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Three Expansions for a Three Variable Hypergeometric Function
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Abstract: In this paper we record three summation results for a triple hyper-
geometric series X, and discuss various cases of reducibility.
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1. Introduction:

Exton [1] introduced a triple hypergeometric series whose representation is
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The precise three dimensional region of convergence of (1.1) is given by, see [2],
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where the positive quantities r, s, and t are associated radii of convergence. For de-
tails of this function and other many related series refer to Exton [1] and Srivastava
and Karlsson [3].

The Laplace type integral representation of ( 1.1.) due to Exton is
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where Re(a) > 0.
2. In this section we derive the following,
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where the function on the right is Appell function Fj see [3].
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where the parameter 3 is so restricted that the second number exists,
Z Xo(a,—m;cy,co, 152y, 2) = (n+ 1) Xa(a, —n; 1, 00,2 2,1, 2). (2.3)
The following two special cases of (2.1) are worth mentioning.
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which expressa special X5 in terms of hypergeometric function.
i(—l)m " MX Qam—n'a—l—lll—l—a—l—m'xyz
m (1 + Oé)m 2 ) ) 27 27 y 4y Yy

—2<<1+a [1+\/_—x -a 1—\/2—y—x)_“} (2.5)

In particular, (for « = 0,z =y = z = 1/2), (2.5) takes the elegant form,
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Proof: To prove (2.1), we use the well known result on the classical Laguerre
polynomials viz., see [2, p. 1109],
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1 n
where L$(x) = @ 1Fi(=n; 1+ a; ),
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in the integral of (1.2), (for the 1 F}), change the order of integration and summation
and itnterpret the resultatnt as Appell Fy.

In a similar manner (2.2) and (2.3) can be proved by employing the results, see
[4, p. 152 and p. 166],
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in stead of (2.6).

Using the relation, see [3, p. 314]

d d+1
Fy(a,b;c,d;z,x) = 4F3 (a, b, c—|2— , et 2+ ce,d,c+d— 1;4:6) in (2.1), we get
1 1
(2.4). Further considering a = 2,¢; = a + 5 and ¢ = 3 (2.4) gives (2.5).
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