Three Expansions for a Three Variable Hypergeometric Function

Pasumarthi A. Padmanabham
Department of Mathematics, Pondicherry Engineering College, Pondicherry-605014, India

Abstract: In this paper we record three summation results for a triple hypergeometric series X_{2} and discuss various cases of reducibility.
Keywords: Hypergeometric function, Horn function, Appell function, Laguerre polynomial, Jacobi polynomial.

1. Introduction:

Exton [1] introduced a triple hypergeometric series whose representation is

$$
\begin{equation*}
X_{2}\left(a, b ; c_{1}, c_{2}, c_{3} ; x, y, z\right)=\sum_{0}^{\infty} \frac{(a)_{2 m+2 n+p}(b)_{p}}{\left(c_{1}\right)_{m}\left(c_{2}\right)_{n}\left(c_{3}\right)_{p}} \frac{x^{m}}{m!} \frac{y^{n}}{n!} \frac{z^{p}}{p!} \tag{1.1}
\end{equation*}
$$

where

$$
(a)_{m}=\frac{\Gamma(a+m)}{\Gamma(a)}, \quad a=0,-1,-2, \ldots
$$

The precise three dimensional region of convergence of (1.1) is given by, see [2],

$$
2 \sqrt{r}+2 \sqrt{s}+t \quad 1,|x| r,|y| \quad s, \text { and }|z| t
$$

where the positive quantities r, s, and t are associated radii of convergence. For details of this function and other many related series refer to Exton [1] and Srivastava and Karlsson [3].

The Laplace type integral representation of (1.1.) due to Exton is

$$
\begin{gather*}
X_{2}\left(a, b ; c_{1}, c_{2}, c_{3} ; x, y, z\right) \\
=\frac{1}{\Gamma(a)} \int_{0}^{\infty} e^{-s} s^{a-1}{ }_{0} F_{1}\left(-; c_{1} ; x s^{2}\right){ }_{0} F_{1}\left(-; c_{2} ; y s^{2}\right)_{1} F_{1}\left(b ; c_{3} ; z s\right) d s \tag{1.2}
\end{gather*}
$$

where $\operatorname{Re}(a)>0$.
2. In this section we derive the following,

$$
\sum_{m=0}^{n}(-1)^{m}\binom{n}{m} \frac{(\alpha+n)_{m}}{(1+\alpha)_{m}} X_{2}\left(a, m-n ; c_{1}, c_{2}, 1+\alpha+m ; x, y, z\right)
$$

$$
\begin{equation*}
=\frac{(-z)^{n}}{(1+\alpha)_{n}} F_{4}\left(\frac{a}{2}, \frac{a+1}{2} ; c_{1}, c_{2} ; 2 x, 2 y\right) . \tag{2.1}
\end{equation*}
$$

where the function on the right is Appell function F_{4} see [3].

$$
\begin{align*}
& \sum_{m=0}^{n} \frac{(-n)_{m}(1+\beta)_{m}}{m!(1+\alpha)_{m}}{ }_{2} F_{1}(-n+m, \beta+m+1 ; \alpha+k+1 ; z) X_{2}\left(a,-m ; c_{1}, c_{2}, 1+\beta ; x, y, 1\right) \\
&=X_{2}\left(a,-n ; c_{1}, c_{2}, 1+\alpha ; x, y, z\right) \tag{2.2}
\end{align*}
$$

where the parameter β is so restricted that the second number exists,

$$
\begin{equation*}
\sum_{m=0}^{n} X_{2}\left(a,-m ; c_{1}, c_{2}, 1 ; x, y, z\right)=(n+1) X_{2}\left(a,-n ; c_{1}, c_{2}, 2 ; x, y, z\right) \tag{2.3}
\end{equation*}
$$

The following two special cases of (2.1) are worth mentioning.

$$
\begin{align*}
& \sum_{m=0}^{n}(-1)^{m}\binom{n}{m} \frac{(\alpha+n)_{m}}{(1+\alpha)_{m}} X_{2}\left(a, m-n ; c_{1}, c_{2}, 1+\alpha+m ; x, y, z\right) \\
= & \frac{(-z)^{n}}{(1+\alpha)_{n}}{ }_{4} F_{3}\left(\frac{a}{2}, \frac{a+1}{2}, \frac{c_{1}+c_{2}}{2}, \frac{c_{1}+c_{2}-1}{2} ; c_{1}, c_{2}, c_{1}+c_{2}-1 ; 4 x\right) . \tag{2.4}
\end{align*}
$$

which expressa special X_{2} in terms of hypergeometric function.

$$
\begin{gather*}
\sum_{m=0}^{n}(-1)^{m}\binom{n}{m} \frac{(\alpha+n)_{m}}{(1+\alpha)_{m}} X_{2}\left(2 a, m-n ; a+\frac{1}{2}, \frac{1}{2}, 1+\alpha+m ; x, y, z\right) \\
=\frac{(-z)^{n}}{2(1+\alpha)_{n}}\left[(1+\sqrt{2 y}-x)^{-a}+(1-\sqrt{2 y}-x)^{-a}\right] \tag{2.5}
\end{gather*}
$$

In particular, (for $\alpha=0, x=y=z=1 / 2$), (2.5) takes the elegant form,

$$
\sum_{m=0}^{n}(-1)^{m}\binom{n}{m} \Gamma(n+m) X_{2}\left(2, m-n, \frac{-1}{2}, \frac{1}{2}, 1+m ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\frac{(-1)^{n}}{n 2^{2 n+1}}
$$

Proof: To prove (2.1), we use the well known result on the classical Laguerre polynomials viz., see [2, p. 1109],

$$
\begin{equation*}
\sum_{m=0}^{n} \frac{(-1)^{n}(\alpha+n)_{m}}{m!} L_{n-m}^{(\alpha+m)}(x)=\frac{(-x)^{n}}{n!} \tag{2.6}
\end{equation*}
$$

where $L_{n}^{\alpha}(x)=\frac{(1+\alpha)_{n}}{n!}{ }_{1} F_{1}(-n ; 1+\alpha ; x)$,
in the integral of (1.2), (for the ${ }_{1} F_{1}$), change the order of integration and summation and itnterpret the resultatnt as Appell F_{4}.

In a similar manner (2.2) and (2.3) can be proved by employing the results, see [4, p. 152 and p. 166],

$$
L_{n}^{\alpha}(x y)=\sum_{m=0}^{n} \frac{(1+\alpha)_{n} y^{m}}{(n-k)!(1+\alpha)_{m}}{ }_{2} F_{1}(-n+m, \beta+m+1 ; \alpha+m+1 ; y) L_{m}^{\beta}(x)
$$

and

$$
\sum_{m=0}^{n}{ }_{1} F_{1}(-m ; 1 ; x)=(n+1){ }_{1} F_{1}(-n ; 2 ; x)
$$

in stead of (2.6).
Using the relation, see [3, p. 314]
$F_{4}(a, b ; c, d ; x, x)={ }_{4} F_{3}\left(a, b, \frac{c+d}{2}, \frac{c+d+1}{2} ; c, d, c+d-1 ; 4 x\right)$ in (2.1), we get
(2.4). Further considering $a=2, c_{1}=a+\frac{1}{2}$ and $c_{2}=\frac{1}{2},(2.4)$ gives (2.5).

References

[1] Exton, H, Multiple hypergeometric functions and application, John Wiley \& Sons, New York, 1976.
[2] Padmanabham, P.A., Two results on three variable hypergeometric function, Indian Jour. Pure \& Applied Math., 30(11), Nov. 1999, pp. 1107-1109.
[3] Srivastava, H.M. and Karlsson, P.W., Multiple Gaussian hypergeometric series, John Wiley \& Sons, New York, 1985.
[4] Srivastava, H.M. and Karlsson, P.W., A treatise on generating functions, John Wiley \& Sons, New York, 1984.

