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Abstract: The aim of this paper is to study about the number of cc-dominating
sets and to introduce the concept of cc-domination polynomial for simple finite
undirected graphs. For a graph G on n vertices possessing dc(G, i) cc-dominating
sets of cardinality i, the cc-domination polynomial is defined asDc[G;x] =

∑n
i=γcc(G)

dc(G, i)xi, where γcc(G) is the cc-domination number of G. We obtain some prop-
erties of Dc[G;x] and compute the same for some special graphs. Moreover, the
concept of cc-domination entropy is also introduced and studied.
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1. Introduction and Preliminaries
Data communication networks are effective and efficient when they amalgamate

performance, reliability, and security. The reliability of network infrastructure is
crucial for the smooth functioning of the network and is strongly influenced by the
network’s capacity to handle topological changes. As a result, neither the entire
network nor significant portions of it will fail as a result of such changes and that
the remaining network will resume normal operation immediately. This feature
can be achieved through several techniques and a number of algorithms are al-
ready available in the literature regarding this [12].
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The main objective is to reduce network down time and keep communication flow-
ing with the least amount of disruption. Hence while designing a distributed system
paramount importance should be given for fault tolerance mechanisms so that the
system can automatically recover from partial failures without seriously affecting
its overall performance. Moreover in the modern era of cloud-computing, fault-
tolerance mechanisms are indispensable to ensure high availability and authenticity
to the users. The faults in the cloud environment may occur due to physical faults,
network faults, processor faults, service expiry faults etc and so on [14]. Among
these, the network faults arises mainly due to link failures. In order to minimize
link failures, the nodes of the network must be associated “more closely” in such
a way that unpredictable disruptions may not result in the failure of the whole
network.

The concept of domination discussed in [7] entirely relies upon the “adjacency”
property of vertices in a graph. But the property of “being adjacent” is not at
all sufficient to characterize the vertex pairs in a graph as the deletion of the
edges shared by adjacent vertices may or may not disconnect the graph. Moreover,
there are numerous graphs in which the non-adjacent vertices are “so close” in
the sense that the deletion of not all geodesics connecting them disconnects the
graph. Consequently, these observations motivated the authors to introduce the
more generalized concept of “closely-connected vertices” as they will ensure paths
preserving the connectedness of a graph.

Let G = (V,E) be a non-trivial simple undirected graph on n vertices. A path
P in G is a cut path if there exists a graph G

′
= (V,E \ Ē ′

) for some Ē
′ ⊆ Ē(P )

such that ω(G
′
) > ω(G). The vertices u, v ∈ V are closely-connected if at least

one of the geodesics connecting them is not a cut path and G is closely-connected
if all its vertex pairs are closely-connected. The cc-number of u and v is defined
as Γcc(u, v) = {p ∈ P (u, v)| p is not a cut path in G}, where P (u, v) is the set
of all geodesics linking u and v in G. A subset C of V is a cc-dominating set
if for every vertex v ∈ V \ C there exists a vertex u ∈ C such that Γcc(u, v) ≥
1. The minimum cardinality of a cc-dominating set is called the cc-domination
number, denoted by γcc(G). The open cc-neighborhood of a vertex v ∈ V is the
set Ncc(v) = {u ∈ V : Γcc(u, v) ≥ 1}, whereas the closed cc-neighborhood of v
is defined as Ncc[v] = Ncc(v) ∪ {v}. The cardinality of Ncc(v) is the cc-degree of
v, denoted by degcc(v). The vertex v is said to be cc-isolated if Ncc(v) = ϕ. The
maximum and minimum cc-degree of a vertex in G are given by

∆cc(G) = maxv∈V |Ncc(v)| and δcc(G) = minv∈V |Ncc(v)|.

The cc-complement of G is the graph Ḡcc = (V,E
′
), where uv ∈ E

′
iff v /∈ Ncc(u) in
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G for u, v ∈ V. For more properties of closely-connected vertices [9] can be inferred.
A special case of closely-connected vertices in which the cc-number coincides with
the number of geodesics is studied in [10] and a corresponding index is formulated.
A comprehensive treatment on graph domination is given in [8] and [7]. Further,
for the domination polynomial introduced by Alikhani [2] and [3]. can be referred.

In this paper, the number of cc-dominating sets of graphs are studied and
cc-domination polynomial Dc[G;x] of a graph G is introduced. We investigate
some special properties of Dc[G;x] and obtain the same for some special graphs.
Throughout this paper, G denotes a finite simple undirected graph with vertex set
V (G) and edge set E(G) and the graph theoretic terminologies and notations used
are as in [6] unless specified otherwise.

2. Main Results

Definition 2.1. Let G = (V,E) be a graph of order n. For each 1 ≤ i ≤ n, define

Dc(G, i) =

{
(u1, . . . , ui) ∈ V × . . .× V︸ ︷︷ ︸

i times

: ∀v ∈ V \ {uj}ij=1, ∃ uj with Ncc(uj) = v

}
.

Definition 2.2. Let G be a graph of order n. Then, the cc-domination polynomial
Dc[G;x] of G is defined as:

Dc[G;x] =

n∑
i=γcc(G)

dc(G, i)xi,

where dc(G, i) = |Dc(G, i)|.
Theorem 2.3. Let G be a graph of order n with dc(G, j) =

(
n
j

)
for some j ≤ n. Then,

Dc[G;x] = (x+ 1)n +

j−1∑
i=0

[
dc(G, i)−

(
n

i

)]
xi.

Proof. Since every subset of V (G) of cardinality j is a cc-dominating set of G, it follows
that γcc(G) ≤ j.

Claim: dc(G, i) =
(
n
i

)
∀i ≥ j.

Proof of the claim : Let H be a subgraph of G with |V (H)| = i, where j < i ≤ n.
Then, there exists a subgraph H

′
of H with |V (H

′
)| = j. Hence by our assumption

it follows that V (H
′
) is a cc-dominating set of G. Since V (H

′
) ⊂ V (H), we get

V (H) is a cc-dominating set of G. Thus the vertex set of every subgraph of G
of order exceeding j constitutes a cc-dominating set of G. Therefore, dc(G, i) =(
n
i

)
∀i ≥ j.
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Thus,

Dc[G;x] =

j−1∑
i=γcc(G)

dc(G, i)xi +

n∑
i=j

dc(G, i)xi

=

j−1∑
i=γcc(G)

dc(G, i)xi +

n∑
i=j

(
n

n− i

)
xi

= (x+ 1)n −
j−1∑
i=0

(
n

i

)
xi +

j−1∑
i=γcc(G)

dc(G, i)xi.

Since dc(G, i) = 0 for i = 0, 1, . . . , γcc(G)− 1, we get

Dc[G;x] = (x+ 1)n −
j−1∑
i=0

(
n

i

)
xi +

j−1∑
i=0

dc(G, i)xi

= (x+ 1)n +

j−1∑
i=0

[
dc(G, i)−

(
n

i

)]
xi.

This completes the proof.

Corollary 2.4. Let G be a graph and let j = inf {i ∈ N : dc(G, i) =
(
n
i

)
}, where

|V (G)| = n. Then,

∣∣∣∣Dc[G;x]

f(x)

∣∣∣∣ < 1, where f(x) = (x+ 1)n −
γcc(G)−1∑

i=0

(
n

i

)
xi.

Proof. Since dc(G, j) =
(
n
j

)
, we get dc(G, i) <

(
n
i

)
∀i < j. Therefore it follows from

theorem 2.3 that

Dc[G;x] < (x+ 1)n −
j−1∑
i=0

(
n

i

)
xi +

j−1∑
i=γcc(G)

(
n

i

)
xi.

= (x+ 1)n −
γcc(G)−1∑

i=0

(
n

i

)
xi −

j−1∑
i=γcc(G)

(
n

i

)
xi +

j−1∑
i=γcc(G)

(
n

i

)
xi.

= f(x)

Corollary 2.5. A graph G of order n is closely-connected iff Dc[G;x] = (x + 1)n −
1. In this case, the bound of the number of cc-dominating sets of G is sharp and the
corresponding alternating number is −1.
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Proof. Assume that G is closely-connected. Then, it follows from theorem 2.3 that
Dc[G;x] = (x+1)n − 1. Conversely, if Dc[G;x] = (x+1)n − 1, then dc(G, i) =

(
n
i

)
∀ 1 ≤

i ≤ n so that every pair of vertices is closely-connected.
Moreover, for any graph G, the number of cc-dominating sets is given by

Dc[G; 1] =

n∑
i=γcc(G)

dc(G, i)

≤
n∑

i=1

(
n

i

)
= 2n − 1

If G is closely-connected, then Dc[G;x] = (x+ 1)n − 1. so that Dc[G; 1] = 2n − 1.
The alternating number of cc-dominating sets of G is the difference of cc-dominating sets
of even cardinality and odd cardinality and is given by Dc[G;−1] = −1.

Remark 2.6. For a closely-connected graph G of order n, it follows from theorem 2.3
that Dc[G;x] = (x+ 1)n − 1. But, γcc(G) = 1 is not at all a sufficient condition to imply
that Dc[G;x] = (x+ 1)n − 1. For example, consider the complete bipartite graph K2,n−2,
where n ≥ 5. Then γcc(K2,n−2) = 1, but the vertices of degree n − 2 in K2,n−2 are not
closely-connected so that

dc(K2,n−2, i) =

{(
n
i

)
− 2, if i = 1,(

n
i

)
, if i ̸= 1.

Therefore, Dc[K2,n−2;x] = (x+ 1)n − 2x− 1.

Theorem 2.7. Let G1, . . . , Gm be the components of a graph G. Then,

Dc[G, x] =

m∏
i=1

Dc[Gi, x].

Proof. Without loss of generality, let m = 2. For k ≥ γcc(G), every cc-dominating
set of cardinality k in G is obtained from a cc-dominating set of i vertices in G1 and a
cc-dominating set of k− i vertices in G2 for i ∈ {γcc(G1), . . . , |V (G1)|}. Since the number
of ways of doing this over all i = {γcc(G1), . . . , |V (G1)|} is exactly the coefficient of xk

in Dc[G1, x]Dc[G2, x], both the sides of the above equation are identical.

Theorem 2.8. Let G be a cut edge free graph such that deg(v) ≥ degcc(v) ∀v ∈ V (G).
Then, Dc[G;x] = D[G;x].
Proof. Since G is free of cut edges, its adjacent vertices are closely-connected so that
degcc(v) ≥ deg(v) ∀v ∈ V (G). That is, ∀v ∈ V (G), degcc(v) = deg(v). Thus the
dominating sets and cc-dominating sets of G are the same and hence Dc[G;x] = D[G;x].
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Remark 2.9. If Dc[G;x] = D[G;x], then γcc(G) = γ(G). But , the converse is not true.
For example, consider the wheel graph W5 shown in figure 1. Since degcc(mi) = 4 ∀i =
1, . . . , 5 and

deg(mi) =

{
4, if i = 5

3, if i ̸= 5,

it follows that γcc(W5) = γ(W5) = 1.
But, dc(W5, 1) = 5 whereas d(W5, 1) = 1. Hence Dc[W5;x] ̸= D[W5;x].

Figure 1: The Wheel graph W5

Theorem 2.10. Let G be a graph of order n with dc(G, γcc(G)) =
(

n
γcc(G)

)
and G

′
be the

graph obtained from G by adding k pendent vertices to V (G). Then,

Dc[G
′
;x] = xk

[
(x+ 1)n −

γcc(G)−1∑
i=0

(
n

n− i

)
xi
]
.

Proof. Let V (G
′
) = {v1, . . . , vn, u1, . . . , uk}, where vi ∈ V (G) and uj are pendent

vertices for i = 1, . . . , n and j = 1, . . . , k. Clearly, γcc(G
′
) = γcc(G)+k and dc(G

′
, γcc(G)+

k) = dc(G, γcc(G). Also, it can be noted that dc(G
′
, k + i) = dc(G, i) for i = γcc(G) +

1, . . . , n. Therefore,

Dc[G
′
;x] =

k+n∑
i=k+γcc(G)

dc(G, i− k)xi

= xk
n∑

i=γcc(G)

dc(G, i)xi

= xkDc[G;x].

Now, it evidently follows from theorem 2.3 that

Dc[G
′
;x] = xk

[
(x+ 1)n −

γcc(G)−1∑
i=0

(
n

n− i

)
xi
]
.
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Theorem 2.11. Let G = (V,E) be a graph of order n with Dc[G;x] =
n∑

i=γcc(G)

dc(G, i)xi.

If G has k cc-isolated vertices, then

(i) k = n− dc(G,n− 1).

(ii) dc(G,n− 2) =
(
n
2

)
− k(n− 1) +

(
k
2

)
.

(iii) dc(G, 1) = |{v ∈ V : degcc(v) = n− 1}|.
Proof.

(i) Let A ⊆ V be the set of all cc-isolated vertices in G. Then, for any vertex v ∈ V \A,
the set V \{v} is a cc-dominating set of G. Therefore, dc(G,n−1) = |V (G)\A)| =
n− k.

(ii) Let D ⊆ V be a non cc-dominating set of cardinality n− 2. Then, D = V \ {u, v}
for u, v ∈ V.

Case(i) Atleast one of the two vertices u or v are cc-isolated.
Let u ∈ V be cc-isolated and v ∈ V \ {u}. Thus corresponding to every
cc-isolated vertex u , there exists n − 1 vertices in G such that V \ {u, v} is
not a cc-dominating set. Therefore, the total number of cc-dominating sets
of cardinality n− 2 in G is dc(G,n− 2) =

(
n
2

)
− k(n− 1) +

(
k
2

)
.

Case(ii) Both u and v are not cc-isolated.
Since D is a non cc-dominating set, this is possible only if Γcc(u, v) = 1 and
Γcc(v, w) ≥ 1 for some w ∈ D. But this would eventually lead us to conclude
that Γcc(u, y) = 1 for some y ∈ D, a contradiction to the fact that D is a non
cc-dominating set.

(iii) For any vertex v ∈ V , {v} is a cc-dominating set iff Γcc(u, v) ≥ 1 ∀u ∈ V \ {v}.
Corollary 2.12. Let G be a graph with Dc[G;x] = [x(x + 2)]n. Then, G is free of
cc-isolated vertices.
Proof. Let k be the number of cc-isolated vertices in G. Then from part (i) of theorem
2.11, k = 2n− dc(G, 2n− 1) = 2n− 2n = 0.

Theorem 2.13. Let G be a graph with V (G) = {v1, . . . , vn} and

Dc[G, x] =
n−γcc(G)∑

i=0
aix

i+γcc(G). Then, the coefficients a0, . . . , an−γcc(G) are solutions of

the following system, respectively for i = 0, i = 1, . . . , i = n− γcc(G).

(C + In)V ≥ 1n (2.1)
n∑

i=0

vi = γcc(G) + i (2.2)

vi ∈ {0, 1}, for i = 1, . . . , n,
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where In is the identity matrix of order n, V = [v1 v2 · · · vn]t and C is the n× n matrix
[cij ] with entries

cij =

{
1, if Γcc(vi, vj) ≥ 1

0, otherwise.

3. Special Cases

Theorem 3.1. Let G be a closely-connected graph of order n and G
′
be the graph obtained

by linking two copies of G through a bridge. Then

Dc[G
′
;x] =

2n∑
i=2

dc(G
′
, i)xi,

where

dc(G
′
, i) =


(
n
i

2

)2
+ 2

i

2
−1∑

k=1

(
n
k

)
×
(

n
i−k

)
, if i ≤ n+ 1 is even

2
⌊ i

2
⌋∑

k=1

(
n
k

)
×
(

n
i−k

)
xi, if 2 ≤ i ≤ n+ 1 is odd

and for i > 1,

dc(G
′
, n+ i) =



(
n

n+i

2

)2
+ 2

⌊n+i

2
⌋−1∑

k=i

(
n
k

)
×
(

n
n+i−k

)
, if both n, i are odd

(
n

n+i

2

)2
+ 2

⌊n+i

2
⌋−2∑

k=i

(
n
k

)
×
(

n
n+i−k

)
, if both n, i are even

2
⌊n+i

2
⌋∑

k=i

(
n
k

)
×
(

n
n+i−k

)
, otherwise.

Proof. Since G is closely-connected, γcc(G
′
) = 2. A cc-dominating set of G

′
of cardinality

i ≥ 2 is obtained by choosing j > 1 vertices from one copy of G and i− j vertices from
the other copy. This computation gives the desired result.

Theorem 3.2. The cc-domination polynomial of the bipartite cocktail party graph Bn is
given by

Dc[Bu;x] =


x4, if n = 2,

x6 + 6x5 + 15x4 + 14x3 + 3x2, if n = 3,

(x+ 1)n − 1, otherwise.

Proof. Let Bu be the bipartite cocktail party graph with V (Bu) = {m1, . . . ,mu} ∪
{n1, . . . , nu} as shown in figure 2.
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Case(i) For n = 2, Bu is a disjoint union of two copies of K2 so that all its vertices are
cc-isolated.

Case(ii) For n = 3, Bu has no singleton cc-dominating sets. The only cc-dominating
sets of size 2 are of the form {mi, ni} for i = 1, 2, 3 so that dc(B3, 2) = 3. The cc-
dominating sets of size 3 are obtained by taking the non-trivial subsets of V (B3)
except those of the form {mi, nj , nk} ∪ {ni,mj ,mk} for i, j, k ∈ {1, 2, 3} with i ̸=
j ̸= k. Thus dc(B3, 3) =

(
6
3

)
− 6 = 14. Now for i > 3, every subset of the vertex

set is a cc-dominating so that dc(B3, i) =
(
6
i

)
.

Case(iii) It can be readily observed that Bu is closely-connected for n > 3. Hence the
result follows immediately from corollary 2.5

Figure 2: The bipartite cocktail party graph Bu

4. CC-Domination Entropy of Graphs
Since domination is an extremely sensitive graph invariant, the information content

versions of some parameters have greater discrimination power than classical versions of
these parameters. This resulted in the introduction of domination entropy of graphs in
[4]. This has motivated the authors to define a new graph entropy measure to investigate
the graph invariance properties of cc-dominating sets.

Definition 4.1. Let G be a graph and f : S −→ R+ be an information functional defined
on S = {s1, s2, . . . , sk} such that S is a set of elements of G. Then, the entropy is defined
as follows: [11]

If (G) = −
k∑

i=1

f(si)
k∑

j=1
f(sj)

log

(
f(si)
k∑

j=1
f(sj)

)

Definition 4.2. Let G be a graph of order n without cc-isolates. The information
functional f is defined as f = |Dc(G, i)| = dc(G, i). Then, the cc-domination entropy of
G is defined as :

Iccd(G) = −
n∑

i=1

dc(G, i)

γtcc(G)
log(

dc(G, i)

γtcc(G)
),
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where

γtcc(G) =

|V (G)|∑
i=γcc(G)

Dc(G, i).

Theorem 4.3. Let G be a graph. Then, Iccd(G) = 0 iff G is acyclic.
Proof. Assume that G is acyclic. Then, dc(G,n) = 1 and dc(G, i) = 0 ∀i < n so that
γtcc(G) = 1. Therefore, Iccd(G) = 0.

Conversely, let Iccd(G) = 0. Since dc(G, i) ≥ 0 ∀i = 1, . . . , n and γcct(G) > 0,

Iccd(G) = 0 ⇐⇒ dc(G, i) · log(dc(G, i)

γtcc(G)
) = 0

⇐⇒ dc(G, i) = 0 or log(
dc(G, i)

γtcc(G)
) = 0 ∀i = 1, . . . , n.

⇐⇒ log(
dc(G, i)

γtcc(G)
) = 0 ∀i ≥ γcc(G)

⇐⇒ dc(G, i)

γtcc(G)
= 1 ∀i ≥ γcc(G)

⇐⇒ dc(G, i) = γtcc(G) ∀i ≥ γcc(G)

⇐⇒ dc(G, i) =

n∑
i=γcc(G)

dc(G, i) ∀i ≥ γcc(G)

⇐⇒ γcc(G) = n.

This completes the proof.

Theorem 4.4. Let G be a closely-connected graph of order n. Then,

Iccd(G) = log(2n − 1)− 1

2n − 1

n∑
i=1

(
n

i

)
log

(
n

i

)
.

Proof. Since Dc[G;x] = (x+1)n−1, it follows that γtcc(G) =
n∑

i=1

(
n
i

)
= 2n−1. Therefore,

Iccd(G) = −
n∑

i=1

(
n
i

)
2n − 1

log

( (
n
i

)
2n − 1

)

= log(2n − 1)− 1

2n − 1

n∑
i=1

(
n

i

)
log

(
n

i

)
.

Theorem 4.5. For n ≥ 5,

Iccd(K2,n−2) = log(2n − 3)− (n− 2)log(n− 2)

2n − 3
− 1

2n − 3

n∑
i=2

(
n

i

)
log

(
n

i

)
.
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Proof. Since Dc[G;x] = (x+ 1)n − 2x− 1, it follows that γtcc(G) =
n∑

i=1

(
n
i

)
= 2n − 1.

= log(2n − 1)− 1

2n − 1

n∑
i=1

(
n

i

)
log

(
n

i

)
.

Theorem 4.6.

Iccd(Bn) = 0, if n = 2,

= log39− 1

39

[
2∑

i=1

(
2n

i

)
log

(
2n

i

)
+ 3log3 + 14log14

]
, if n = 3,

= log(2n − 1)− 1

2n − 1

n∑
i=1

(
n

i

)
log

(
n

i

)
, otherwise.

Proof. The result follows immediately from the expression of Dc[Bn;x].

5. Conclusion
In this paper, the concept of cc-domination polynomial is studied using the number of

cc-dominating sets of graphs. The introduction of closely-connected vertices facilitated to
generalise the domination polynomial to a much more wider context of the cc-domination
polynomial. Moreover, the concept of cc-domination entropy is introduced and evaluated
for certain graphs.

6. Applications

1. Network Model: A common wired channel/network is used by all hosts for
bidirectional communication. Every host has a fixed broadcast area and within
this close-transmission range, link failures of the network does not disrupt the
functioning of the entire system. A pair of hosts that are in communication with one
another are referred to as closely-connected neighbors. This can be developed as a
fault tolerant model to maximize the effectiveness and efficiency in communication
networks.

2. Military Communications: In the military sphere, there always exists threats
to the communication infrastructure as they are perceived as high-value targets.
These threats makes them more vulnerable so that it is critically important to ad-
dress network robustness. That is, the continued ability of the network to perform
its function in the face of attack. Thus closely-connected neighbors serves as a new
approach to design networks that sustain attacks [5].
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