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Abstract: An edge Italian dominating function (EIDF) of a graph G = (V,E)
is a function f : E(G) → {0, 1, 2} such that every edge x with f(x) = 0 is ad-
jacent to some edge y with f(y) = 2 or adjacent to at least two edges z1, z2
withf(z1) = f(z2) = 1. The weight of an edge Italian dominating function is
the sum

∑
x∈E(G) f(x) and the minimum weight of an edge Italian dominating

function of G is called the edge Italian domination number of G and is denoted by
γ

′
I(G). In this paper, we determine the edge Italian domination number of some

graph products.
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1. Introduction
Let G = (V,E) be a simple connected graph with vertex set V = V (G) and

edge set E = E(G). A graph G with p vertices and q edges will be referred to
as a (p, q)-graph. A subset S of V is called a dominating set of G if every vertex
not in S is adjacent to some vertex in S. The domination number, γ(G), of G is
the minimum cardinality taken over all dominating sets of G. The concept of edge
domination in graphs was introduced by Mitchell and Hedetniemi [6]. A subset F
of edges of a graph G is called an edge dominating set of G if every edge not in
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F is adjacent to some edge in F . The edge domination number of G, denoted by
γ

′
(G), is the minimum cardinality taken over all edge dominating sets of G.
Cockayne et al. [2] introduced Roman Dominating Function. A function f :

V (G) → {0, 1, 2} such that every vertex v with f(v) = 0 is adjacent to some vertex
u with f(u) = 2 is called a Roman dominating function. The weight of a Roman
dominating function is the value

∑
v∈V (G) f(v). The minimum weight of a Roman

dominating function on G is called the Roman domination number and is denoted
by γR(G). Roushini Leely Pushpam et al. [7] introduced edge version of Roman
Domination. An edge Roman Dominating Function of a graph G is a function,
f : E(G) → {0, 1, 2} such that every edge e with f(e) = 0 is adjacent to some edge
e1 with f(e1) = 2. The edge Roman domination number of G, denoted by γ

′
R(G),

is the minimum weight of an edge Roman dominating function of G.
Italian domination was first introduced as Roman {2}- domination by Chellali

et al. [1]. It was further researched and renamed as Italian domination by Henning
and Klostermeyer [4]. An Italian dominating function of a graph G is a function
f : V (G) → {0, 1, 2} such that every vertex v with f(v) = 0 is adjacent to some
vertex u with f(u) = 2 or is adjacent to at least two vertices x, y with f(x) =
f(y) = 1. The weight of an Italian dominating function is

∑
v∈V (G) f(v). The

minimum weight of such a function on G is called the Italian domination number
of G and is denoted by γI(G).

We have introduced the edge version of Italian domination in graphs in [5].
An Edge Italian dominating function (EIDF) of a graph G = (V,E) is a function
f : E(G) → {0, 1, 2} such that every edge x with f(x) = 0 is adjacent to some edge
y with f(y) = 2 or adjacent to at least two edges z1 and z2 with f(z1) = f(z2) = 1.
The weight of an Edge Italian dominating function is

∑
x∈E(G) f(x). The Edge

Italian Domination number of G, denoted by, γ
′
I(G) is the minimum weight of all

Edge Italian dominating functions of G. The following results will be used in this
paper.

Theorem 1.1. [5] For the path Pn, γ
′
I(Pn) = ⌈n

2
⌉, n ≥ 2.

Theorem 1.2. [5] For the path Cn, γ
′
I(Cn) = ⌈n

2
⌉, n ≥ 3.

Theorem 1.2. [5] For the Star K1,n, γ
′
I(K1,n) = 2, when n ≥ 2.

The corona G1⊙G2 of an (n1,m1)-graph G1 on an (n2,m2)-graph, G2 is defined
as the graph obtained by taking one copy of G1 and n1 copies of G2 and joining
the ith vertex of G1 to every vertex in the ith copy of G2 for1 ≤ i ≤ n1. Clearly,
G1 ⊙G2 has n1 + n1n2 vertices and m1 + n1m2 + n1n2 edges.

Let G1 and G2 be two graphs with the vertex setsV (G1) = {u1, u2, u3, ..., um}
and V (G2) = {v1, v2, v3, ..., vn} respectively. The Cartesian Product of the graphs
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G1 and G2, denoted by G1□G2, is the graph with vertex set V (G1)×V (G2) and two
vertices (u1, v1) and (u2, v2)are adjacent in G1□G2 if (i) u1 = u2 and v1v2 ∈ E(G2)
or (ii) v1 = v2 and u1u2 ∈ E(G1). The Cartesian product of Pn and P2 is called
the ladder graph, Ln. The Tensor Product G1 × G2 of the graphs G1 and G2 is a
graph with the vertex set V (G1)× V (G2) and two vertices (u1, v1) and (u2, v2) are
adjacent in G1×G2 if and only if u1 is adjacent to u2 in G1 and v1 is adjacent to v2
in G2. Tensor product of graphs is also known as the categorical product or direct
product. The Strong product G1 ⊠ G2 of the graphs G1 and G2 is a graph with
the vertex set V (G1) × V (G2) and two vertices (u1, v1) and (u2, v2) are adjacent
inG1 ⊠ G2, if (i) u1 = u2 and v1v2 ∈ E(G2) or (ii) v1 = v2 and u1u2 ∈ E(G1) or
(iii) u1u2 ∈ E(G1) and v1v2 ∈ E(G2).

For terms and definitions not explicitly defined here, reader may refer to Harary
[3]. For graph products and the related terminology, reader may refer to Richard
Hammack et. al [8].

In this paper, we investigate the edge Italian domination and the edge Italian
domination number of some graph products like Corona, Cartesian product, Tensor
product and Strong product of graphs.

2. Edge Italian Domination in some Graph Products

Proposition 2.1. For any path Pn, γ
′
I(Pn ⊙K1) = n.

Proof. Consider an EIDF, f on Pn ⊙ K1 such that the n edges connecting the
n copies of K1 to Pn get the weight 1 and all the edges of Pn get the weight 0.
Then,

∑
f(e) ≤ n. Since, Pn ⊙ K1 has 2n vertices and 2n − 1 edges, it follows

from the definition of EIDF that in γ
′
I function on Pn ⊙K1,

∑
f(e) ≥ ⌈2n−1

2
⌉ = n.

Therefore, γ
′
I(Pn ⊙K1) = n.

Proposition 2.2. For any cycle Cn, γ
′
I(Cn ⊙K1) = n.

Proof. Consider the graph Cn ⊙K1. Let f be an EIDF on Cn ⊙K1 such that the
n edges connecting the copies of K1 to Cn get the weight 1 and all the edges of Cn

get the weight 0 and then
∑

f(e) ≤ n. Since Cn⊙K1 has 2n vertices and 2n edges,
in order to satisfy the condition of EIDF,

∑
f(e) ≥ n. Hence, γ

′
I(Cn ⊙K1) = n.

Theorem 2.3. For any path Pn, γ
′
I(Pn ⊙K2) = ⌈3n

2
⌉.

Proof. Let {x1, x2, ..., xn−1} be the edges of Pn and {z1, z2, ..., zn} denote the edges
of the n copies of K2 and {y1, y2, ..., y2n} be the edges connecting the n vertices of
Pn and the n pairs of edges of the n copies of K2 such that y2i−1, y2i are the edges
joining the ith vertex of Pn and the ith copy of K2 for 1 ≤ i ≤ n. Define a function
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f : E(Pn ⊙K2) → {0, 1, 2} as follows:

f(xi) =

{
1 if i is odd or i = n− 1
0 otherwise

f(yi) = 0,∀ i and f(zi) = 1,∀ i.
Then,

∑
f(e) ≤ n+ ⌈n

2
⌉ ≤ ⌈3n

2
⌉ so that γ

′
I(Pn ⊙K2) ≤ ⌈3n

2
⌉.

Let f be any minimum EIDF on (Pn⊙K2). By Theorem 1.1, γ
′
I(Pn) = ⌈n

2
⌉. So,

f can assign the weights 1 and 0 alternatively to the edges of the path Pn. Then
f cannot assign the weight 0 to any of the n copies of K2, as in that case each of
these edges must be adjacent to an edge of weight 2 or adjacent to two edges of
weight 1 each, which violates the minimality of f . So, f must assign the minimum
positive weight 1 to all the n copies of K2. Then, each of the remaining edges of
Pn ⊙K2 is adjacent to exactly two edges of weight 1 each and hence can get the
weight 0. So,

∑
f(e) ≥ n+ ⌈n

2
⌉ ≥ ⌈3n

2
⌉. Thus, γ′

I(Pn ⊙K2) = ⌈3n
2
⌉.

Theorem 2.4. For any cycle Cn, γ
′
I(Cn ⊙K2) = ⌈3n

2
⌉.

Proof. Let x1, x2, ..., xn be the edges of Cn and y1, y2, ..., y2n be the edges connect-
ing Cn and K2. Also let z1, z2, ..., zn denote the n copies of K2.
Define a function f : E(Cn ⊙K2) → {0, 1, 2} by

f(xi) =

{
1 if i is odd
0 otherwise

f(yi) = 0,∀ i and f(zi) = 1,∀ i.
Then, γ

′
I(Cn ⊙K2) ≤

∑
f(e) ≤ n+ ⌈n

2
⌉ ≤ ⌈3n

2
⌉.

Let f be any minimum EIDF on Cn ⊙K2. Then by a similar argument used in
the second part of the above theorem we can say that f must assign the weight 1
to all the n copies of K2. Also, since by theorem 1.2, γ

′
I(Cn) = ⌈n

2
⌉, f can assign

the weights 1 and 0 alternatively to the edges of Cn. Then, each of the remaining
edges of Cn ⊙K2 is adjacent to at least two edges of weight 1 each and hence can
get the weight 0. Hence,

∑
f(e) ≥ n+ ⌈n

2
⌉ ≥ ⌈3n

2
⌉. Thus, γ′

I(Cn ⊙K2) = ⌈3n
2
⌉.

Theorem 2.5. Let Cm be a cycle on m vertices and Pn be a path on n vertices,
then,

γ
′

I(Cm ⊙ Pn) = γ
′

I(Cm) +mγ
′

I(Pn)

Proof. Let X = {x1, x2, ..., xm} be the edges of Cm, Y = {yi1, yi2, ..., yin−1} be the
edges of ith copy of Pn and Z = {z1, z2, ..., zn, zn+1, zn+2, ..., z2n, z2n+1, ..., z3n, ..., zmn}
be the edges connecting the vertices of Cm and the m copies of Pn.
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Define a function f : E(Cm ⊙ Pn) → {0, 1, 2} by

f(xi) =

{
1 if i is odd
0 if i is even

f(yij =

{
1 if i is odd or j = n− 1
0 otherwise

f(zi) = 0,∀ i.
Then,

∑
f(e) ≤ ⌈n

2
⌉+m⌈n

2
⌉ = γ

′
I(Cm) +mγ

′
I(Pn).

The corona, Cm ⊙ Pn contains m copies of Pn joined to Cm. Since Cm and the m
copies of Pn are induced sub-graphs of the corona Cm ⊙ Pn, the weight

∑
f(e) of

any EIDF is at least γ
′
I(Cm) +mγ

′
I(Pn). Hence,

∑
f(e) ≥ γ

′
I(Cm) +mγ

′
I(Pn).

Therefore, γ
′
I(Cm ⊙ Pn) = γ

′
I(Cm) +mγ

′
I(Pn).

Proposition 2.6. For n ≥ 2, γ
′
I(P2 × Pn) = 2⌈n

2
⌉.

Proof. The graph, P2 ×Pn, is a disconnected graph with exactly two components
isomorphic to Pn. So, using theorem 1.1, γ

′
I(P2 × Pn) = 2⌈n

2
⌉.

Proposition 2.7. For n ≥ 2, γ
′
I(P3 × P3) = 4.

Proof. P3 × P3 is a disconnected graph with two components, one is a cycle of
length 4 and the other one is the star graph K1,4. By theorems 1.2 and 1.3, we have
γ

′
I(Cn) = ⌈n

2
⌉ and γ

′
I(K1,n) = 2. So, γ

′
I(P3 × P3) = γ

′
I(C4) + γ

′
I(K1,4) = 2 + 2 = 4.

Theorem 2.8. For n ≥ 2, γ
′
I(P3 × Pn) = 2n− 2.

Proof. Let n = 2k or n = 2k + 1 according as n is even or odd. We prove the
result by induction on k. By propositions 2.6 and 2.7, the result is true for k = 1.
Assume that the result is true for the positive integer, k.
That is, γ

′
I(P3 × Pn) = γ

′
I(P3 × P2k) = 2(2k)− 2 and

γ
′
I(P3 × Pn) = γ

′
I(P3 × P2k+1) = 2(2k + 1)− 2.

We will prove that the result is true for the integer, k + 1. The graph product,
P3 × Pn is a disconnected graph with exactly two components. Further when n is
even, the two components will be isomorphic graphs.
Case 1. n = 2k is even.
The result is true for k by induction assumption. That is, γ

′
I(P3×P2k) = 2(2k)−2.

If n = 2k is even, then, the graph products P3 × P2(k+1) and P3 × P2k differ only
in an induced copy of C4 in each of its two components. Take any minimum EIDF
of P3 × P2k. Then at most two of the four edges of the induced copy of C4 can be
given weight 0 and the other two edges can be given the weight 1 to get a minimum
EIDF of P3 × P2(k+1), which has only 4 weights more than that of P3 × P2k.
Hence, γ

′
I(P3 × P2k+1) = γ

′
I(P3 × P2k) + 4 = [2(2k)− 2] + 4 = [2(2k + 1)]− 2.
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So, the result is true for k + 1.
Case 2. n = 2k + 1 is odd.
The result is true for k by induction assumption. That is, γ

′
I(P3×P2k+1) = 2(2k+

1)−2. If n = 2k+1, is odd, the graph products P3×P2(k+1)+1 and P3×P2k+1 differ
only in an induced copy of C4 in each of its two components. Take any minimum
EIDF of P3 × P2k. Then at most two of the four edges of the induced copy of C4

can be given weight 0 and the other two edges can be given the weight 1 to get
a minimum EIDF of P3 × P2(k+1)+1, which has only 4 weights more than that of
P3 × P2k+1.
Hence,

γ
′

I(P3 × P2(k+1)+1) = γ
′

I(P3 × P2k+1) + 4

= [2(2k + 1)− 2] + 4

= [2(2(k + 1) + 1)]− 2.

So, the result is true for k+1. Hence, by induction, the result is true for all integers,
n.

Theorem 2.9. For ≥ 2, γ
′
I(Pn□P2) = n.

Proof. The Cartesian product of Pn and P2 is the ladder graph Ln and it has n
middle step edges. Every other edge of the ladder is adjacent to at least two of
these middle edges. Let g be an EIDF on Pn□P2 in which all the middle edges are
given the weight 1 and all other edges the weight 0. Then we get a minimum EIDF
and

∑
g(e) ≤ n.

For the lower bound, consider the two copies Pn and P ′
n of the paths form-

ing Pn□P2 where V (Pn) = {v1, v2, v3, ..., vn} and V (P ′
n) = {v′1, v′2, v′3, ..., v′n}. The

vertices {v1, v2, v3, ..., vn, v′n, ..., v′2, v′1} form a cycle of length 2n. Let g be a min-
imum EIDF on Pn□P2 in which the weights 1 and 0 are given alternatively to
the edges forming this cycle. Then each of the middle step edge is adjacent to at
least two edges of weights 1 each and hence get the weight 0. By Theorem 1.1,
γ

′
I(C2n) = ⌈2n

2
⌉ = n. Hence,

∑
g(e) ≥ n. Therefore γ

′
I(Pn□P2) = γ

′
I(Lm) = n.

Theorem 2.10. For n ≥ 2, γ
′
I(Pn□Pm) = ⌈mn

2
⌉ =

{
mn+1

2
, if m and n are odd

mn
2
, otherwise

Proof. Let u1, u2, u3, ..., un be the vertices of Pn and v1, v2, v3, ..., vm be the vertices
of Pm.
Case 1. Both m and n are odd
Define a function f : E(Pn□Pm) → {0, 1, 2} by
f(e) = 1, when e = {(ui, vj)(ui, vj+1)} where i = 1, 2, 3, ..., n and j = 1, 3, 5, ...,m−
2.
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f(e) = 1 when e = {(ui, vm)(ui+1, vm)}, where i = 1, 3, 5, ..., n− 2 and
f(e) = 1 when e = {(un−1, vm)(un, vm)}
f(e) = 0, otherwise
Then,

∑
f(e) ≤ m.

(
n−1
2

)
+ m−1

2
+ 1 = mn+1

2
.

Let f be a minimum EIDF on Pn□Pm. Consider the n paths induced by the
vertices (uiv1), (uiv2), (uiv3), ..., (uivm−1), where i = 1, 2, 3, ..., n. Since γ

′
I(Pm−1) =

⌈m−1
2

⌉, f can assign the weights 1 and 0 alternatively to the edges of these paths.
Using a similar argument, the weights 1 and 0 can be assigned alternatively to
the edges of the path induced by the n vertices (u1vm), (u2vm), (u3vm), ..., (umvm).
Then all the remaining edges can get the weight 0 as each of them is incident with
at least two edges of weight 1.

∑
f(e) ≥ n.m−1

2
+ n+1

2
= mn+1

2
. Thus, we get,

γ
′
I(Pn□Pm) =

mn+1
2

.
Case 2. m is even and n is even or odd
Define a function f : E(Pn□Pm) → {0, 1, 2} by
f(e) = 1, if e = {(ui, vj)(ui, vj+1)} where i = 1, 2, 3, ..., n and j = 1, 3, 5, ...,m− 1.
f(e) = 0, otherwise
Then f is a EIDF of the graph, Pn□Pm so that γ

′
I(Pn□Pm) ≤

∑
f(e) ≤ m.n

2
= mn

2
.

For the lower bound, consider any minimum EIDF, f , on Pn□Pm. For i =
1, 2, 3, ..., n the set of vertices (uiv1), (uiv2), (uiv3), ..., (uivm) induces n paths Pm.
Using a similar argument used in the previous case, we get

∑
f(e) ≥ nm

2
= mn

2
.

Therefore, γ
′
I(Pn□Pm) =

mn
2
.

Corollary 2.11. For n ≥ 2, the edge Italian domination number of the strong
product of the path graphs Pn and Pm is given by,

γ
′

I(Pn ⊠ Pm) =
⌈mn

2

⌉
=

{
mn+1

2
, if both m and n are odd

mn
2
, otherwise

Proof. Consider the strong product Pn⊠Pm. We know that Pn□Pm is an induced
subgraph of Pn ⊠ Pm. So, consider the minimum EIDF for Pn□Pm as defined in
the proof of the theorem 2.10 and extend it to Pn⊠Pm. In this EIDF, the edges of
Pn ⊠ Pm, which are not the edges of Pn□Pm can be given the weight 0, as each of
them is incident with at least two edges of Pn□Pm, having weight 1 and hence the
weight of these edges of Pn ⊠ Pm do not affect the minimum weight for Pn ⊠ Pm.
Hence, γ

′
I(Pn ⊠ Pm) =

⌈
mn
2

⌉
.
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