, $\phi_{A}(u)=\gamma=\phi_{u_{(\gamma, \lambda)}}(u)=\phi_{C \chi E}(u)=\vee\left\{\phi_{C}(n) \wedge \phi_{\chi E}\left(u^{\prime}\right): n \in N, u^{\prime} \in E, u=\right.$ $\left.n u^{\prime}\right\} \leq \vee\left\{\phi_{(A: \chi E)}(n) \wedge \phi_{\chi E}\left(u^{\prime}\right): n \in N, u^{\prime} \in E, u=n u^{\prime}\right\}=\vee\left\{\phi_{(A: \chi E) E}\left(n u^{\prime}\right): n \in\right.$ $\left.N, u^{\prime} \in E, u=n u^{\prime}\right\}=\left\{\phi_{(A: \chi E) \chi E}(u)\right\} . \therefore \phi_{A}(u) \leq\left\{\phi_{(A: \chi E) \chi E}(u)\right\}$, for all $u \in E$. Similarly, $\psi_{A}(u) \geq\left\{\psi_{(A: \chi E) \chi E}(u)\right\}$, for all $u \in E . \therefore A \subseteq(A: \chi E) \chi E$. But by lemma 2.1, $(A: \chi E) \chi E \subseteq A . \therefore A=(A: \chi E) \chi E$. Also, by lemma 2.2, $(A: \chi E)$ is an IF ideal of N. Thus E is an IF multiplication N-group.
Conversely, let E be an IF multiplication N-group. Let $A=<\phi_{A}, \psi_{A}>\leq_{I F N} E$ and $u \in E$ and $\gamma, \lambda \in[0,1]$ such that $\gamma+\lambda \leq 1$ with $\phi_{A}(u)=\gamma, \psi_{A}(u)=\lambda$. Since
E is multiplication N-group, \exists IF ideal C of N such that $A=C \chi E$. As above we have, $\left\{u_{(\gamma, \lambda)}\right\}=A$. Thus $\left\{u_{(\gamma, \lambda)}\right\}=C \chi E$.
Proposition 2.1. If $A=<\phi_{A}, \psi_{A}>$ be an IF set on E, then $(A: \chi E)=\left\{z_{(\gamma, \lambda)}\right.$: $\left.z \in\left({ }^{(\gamma, \lambda)} A: E\right), z \in N\right\}$.
Proof. Let $z \in N$ and D be IF set on N. We can choose $\gamma, \lambda \in[0,1], \gamma+\lambda \leq 1$ with $\phi_{D}(z)=\gamma, \psi_{D}(z)=\lambda$. Then $\phi_{z_{(\gamma, \lambda)}}(z)=\gamma=\phi_{D}(z), \psi_{z_{(\gamma, \lambda)}}(z)=\lambda=$ $\psi_{D}(z) . \quad \therefore\left\{z_{(\gamma, \lambda)}\right\}=D$. Let $D \chi E \subseteq A \Rightarrow D \subseteq(A: \chi E)$ [using lemma 2.1] $\Rightarrow\left\{z_{(\gamma, \lambda)}\right\} \subseteq(A: \chi E) \Rightarrow\left\{z_{(\gamma, \lambda)}\right\} \chi E \subseteq A$. Again, let $\left\{z_{(\gamma, \lambda)}\right\} \chi E \subseteq A$ $\Rightarrow D \chi E \subseteq A . \therefore\left\{z_{(\gamma, \lambda)}\right\} \chi E \subseteq A \Leftrightarrow D \chi E \subseteq A . \therefore\{D: D$ is IF set on N such that $D \chi E \subseteq A\}=\left\{z_{(\gamma, \lambda)}: z \in N,\left\{z_{(\gamma, \lambda)}\right\} \chi E \subseteq A\right\} . \quad \therefore(A: \chi E)=$ $\left\{z_{(\gamma, \lambda)}: z \in N,\left\{z_{(\gamma, \lambda)}\right\} \chi E \subseteq A\right\}$. Now, for each $u \in E$ we have, $\phi_{z_{(\gamma, \lambda)}}(u)=$ $\left\{\begin{array}{cc}\vee\left\{\phi_{z_{(\gamma, \lambda)}}(z) \wedge \phi_{\chi E}\left(u^{\prime}\right)\right\}, & u=z u^{\prime}, u^{\prime} \in E \\ 0, & \text { otherwise }\end{array}\right.$
Since $\phi_{z_{(\gamma, \lambda)}}(z)=\gamma$ and $\phi_{\chi E}\left(u^{\prime}\right)=1$, therefore
$\phi_{z_{(\gamma, \lambda)} \chi E}(u)=\left\{\begin{array}{cc}\vee\{\gamma \wedge 1\}, & u=z u^{\prime}, u^{\prime} \in E \\ 0, & \text { otherwise }\end{array}=\left\{\begin{array}{cc}\gamma, & u=z u^{\prime}, u^{\prime} \in E \\ 0, & \text { otherwise }\end{array}\right.\right.$
Similarly, $\psi_{z_{(\gamma, \lambda)} \chi E}(u)=\left\{\begin{array}{lc}\lambda, & u=z u^{\prime}, u^{\prime} \in E \\ 1, & \text { otherwise }\end{array}\right.$
Now, $\left\{z_{(\gamma, \lambda)}\right\} \chi E \subseteq A \Rightarrow \phi_{z_{(\gamma, \lambda)} \chi E}(u) \leq \phi_{A}(u)$ and $\psi_{z_{(\gamma, \lambda)} \chi E}(u) \geq \psi_{A}(u)$, for $u \in E$ $\Rightarrow \phi_{A}\left(z u^{\prime}\right) \geq \gamma$ and $\psi_{A}\left(z u^{\prime}\right) \leq \lambda$, for $z \in N, u^{\prime} \in E . \therefore(A: \chi E)=\left\{z_{(\gamma, \lambda)}: z \in\right.$ $N, \phi_{A}\left(z u^{\prime}\right) \geq \gamma$ and $\left.\psi_{A}\left(z u^{\prime}\right) \leq \lambda, u^{\prime} \in E\right\}=\left\{z_{(\gamma, \lambda)}: z \in N, z u^{\prime} \in{ }^{(\gamma, \lambda)} A, u^{\prime} \in E\right\}=$ $\left\{z_{(\gamma, \lambda)}: z \in N, z E \subseteq{ }^{(\gamma, \lambda)} A\right\}=\left\{z_{(\gamma, \lambda)}: z \in N, z \in\left({ }^{(\gamma, \lambda)} A: E\right)\right\}$.
Lemma 2.3. If $z \in E$, then $z_{(\gamma, \lambda)} \in \chi E$.
Proof. For $y \in E$ we get, $\left\{z_{(\gamma, \lambda)}\right\}=<\phi_{z_{(\gamma, \lambda)}}, \psi_{z_{(\gamma, \lambda)}}>$, where $\phi_{z_{(\gamma, \lambda)}}(y)=\left\{\begin{array}{cc}\gamma, & \text { ify }=z \\ 0, & \text { otherwise }\end{array}\right.$ and $\psi_{z_{(\gamma, \lambda)}}(y)=\left\{\begin{array}{cc}\lambda, & \text { ify }=z \\ 0, & \text { otherwise }\end{array}\right.$
$\therefore z_{(\gamma, \lambda)}(y)=\left\{\begin{array}{ll}<\gamma, \lambda>, & \text { ify }=z \\ <0,1>, & \text { otherwise }\end{array}\right.$ and $\chi E(y)= \begin{cases}<1,0>, & \text { ify } \in E \\ <0,1>, & \text { otherwise }\end{cases}$
Since $0 \leq \gamma, \lambda \leq 1$, we get $\left\{z_{(\gamma, \lambda)}\right\} \subseteq \chi E$ and so $z_{(\gamma, \lambda)} \in \chi E$.
Lemma 2.4. If $A \leq_{N} E$, then $(A: E) \triangleleft N$.
Proof. Since $(A: E)=\{u \in N: u E \subseteq A\},(A: E) \subseteq N$. Now, $u_{1}, u_{2} \in(A: E)$ and $u \in N \Rightarrow u_{1} E \subseteq A, u_{2} E \subseteq A$. Now, for any $e \in E$ we have, $\left(u_{1}-u_{2}\right) e=$ $u_{1} e-u_{2} e$. Since $A \leq_{N} E, u_{1}-u_{2} \in A . \therefore\left(u_{1}-u_{2}\right) e \in A \Rightarrow\left(u_{1}-u_{2}\right) E \subseteq A$ $\Rightarrow\left(u_{1}-u_{2}\right) \in(A: E)$. Since N is commutative $\left(u u_{1}\right) e=\left(u_{1} u\right) e=u_{1}(u e) \in$ $u_{1} E \subseteq A[$ since $u e \in E] . \therefore\left(u u_{1}\right) E \subseteq A \Rightarrow u u_{1} \in(A: E)$. Since N is commutative $u_{1} u \in(A: E)$. This proves the result.

Proposition 2.2. E is an multiplication N-group iff every $Z \leq_{N} E$ is structured like $Z=(Z: E) E$.
Proof. Let $n \in(Z: E)$. Then $n E \subseteq Z$ and $n \in N \Rightarrow(Z: E) E \subseteq Z$. Since E is a multiplication N-subgroup, $Z=I E$, for some $I \triangleleft N$. Now, $I E=Z$ $\Rightarrow I E \subseteq Z \Rightarrow I \subseteq(Z: E)$. Again, $(Z: E) \subseteq N$ and $Z \subseteq I E \Rightarrow Z \subseteq(Z: E) E$. $\therefore Z=(Z: E) E$. Conversely, let $Z=(Z: E) E$. Since by lemma 2.4, $(Z: E)$ $\triangleleft N$, therefore Z is multiplication N-subgroup.
Proposition 2.3. If E is an multiplication N-group, then for every $K=<$ $\phi_{K}, \psi_{K}>\leq_{I F N} E,{ }^{(\gamma, \lambda)} K=\left({ }^{(\gamma, \lambda)} K: E\right) E$.
Proof. Since $K=<\phi_{K}, \psi_{K}>\leq_{I F N} E$, by proposition 1.1, ${ }^{(\gamma, \lambda)} K \leq_{N} E$. Since E is multiplication, $\left.{ }^{(\gamma, \lambda)} K=(\gamma, \lambda) K: E\right) E$.
Lemma 2.5. Given a non-empty set K, if $z_{(\gamma, \lambda)} \in K$, then $z \in{ }^{(\gamma, \lambda)} K$.
Proof. $z_{(\gamma, \lambda)} \in K \Rightarrow\left\{z_{(\gamma, \lambda)}\right\} \subseteq K . \therefore \phi_{z_{(\gamma, \lambda)}} \leq \phi_{K}, \psi_{z_{(\gamma, \lambda)}} \geq \psi_{K} . \therefore \phi_{K}(z) \geq$ $\phi_{z_{(\gamma, \lambda)}}(z)=\gamma$ and $\psi_{K}(z) \leq \psi_{z_{(\gamma, \lambda)}}(z)=\lambda . \therefore z \in{ }^{(\gamma, \lambda)} K$.
Lemma 2.6. If $u \in E, s \in N$, then $(s u)_{(\gamma, \lambda)}=s_{(\gamma, \lambda)} u_{(\gamma, \lambda)}$.
Proof. For any $l \in E$ we have, $\left\{(s u)_{(\gamma, \lambda)}\right\}(l)=<\phi_{(s u)_{(\gamma, \lambda)}}(l), \psi_{(s u)_{(\gamma, \lambda)}}(l)>$
$=\left\{\begin{array}{l}<\gamma, \lambda>, \quad \text { ifl }=\text { su } \\ <0,1>, \\ \text { otherwise }\end{array}\right.$ and $\left\{s_{(\gamma, \lambda)} u_{(\gamma, \lambda)}\right\}(l)=<\phi_{s_{(\gamma, \lambda)} u_{(\gamma, \lambda)}}(l), \psi_{s_{(\gamma, \lambda)} u_{(\gamma, \lambda)}}(l)>$.
Now, $\phi_{s_{(\gamma, \lambda)} u_{(\gamma, \lambda)}}(l)=\vee\left\{\phi_{s_{(\gamma, \lambda)}\left(s^{\prime}\right)} \wedge \psi_{u_{(\gamma, \lambda)}\left(u^{\prime}\right)}, l=s^{\prime} u^{\prime}, s^{\prime} \in N, u^{\prime} \in E\right\}$. If $s=s^{\prime}, u=$ u^{\prime}, then $\phi_{s_{(\gamma, \lambda)} u_{(\gamma, \lambda)}}(l)=\gamma$. Similarly, if $l=s u$ then $\psi_{s_{(\gamma, \lambda)} u_{(\gamma, \lambda)}}(l)=\lambda$. Again if $s \neq s^{\prime}, l \neq l^{\prime}$ then $\phi_{s_{(\gamma, \lambda)} u_{(\gamma, \lambda)}}(l)=0$ and $\psi_{s_{(\gamma, \lambda)} u_{(\gamma, \lambda)}}(l)=1 . \therefore\left\{s_{(\gamma, \lambda)} u_{(\gamma, \lambda)}\right\}(l)=$ $\left\{\begin{array}{cc}\langle\gamma, \lambda\rangle, & \text { ifl }=s u \\ \langle 0,1\rangle, & \text { otherwise }\end{array} \quad \therefore(s u)_{(\gamma, \lambda)}=s_{(\gamma, \lambda)} u_{(\gamma, \lambda)}\right.$
Lemma 2.7. If $B \leq_{N} E$, then $\chi B \leq_{I F N} E$.
Proof. Let $u, z \in E$ and $n \in N$. We have, $\chi B=<\phi_{\chi B}, \psi_{\chi B}>$. If $u, z \in B$, then $u-z \in B[$ since B is subgroup of $(E,+)]$. So, $\phi_{\chi B}(u)=1, \phi_{\chi B}(z)=$ $1, \phi_{\chi B}(u-z)=1 . \therefore \phi_{\chi B}(u-z)=1 \wedge 1=\phi_{\chi B}(u) \wedge \phi_{\chi B}(z)$. If $u, z \notin B$, then either $u-z \in B$ or $u-z \notin B$. If $u-z \in B$, then $\phi_{\chi B}(u)=0, \phi_{\chi B}(z)=$ $0, \phi_{\chi B}(u-z)=1$ and so $\phi_{\chi B}(u-z)>\phi_{\chi B}(u) \wedge \phi_{\chi B}(z)$. If $u-z \notin B$, then $\phi_{\chi B}(u)=0, \phi_{\chi B}(z)=0, \phi_{\chi B}(u-z)=0 \therefore \therefore \phi_{\chi B}(u-z)=0 \wedge 0=\phi_{\chi B}(u) \wedge \phi_{\chi B}(z)$. If $u \in B$ but $z \notin B$, then $u-z \notin B$ and so $\phi_{\chi B}(u)=1, \phi_{\chi B}(z)=0, \phi_{\chi B}(u-z)=0$. $\therefore \phi_{\chi B}(u-z)=1 \wedge 0=\phi_{\chi B}(u) \wedge \phi_{\chi B}(z)$. Again if $u \notin B$ but $z \in B$, then $u-z \notin B$ and so $\phi_{\chi B}(u)=0, \phi_{\chi B}(z)=1, \phi_{\chi B}(u-z)=0 . \therefore \phi_{\chi B}(u-z)=$ $0 \wedge 1=\phi_{\chi B}(u) \wedge \phi_{\chi B}(z) . \therefore \phi_{\chi B}(u-z) \geq \phi_{\chi B}(u) \wedge \phi_{\chi B}(z)$, for $u, z \in E$. Similarly, $\psi_{\chi B}(u-z) \leq \psi_{\chi B}(u) \vee \psi_{\chi B}(z)$, for $u, z \in E$. Now, if $u \in B$, then $n u \in B$ and so $\phi_{\chi B}(u)=1, \phi_{\chi B}(n u)=1 . \therefore \phi_{\chi B}(n u)=\phi_{\chi B}(u)$, if $u \in B$. Also, if
$u \notin B$, then either $n u \in B$ or $n u \notin B$. So, if $u \notin B$ and $n u \in B$, then $\phi_{\chi B}(u)=0, \phi_{\chi B}(n u)=1 \therefore \phi_{\chi B}(n u)>\phi_{\chi B}(u)$ and if $u \notin B$ and $n u \notin B$, then $\phi_{\chi B}(u)=0, \phi_{\chi B}(n u)=0 . \therefore \phi_{\chi B}(n u)=\phi_{\chi B}(u)$. Thus $\phi_{\chi B}(n u) \geq \phi_{\chi B}(u)$, for $u \in E$. Similarly, $\psi_{\chi B}(n u) \leq \psi_{\chi_{B}}(u)$, for $u \in E$. Thus the result.
Theorem 2.2. E be an IF multiplication N-group iff for every $A \leq_{I F N} E$, $A=(A: \chi E) \chi E$.
Proof. By lemma 2.1 we get, $(A: \chi E) \chi E \subseteq A$. So, it is sufficient to show that $A \subseteq(A: \chi E) \chi E$. Since E is an IF multiplication N-group, \exists an IF ideal C of N such that $A=C \chi E$. Now, $A=C \chi E \Rightarrow C \chi E \subseteq A \Rightarrow C \subseteq(A: \chi E) \Rightarrow$ $C \chi E \subseteq(A: \chi E) \chi E \Rightarrow A \subseteq(A: \chi E) \chi E . \therefore A=(A: \chi E) \chi E$. Conversely, suppose $A=(A: \chi E) \chi E$. Since by lemma 2.2, $(A: \chi E)$ is an IF ideal of N, by definition A is an IF multiplication N-group.
Theorem 2.3. E is a multiplication N-group iff E is an IF multiplication N group.
Proof. Let E be a multiplication N-group and $A=<\phi_{A}, \psi_{a}>\leq_{I F N} E$. By lemma 2.1, $(A: \chi E) \chi E \subseteq A$. Since by lemma 2.2, $(A: \chi E)$ is an IF ideal of N, it is sufficient to show that $A \subseteq(A: \chi E) \chi E$. For $u \in E$, we can choose $\gamma, \lambda \in[0,1], \gamma+\lambda \leq 1$ with $\phi_{A}(u)=\gamma, \psi_{A}(u)=\lambda$. Then $u \in{ }^{(\gamma, \lambda)} A$. Since E is a multiplication N-group, by proposition $2.3,{ }^{(\gamma, \lambda)} A=\left({ }^{(\gamma, \lambda)} A: E\right) E . \therefore u=n u^{\prime}$, for some $n \in\left({ }^{(\gamma, \lambda)} A: E\right), u^{\prime} \in E$. By proposition 2.1, $n \in\left({ }^{(\gamma, \lambda)} A: E\right) \Rightarrow$ $n_{(\gamma, \lambda)} \in(A: \chi E)$. Since $u^{\prime} \in E$, by lemma 2.3, $u_{(\gamma, \lambda)}^{\prime} \in \chi E$. So by lemma 2.6, $u_{(\gamma, \lambda)}=\left(n u^{\prime}\right)_{(\gamma, \lambda)}=n_{(\gamma, \lambda)} u_{(\gamma, \lambda)}^{\prime} \Rightarrow u_{(\gamma, \lambda)} \in(A: \chi E) \chi E \Rightarrow u \in{ }^{(\gamma, \lambda)}\{(A$: $\chi E) \chi E\}\left[\right.$ by lemma 2.5] $\Rightarrow \phi_{(A: \chi E) \chi E}(u) \geq \gamma=\phi_{A}(u), \psi_{(A: \chi E) \chi E}(u) \leq \lambda=\psi_{A}(u)$. $\therefore A \subseteq(A: \chi E) \chi E$. Thus $A=(A: \chi E) \chi E$. Thus E is an IF multiplication N-group.
Conversely, let E be IF multiplication N-group. Let $B \leq_{N} E$. Then $(B: E) E \subseteq B$ by lemma 1.1. To show $B \subseteq(B: E) E$. Now, we define an IF set P on E by, $\phi_{P}(x)=\left\{\begin{array}{lc}1, & \text { if } x \in B \\ 0, & \text { otherwise }\end{array}\right.$ and $\psi_{P}(x)=\left\{\begin{array}{lc}0, & \text { if } x \in B \\ 1, & \text { otherwise } .\end{array}\right.$
Then $P=\chi B$ and ${ }^{(\gamma, \lambda)} P=B$ with $\gamma, \lambda \in(0,1], \gamma+\lambda \leq 1$. By lemma 2.7, $P=\chi B$ $\leq_{I F N} E$. Since E is an IF multiplication N-group, by theorem 2.2, $P=(P$: $\chi E) \chi E$. Let $b \in B$. Then $\phi_{P}(b)=\phi_{(P: \chi E) \chi E}(b)=1$ and $\psi_{P}(b)=\psi_{(P: \chi E) \chi E}(b)=0$ [by assumption of P]. But $\phi_{(P: \chi E) \chi E}(b)=\vee\left\{\phi_{(P: \chi E)}\left(n^{\prime}\right) \wedge \phi_{\chi E}\left(u^{\prime}\right): b=n^{\prime} u^{\prime}\right.$, for some $\left.n^{\prime} \in N, u^{\prime} \in E\right\}=\vee\left\{\phi_{(P: \chi E)}\left(n^{\prime}\right): b=n^{\prime} u^{\prime}\right.$, for some $\left.n^{\prime} \in N, u^{\prime} \in E\right\}[$ since $\left.\phi_{\chi E}\left(u^{\prime}\right)=1\right]=\vee\left\{\phi_{n_{\gamma, \lambda}}\left(n^{\prime}\right): n E \subseteq{ }^{(\gamma, \lambda)} P=B, b=n^{\prime} u^{\prime}\right.$, for some $n^{\prime} \in N, u^{\prime} \in E$ with $\gamma, \lambda \in(0,1], \gamma+\lambda \leq 1\}$ [by proposition 2.1] $=\vee\left\{\phi_{n_{\gamma, \lambda}}\left(n^{\prime}\right): n \in(B:\right.$ $E)$, $b=n^{\prime} u^{\prime}$, for some $n^{\prime} \in N, u^{\prime} \in E$ with $\left.\gamma, \lambda \in(0,1], \gamma+\lambda \leq 1\right\}$. Similarly,
$\psi_{(P: \chi E) \chi E}(b)=\wedge\left\{\psi_{n_{\gamma, \lambda}}\left(n^{\prime}\right): n \in(B: E), b=n^{\prime} u^{\prime}\right.$, for some $n^{\prime} \in N, u^{\prime} \in E$ with $\gamma, \lambda \in(0,1], \gamma+\lambda \leq 1\}$. Let us consider $S=\{n: n \in(B: E), b \in n E\}$. If S is empty, then for each $b \in t E$, we have $t \notin(B: E)$ when $t \in N$. Then $\phi_{(P: \chi E) \chi E}(b)=\vee\left\{\phi_{n_{\gamma, \lambda}}(t): n \in(B: E), b \in t E, t \in N\right.$, with $\left.\gamma, \lambda \in(0,1], \gamma+\lambda \leq 1\right\}$. Since $n \in(B: E), t \notin(B: E), n \neq t$ and so $\phi_{n_{\gamma, \lambda}}(t)=0 . \therefore \phi_{(P: \chi E) \chi E}(b)=0$. Similarly, $\psi_{(P: \chi E) \chi E}(b)=1$. These are contradictions. So we can conclude that S is non-empty. Thus $\exists n \in N$ such that $b \in n E$ and $n \in(B: E) . \therefore b \in n E \Rightarrow b \in$ $(B: E) E$. But $b \in B . \therefore B \subseteq(B: E) E$. Thus $B=(B: E) E$. Hence E is a multiplication N-group.
Definition 2.5. Let $A=<\phi_{A}, \psi_{A}>\leq_{I F N} E$, then ${ }^{(\gamma, \lambda)} A \leq_{N}{ }^{(\gamma, \lambda)} E$ if $m-y, n m \in$ ${ }^{(\gamma, \lambda)} A$, for any $m, y \in{ }^{(\gamma, \lambda)} A$ and $n \in N$.
Theorem 2.4. An IF multiplication N-group is an IF $D N$-group.
Proof. Let $F, K, C \leq_{I F N} E$. Since E is an IF multiplication N-group, $F=(F$: $\chi E) \chi E, K=(K: \chi E) \chi E, C=(C: \chi E) \chi E$. Let $u \in E$.

Now, $\phi_{F}(u)=\phi_{(F: \chi E) \chi E}(u)=\vee\left\{\phi_{(F: \chi E)}(n) \wedge \phi_{\chi E}(e): u=n e, n \in N, e \in\right.$ $E\}=\vee\left\{\phi_{(F: \chi E)}(n): u \in n E, n \in N\right\}\left[\right.$ since $\left.\phi_{\chi E}(e)=1\right]$. Similarly, $\psi_{F}(u)=$ $\wedge\left\{\psi_{(F: \chi E)}(n): u \in n E, n \in N\right\}$. But by proposition 2.1, $(F: \chi E)=\left\{n_{(\gamma, \lambda)}\right.$: $\left.\gamma, \lambda \in[0,1], \gamma+\lambda \leq 1, n E \subseteq{ }^{(\gamma, \lambda)} F\right\} . \therefore \phi_{F}(u)=\vee\left\{\phi_{n_{(\gamma, \lambda)}}(n): u \in n E \subseteq{ }^{(\gamma, \lambda)} F, n \in\right.$ $N\}=\gamma$, where $u \in^{(\gamma, \lambda)} F$. Similarly, $\psi_{F}(u)=\lambda$, where $u \in \in^{(\gamma, \lambda)} F$. Now, we define $\phi_{F}(u)=\left\{\begin{array}{ll}\gamma, & u \in X \\ 0, & u \notin X\end{array}, \psi_{F}(u)=\left\{\begin{array}{cc}\lambda, & u \in X \\ 1, & u \notin X\end{array}, \phi_{K}(u)=\left\{\begin{array}{cc}\gamma, & u \in Y \\ 0, & u \notin Y\end{array}\right.\right.\right.$, $\psi_{K}(u)=\left\{\begin{array}{ll}\lambda, & u \in Y \\ 1, & u \notin Y\end{array}, \phi_{C}(u)=\left\{\begin{array}{ll}\gamma, & u \in Z \\ 0, & u \notin Z\end{array}, \psi_{C}(u)=\left\{\begin{array}{cc}\lambda, & u \in Z \\ 1, & u \notin Z\end{array}\right.\right.\right.$ with $\gamma, \lambda \in(0,1]$. Then, for $u \in X, \phi_{F}(u)=\gamma, \psi_{F}(u)=\lambda$ and so $u \in{ }^{(\gamma, \lambda)} F$. Also, if $u \in{ }^{(\gamma, \lambda)} F$, then either $u \in X$ or $u \notin X$. If $u \notin X$, then $\phi_{F}(u)=0 \geq \gamma$ and $\psi_{F}(u)=1 \leq \lambda$-which is a contradiction to the fact that $\gamma, \lambda \in(0,1]$. Thus ${ }^{(\gamma, \lambda)} F=X$.

Similarly, ${ }^{(\gamma, \lambda)} K=Y,{ }^{(\gamma, \lambda)} C=Z$ with $\gamma, \lambda \in(0,1]$ and so X, Y, Z are subsets of E. Now, for any $u \in X \cap Y,(F+K)(u)=<\phi_{F+K}(u), \psi_{F+K}(u)>$, where $\phi_{F+K}(u)=\vee\left\{\phi_{F}(y) \wedge \phi_{K}(z): y, z \in X \cap Y\right.$ and $\left.u=y+z \in X \cap Y\right\}$ and $\psi_{F+K}(u)=\wedge\left\{\psi_{F}(y) \vee \psi_{K}(z): y, z \in X \cap Y\right.$ and $\left.u=y+z \in X \cap Y\right\} . \therefore \phi_{F+K}(u)=\gamma$ and $\psi_{F+K}(u)=\lambda$, where $u \in X \cap Y\left[\right.$ since $\phi_{F}(u)=\gamma$ and $\psi_{F}(u)=\lambda$ for all $u \in X$ and $\phi_{K}(u)=\gamma$ and $\psi_{K}(u)=\lambda$ for all $\left.u \in Y\right]$.

Thus $(F+K)(u)=<\gamma, \lambda>$, where $u \in X \cap Y$. Also, $(F \cap K)(u)=<\phi_{F}(u) \wedge$ $\phi_{K}(u), \psi_{F}(u) \vee \psi_{K}(u)>=<\gamma, \lambda>$, if $u \in X \cap Y$. If $u \in Z$, then $u \in X \cap Y \cap Z$ and $((F+K) \cap C)(u)=<\gamma, \lambda>\cap<\gamma, \lambda>=<\gamma, \lambda>$. If $u \notin Z$, then $u \notin$ $X \cap Y \cap Z$ and $((F+K) \cap C)(u)=<\gamma, \lambda>\cap<0,1>=<0,1>$. Again,
$((F \cap C)+(K \cap C))(u)=<\gamma, \lambda>+<\gamma, \lambda>=<\gamma, \lambda>$, where $u \in X \cap Y \cap Z[$ since $(F+F)(u)=F(u)$ for all $u \in X \subseteq E]$. If $u \notin Z$ and $u \in X \cap Y$, then $u \notin$ $X \cap Y \cap Z$ and $((F \cap C)+(K \cap C))(u)=<\phi_{F}(u) \wedge \phi_{C}(u), \psi_{F}(u) \vee \psi_{C}(u)>+<$ $\phi_{K}(u) \wedge \phi_{C}(u), \psi_{K}(u) \vee \psi_{C}(u)>=<0,1>+<0,1>=<0,1>$. So, we can conclude that $((F+K) \cap C)(u)=((F \cap C)+(K \cap C))(u)$, for all $u \in E$. Thus $(F+K) \cap C=(F \cap C)+(K \cap C)$ and hence E is an IF $D N$-group.

References

[1] Atanassov K. Intuitionistic fuzzy sets, VII ITKR's Session, Sofia, June 1983 (Deposed in Central Sci. - Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulg.). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1-S6.
[2] Atanassov K. T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1) (1986), 87-96.
[3] Biswas R., Intuitionistic fuzzy subgroup, Mathematical Forum, X (1989), 37-46.
[4] Hadi I. M. A. and Semeein Sh. B., Fuzzy distributive modules, IBN AlHaitham J. for pure and appl. Sci., Vol 24 (1), (2011).
[5] Isaac P. and John P. P., On intuitionistic fuzzy submodules of a modules, International Journal of Mathematical Sciences and Applications, 1 (3) (2011), 1447-1454.
[6] Khodadadpour E. and Roodbarilor T., Some types of multiplication N-group in near rings, Italian Journal of Pure and applied Mathematics, N-46 (2021), 894-902.
[7] Lee D., Park C. and Kim J., On fuzzy prime submodule of Fuzzy multiplication modules, East Asian Mathematical Journal, Volume 27 No. 1 (2011), 75-82.
[8] Nimbhorkar S. K. and Khubchandani J. A., L-Fuzzy Hollow Modules and L-fuzzy Multiplication Modules, KragujevacJournal of Mathematics, Volume 48 (3) (2021), 423-432.
[9] Rahman S. and Saikia H. K., Some aspects of Atanassov's intuitionistic fuzzy submodules, International Journal of Pure and Applied Mathematics, 77 (3) (2012), 369-383.
[10] Saikia P. and Barthakur L. K., (T, S)-intuitionistic fuzzy N-subgroup of an N-group, Malaya Journal of mathematik, Vol. 8, No. 8 (2020), 945-949.
[11] Saikia P. and Saikia H. K., Intuitionistic fuzzy N-subgroup and intuitionistic fuzzy ideals, International Journal of Trends and Technology (IJMTT), Vol. 57, No. 6 (2018), 418-421.
[12] Sharma P. K., Intuitionistic fuzzy ideals of near rings, International Mathematical Forum, Vol. 7 No. 16 (2012), 769-776.
[13] Sharma P. K., On intuitionistic fuzzy multiplication module, Annals of Fuzzy Mathematics and Informatics, Vol. 23 No. 3 (2022), 295-309.
[14] Sharma P. K. and Kaur G., Residual quotient and annihilator of intuitionistic fuzzy sets of rings and modules, International Journal of Computer science and Information technology, Vol. 9. No. 4, (2017).
[15] Sharma P. K. and Kaur G., On intuitionistic fuzzy prime submodules, Notes on intuitionistic fuzzy sets, Vol. 24 No. 4 (2018), 97-112.

