South East Asian J. of Mathematics and Mathematical SciencesVol. 19, No. 2 (2023), pp. 203-210DOI: 10.56827/SEAJMMS.2023.1902.14ISSN (Online):

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

EDGE ITALIAN DOMINATION OF SOME GRAPH PRODUCTS

Jyothi V. and J. Suresh Kumar

PG and Research Department of Mathematics, NSS Hindu College, Changanacherry, Kottayam - 686102, Kerala, INDIA

E-mail: jyothivnair15@gmail.com, jsuresh.maths@gmail.com

(Received: Aug. 19, 2021 Accepted: Jul. 29, 2023 Published: Aug. 30, 2023)

Abstract: An edge Italian dominating function (EIDF) of a graph G = (V, E)is a function $f : E(G) \to \{0, 1, 2\}$ such that every edge x with f(x) = 0 is adjacent to some edge y with f(y) = 2 or adjacent to at least two edges z_1, z_2 with $f(z_1) = f(z_2) = 1$. The weight of an edge Italian dominating function is the sum $\sum_{x \in E(G)} f(x)$ and the minimum weight of an edge Italian dominating function of G is called the edge Italian domination number of G and is denoted by $\gamma'_I(G)$. In this paper, we determine the edge Italian domination number of some graph products.

Keywords and Phrases: Edge Italian Domination, Edge Italian dominating function, Edge Italian Domination number.

2020 Mathematics Subject Classification: 05C.

1. Introduction

Let G = (V, E) be a simple connected graph with vertex set V = V(G) and edge set E = E(G). A graph G with p vertices and q edges will be referred to as a (p,q)-graph. A subset S of V is called a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number, $\gamma(G)$, of G is the minimum cardinality taken over all dominating sets of G. The concept of edge domination in graphs was introduced by Mitchell and Hedetniemi [6]. A subset F of edges of a graph G is called an edge dominating set of G if every edge not in F is adjacent to some edge in F. The edge domination number of G, denoted by $\gamma'(G)$, is the minimum cardinality taken over all edge dominating sets of G.

Cockayne et al. [2] introduced Roman Dominating Function. A function f: $V(G) \to \{0, 1, 2\}$ such that every vertex v with f(v) = 0 is adjacent to some vertex u with f(u) = 2 is called a Roman dominating function. The weight of a Roman dominating function is the value $\sum_{v \in V(G)} f(v)$. The minimum weight of a Roman dominating function on G is called the Roman domination number and is denoted by $\gamma_R(G)$. Roushini Leely Pushpam et al. [7] introduced edge version of Roman Domination. An edge Roman Dominating Function of a graph G is a function, $f: E(G) \to \{0, 1, 2\}$ such that every edge e with f(e) = 0 is adjacent to some edge e_1 with $f(e_1) = 2$. The edge Roman domination number of G, denoted by $\gamma'_R(G)$, is the minimum weight of an edge Roman dominating function of G.

Italian domination was first introduced as Roman {2}- domination by Chellali et al. [1]. It was further researched and renamed as Italian domination by Henning and Klostermeyer [4]. An Italian dominating function of a graph G is a function $f: V(G) \to \{0, 1, 2\}$ such that every vertex v with f(v) = 0 is adjacent to some vertex u with f(u) = 2 or is adjacent to at least two vertices x, y with f(x) =f(y) = 1. The weight of an Italian dominating function is $\sum_{v \in V(G)} f(v)$. The minimum weight of such a function on G is called the Italian domination number of G and is denoted by $\gamma_I(G)$.

We have introduced the edge version of Italian domination in graphs in [5]. An Edge Italian dominating function (EIDF) of a graph G = (V, E) is a function $f: E(G) \to \{0, 1, 2\}$ such that every edge x with f(x) = 0 is adjacent to some edge y with f(y) = 2 or adjacent to at least two edges z_1 and z_2 with $f(z_1) = f(z_2) = 1$. The weight of an Edge Italian dominating function is $\sum_{x \in E(G)} f(x)$. The Edge Italian Domination number of G, denoted by, $\gamma'_I(G)$ is the minimum weight of all Edge Italian dominating functions of G. The following results will be used in this paper.

Theorem 1.1. [5] For the path P_n , $\gamma'_I(P_n) = \lceil \frac{n}{2} \rceil$, $n \ge 2$.

Theorem 1.2. [5] For the path C_n , $\gamma'_I(C_n) = \lceil \frac{n}{2} \rceil$, $n \ge 3$.

Theorem 1.2. [5] For the Star $K_{1,n}$, $\gamma'_{I}(K_{1,n}) = 2$, when $n \ge 2$.

The corona $G_1 \odot G_2$ of an (n_1, m_1) -graph G_1 on an (n_2, m_2) -graph, G_2 is defined as the graph obtained by taking one copy of G_1 and n_1 copies of G_2 and joining the i^{th} vertex of G_1 to every vertex in the i^{th} copy of G_2 for $1 \le i \le n_1$. Clearly, $G_1 \odot G_2$ has $n_1 + n_1 n_2$ vertices and $m_1 + n_1 m_2 + n_1 n_2$ edges.

Let G_1 and G_2 be two graphs with the vertex sets $V(G_1) = \{u_1, u_2, u_3, ..., u_m\}$ and $V(G_2) = \{v_1, v_2, v_3, ..., v_n\}$ respectively. The Cartesian Product of the graphs G_1 and G_2 , denoted by $G_1 \square G_2$, is the graph with vertex set $V(G_1) \times V(G_2)$ and two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G_1 \square G_2$ if (i) $u_1 = u_2$ and $v_1 v_2 \in E(G_2)$ or (ii) $v_1 = v_2$ and $u_1 u_2 \in E(G_1)$. The Cartesian product of P_n and P_2 is called the ladder graph, L_n . The Tensor Product $G_1 \times G_2$ of the graphs G_1 and G_2 is a graph with the vertex set $V(G_1) \times V(G_2)$ and two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G_1 \times G_2$ if and only if u_1 is adjacent to u_2 in G_1 and v_1 is adjacent to v_2 in G_2 . Tensor product of graphs is also known as the categorical product or direct product. The Strong product $G_1 \boxtimes G_2$ of the graphs G_1 and G_2 is a graph with the vertex set $V(G_1) \times V(G_2)$ and two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G_1 \boxtimes G_2$, if (i) $u_1 = u_2$ and $v_1 v_2 \in E(G_2)$ or (ii) $v_1 = v_2$ and $u_1 u_2 \in E(G_1)$ or (iii) $u_1 u_2 \in E(G_1)$ and $v_1 v_2 \in E(G_2)$.

For terms and definitions not explicitly defined here, reader may refer to Harary [3]. For graph products and the related terminology, reader may refer to Richard Hammack et. al [8].

In this paper, we investigate the edge Italian domination and the edge Italian domination number of some graph products like Corona, Cartesian product, Tensor product and Strong product of graphs.

2. Edge Italian Domination in some Graph Products

Proposition 2.1. For any path P_n , $\gamma'_I(P_n \odot K_1) = n$.

Proof. Consider an EIDF, f on $P_n \odot K_1$ such that the n edges connecting the n copies of K_1 to P_n get the weight 1 and all the edges of P_n get the weight 0. Then, $\sum f(e) \leq n$. Since, $P_n \odot K_1$ has 2n vertices and 2n - 1 edges, it follows from the definition of EIDF that in γ'_I function on $P_n \odot K_1$, $\sum f(e) \geq \lceil \frac{2n-1}{2} \rceil = n$. Therefore, $\gamma'_I(P_n \odot K_1) = n$.

Proposition 2.2. For any cycle C_n , $\gamma'_I(C_n \odot K_1) = n$.

Proof. Consider the graph $C_n \odot K_1$. Let f be an EIDF on $C_n \odot K_1$ such that the n edges connecting the copies of K_1 to C_n get the weight 1 and all the edges of C_n get the weight 0 and then $\sum f(e) \leq n$. Since $C_n \odot K_1$ has 2n vertices and 2n edges, in order to satisfy the condition of EIDF, $\sum f(e) \geq n$. Hence, $\gamma'_I(C_n \odot K_1) = n$.

Theorem 2.3. For any path P_n , $\gamma'_I(P_n \odot K_2) = \lceil \frac{3n}{2} \rceil$.

Proof. Let $\{x_1, x_2, ..., x_{n-1}\}$ be the edges of P_n and $\{z_1, z_2, ..., z_n\}$ denote the edges of the *n* copies of K_2 and $\{y_1, y_2, ..., y_{2n}\}$ be the edges connecting the *n* vertices of P_n and the *n* pairs of edges of the *n* copies of K_2 such that y_{2i-1}, y_{2i} are the edges joining the i^{th} vertex of P_n and the i^{th} copy of K_2 for $1 \le i \le n$. Define a function

 $f: E(P_n \odot K_2) \rightarrow \{0, 1, 2\}$ as follows:

$$f(x_i) = \begin{cases} 1 & \text{if } i \text{ is odd or } i = n - 1 \\ 0 & \text{otherwise} \end{cases}$$

 $f(y_i) = 0, \forall i \text{ and } f(z_i) = 1, \forall i.$ Then, $\sum f(e) \le n + \lceil \frac{n}{2} \rceil \le \lceil \frac{3n}{2} \rceil$ so that $\gamma'_I(P_n \odot K_2) \le \lceil \frac{3n}{2} \rceil$.

Let f be any minimum EIDF on $(P_n \odot K_2)$. By Theorem 1.1, $\gamma'_I(P_n) = \lceil \frac{n}{2} \rceil$. So, f can assign the weights 1 and 0 alternatively to the edges of the path P_n . Then f cannot assign the weight 0 to any of the n copies of K_2 , as in that case each of these edges must be adjacent to an edge of weight 2 or adjacent to two edges of weight 1 each, which violates the minimality of f. So, f must assign the minimum positive weight 1 to all the n copies of K_2 . Then, each of the remaining edges of $P_n \odot K_2$ is adjacent to exactly two edges of weight 1 each and hence can get the weight 0. So, $\sum f(e) \ge n + \lceil \frac{n}{2} \rceil \ge \lceil \frac{3n}{2} \rceil$.

Theorem 2.4. For any cycle C_n , $\gamma'_I(C_n \odot K_2) = \lceil \frac{3n}{2} \rceil$.

Proof. Let $x_1, x_2, ..., x_n$ be the edges of C_n and $y_1, y_2, ..., y_{2n}$ be the edges connecting C_n and K_2 . Also let $z_1, z_2, ..., z_n$ denote the *n* copies of K_2 . Define a function $f : E(C_n \odot K_2) \to \{0, 1, 2\}$ by

$$f(x_i) = \begin{cases} 1 & \text{if } i \text{ is odd} \\ 0 & \text{otherwise} \end{cases}$$

 $\begin{array}{l} f(y_i) = 0, \forall \ i \ \text{and} \ f(z_i) = 1, \forall \ i. \\ \text{Then,} \ \gamma'_I(C_n \odot K_2) \leq \sum f(e) \leq n + \left\lceil \frac{n}{2} \right\rceil \leq \left\lceil \frac{3n}{2} \right\rceil. \end{array}$

Let f be any minimum EIDF on $C_n \odot K_2$. Then by a similar argument used in the second part of the above theorem we can say that f must assign the weight 1 to all the n copies of K_2 . Also, since by theorem 1.2, $\gamma'_I(C_n) = \lceil \frac{n}{2} \rceil$, f can assign the weights 1 and 0 alternatively to the edges of C_n . Then, each of the remaining edges of $C_n \odot K_2$ is adjacent to at least two edges of weight 1 each and hence can get the weight 0. Hence, $\sum f(e) \ge n + \lceil \frac{n}{2} \rceil \ge \lceil \frac{3n}{2} \rceil$. Thus, $\gamma'_I(C_n \odot K_2) = \lceil \frac{3n}{2} \rceil$.

Theorem 2.5. Let C_m be a cycle on m vertices and P_n be a path on n vertices, then,

$$\gamma'_{I}(C_{m} \odot P_{n}) = \gamma'_{I}(C_{m}) + m\gamma'_{I}(P_{n})$$

Proof. Let $X = \{x_1, x_2, ..., x_m\}$ be the edges of $C_m, Y = \{y_{i1}, y_{i2}, ..., y_{in-1}\}$ be the edges of i^{th} copy of P_n and $Z = \{z_1, z_2, ..., z_n, z_{n+1}, z_{n+2}, ..., z_{2n}, z_{2n+1}, ..., z_{3n}, ..., z_{mn}\}$ be the edges connecting the vertices of C_m and the *m* copies of P_n .

Define a function $f: E(C_m \odot P_n) \to \{0, 1, 2\}$ by

$$f(x_i) = \begin{cases} 1 & \text{if } i \text{ is odd} \\ 0 & \text{if } i \text{ is even} \end{cases}$$
$$f(y_{ij} = \begin{cases} 1 & \text{if } i \text{ is odd or } j = n - 1 \\ 0 & \text{otherwise} \end{cases}$$

 $f(z_i) = 0, \forall i.$

Then, $\sum f(e) \leq \lceil \frac{n}{2} \rceil + m \lceil \frac{n}{2} \rceil = \gamma'_I(C_m) + m \gamma'_I(P_n).$ The corone $C \subset P$ contains m corrige of P is in

The corona, $C_m \odot P_n$ contains m copies of P_n joined to C_m . Since C_m and the m copies of P_n are induced sub-graphs of the corona $C_m \odot P_n$, the weight $\sum f(e)$ of any EIDF is at least $\gamma'_I(C_m) + m\gamma'_I(P_n)$. Hence, $\sum f(e) \ge \gamma'_I(C_m) + m\gamma'_I(P_n)$. Therefore, $\gamma'_I(C_m \odot P_n) = \gamma'_I(C_m) + m\gamma'_I(P_n)$.

Proposition 2.6. For $n \geq 2$, $\gamma'_{I}(P_{2} \times P_{n}) = 2\lceil \frac{n}{2} \rceil$.

Proof. The graph, $P_2 \times P_n$, is a disconnected graph with exactly two components isomorphic to P_n . So, using theorem 1.1, $\gamma'_I(P_2 \times P_n) = 2\lceil \frac{n}{2} \rceil$.

Proposition 2.7. For $n \ge 2$, $\gamma'_I(P_3 \times P_3) = 4$.

Proof. $P_3 \times P_3$ is a disconnected graph with two components, one is a cycle of length 4 and the other one is the star graph $K_{1,4}$. By theorems 1.2 and 1.3, we have $\gamma'_I(C_n) = \lceil \frac{n}{2} \rceil$ and $\gamma'_I(K_{1,n}) = 2$. So, $\gamma'_I(P_3 \times P_3) = \gamma'_I(C_4) + \gamma'_I(K_{1,4}) = 2 + 2 = 4$.

Theorem 2.8. For $n \ge 2$, $\gamma'_I(P_3 \times P_n) = 2n - 2$.

Proof. Let n = 2k or n = 2k + 1 according as n is even or odd. We prove the result by induction on k. By propositions 2.6 and 2.7, the result is true for k = 1. Assume that the result is true for the positive integer, k.

That is,
$$\gamma'_{I}(P_{3} \times P_{n}) = \gamma'_{I}(P_{3} \times P_{2k}) = 2(2k) - 2$$
 and

 $\gamma'_{I}(P_{3} \times P_{n}) = \gamma'_{I}(P_{3} \times P_{2k+1}) = 2(2k+1) - 2.$

We will prove that the result is true for the integer, k + 1. The graph product, $P_3 \times P_n$ is a disconnected graph with exactly two components. Further when n is even, the two components will be isomorphic graphs.

Case 1. n = 2k is even.

The result is true for k by induction assumption. That is, $\gamma'_I(P_3 \times P_{2k}) = 2(2k) - 2$. If n = 2k is even, then, the graph products $P_3 \times P_{2(k+1)}$ and $P_3 \times P_{2k}$ differ only in an induced copy of C_4 in each of its two components. Take any minimum EIDF of $P_3 \times P_{2k}$. Then at most two of the four edges of the induced copy of C_4 can be given weight 0 and the other two edges can be given the weight 1 to get a minimum EIDF of $P_3 \times P_{2(k+1)}$, which has only 4 weights more than that of $P_3 \times P_{2k}$. Hence, $\gamma'_I(P_3 \times P_{2k+1}) = \gamma'_I(P_3 \times P_{2k}) + 4 = [2(2k) - 2] + 4 = [2(2k + 1)] - 2$. So, the result is true for k + 1. Case 2. n = 2k + 1 is odd.

The result is true for k by induction assumption. That is, $\gamma'_I(P_3 \times P_{2k+1}) = 2(2k + 1) - 2$. If n = 2k + 1, is odd, the graph products $P_3 \times P_{2(k+1)+1}$ and $P_3 \times P_{2k+1}$ differ only in an induced copy of C_4 in each of its two components. Take any minimum EIDF of $P_3 \times P_{2k}$. Then at most two of the four edges of the induced copy of C_4 can be given weight 0 and the other two edges can be given the weight 1 to get a minimum EIDF of $P_3 \times P_{2(k+1)+1}$, which has only 4 weights more than that of $P_3 \times P_{2k+1}$.

Hence,

$$\gamma'_{I}(P_{3} \times P_{2(k+1)+1}) = \gamma'_{I}(P_{3} \times P_{2k+1}) + 4$$
$$= [2(2k+1) - 2] + 4$$
$$= [2(2(k+1) + 1)] - 2$$

So, the result is true for k+1. Hence, by induction, the result is true for all integers, n.

Theorem 2.9. For ≥ 2 , $\gamma'_{I}(P_{n} \Box P_{2}) = n$.

Proof. The Cartesian product of P_n and P_2 is the ladder graph L_n and it has n middle step edges. Every other edge of the ladder is adjacent to at least two of these middle edges. Let g be an EIDF on $P_n \square P_2$ in which all the middle edges are given the weight 1 and all other edges the weight 0. Then we get a minimum EIDF and $\sum g(e) \leq n$.

For the lower bound, consider the two copies P_n and P'_n of the paths forming $P_n \Box P_2$ where $V(P_n) = \{v_1, v_2, v_3, ..., v_n\}$ and $V(P'_n) = \{v'_1, v'_2, v'_3, ..., v'_n\}$. The vertices $\{v_1, v_2, v_3, ..., v_n, v'_n, ..., v'_2, v'_1\}$ form a cycle of length 2n. Let g be a minimum EIDF on $P_n \Box P_2$ in which the weights 1 and 0 are given alternatively to the edges forming this cycle. Then each of the middle step edge is adjacent to at least two edges of weights 1 each and hence get the weight 0. By Theorem 1.1, $\gamma'_I(C_{2n}) = \lceil \frac{2n}{2} \rceil = n$. Hence, $\sum g(e) \ge n$. Therefore $\gamma'_I(P_n \Box P_2) = \gamma'_I(L_m) = n$.

Theorem 2.10. For $n \ge 2$, $\gamma'_I(P_n \Box P_m) = \lceil \frac{mn}{2} \rceil = \begin{cases} \frac{mn+1}{2}, & \text{if } m \text{ and } n \text{ are odd} \\ \frac{mn}{2}, & \text{otherwise} \end{cases}$

Proof. Let $u_1, u_2, u_3, ..., u_n$ be the vertices of P_n and $v_1, v_2, v_3, ..., v_m$ be the vertices of P_m .

Case 1. Both m and n are odd

Define a function $f : E(P_n \Box P_m) \to \{0, 1, 2\}$ by f(e) = 1, when $e = \{(u_i, v_j)(u_i, v_{j+1})\}$ where i = 1, 2, 3, ..., n and j = 1, 3, 5, ..., m - 2.

 $f(e) = 1 \text{ when } e = \{(u_i, v_m)(u_{i+1}, v_m)\}, \text{ where } i = 1, 3, 5, ..., n-2 \text{ and } f(e) = 1 \text{ when } e = \{(u_{n-1}, v_m)(u_n, v_m)\}$ f(e) = 0, otherwiseThen, $\sum f(e) \le m. \left(\frac{n-1}{2}\right) + \frac{m-1}{2} + 1 = \frac{mn+1}{2}.$ Let f be a minimum EIDF on $P_n \Box P_m^2$. Consider the n paths induced by the

Let f be a minimum EIDF on $P_n \Box P_m$. Consider the n paths induced by the vertices $(u_iv_1), (u_iv_2), (u_iv_3), ..., (u_iv_{m-1})$, where i = 1, 2, 3, ..., n. Since $\gamma'_I(P_{m-1}) = \lceil \frac{m-1}{2} \rceil$, f can assign the weights 1 and 0 alternatively to the edges of these paths. Using a similar argument, the weights 1 and 0 can be assigned alternatively to the edges of the path induced by the n vertices $(u_1v_m), (u_2v_m), (u_3v_m), ..., (u_mv_m)$. Then all the remaining edges can get the weight 0 as each of them is incident with at least two edges of weight 1. $\sum f(e) \ge n \cdot \frac{m-1}{2} + \frac{n+1}{2} = \frac{mn+1}{2}$. Thus, we get, $\gamma'_I(P_n \Box P_m) = \frac{mn+1}{2}$.

Case 2. m is even and n is even or odd

Define a function $f : E(P_n \Box P_m) \to \{0, 1, 2\}$ by f(e) = 1, if $e = \{(u_i, v_j)(u_i, v_{j+1})\}$ where i = 1, 2, 3, ..., n and j = 1, 3, 5, ..., m - 1. f(e) = 0, otherwise

Then f is a EIDF of the graph, $P_n \Box P_m$ so that $\gamma'_I(P_n \Box P_m) \leq \sum f(e) \leq m \cdot \frac{n}{2} = \frac{mn}{2}$.

For the lower bound, consider any minimum EIDF, f, on $P_n \Box P_m$. For i = 1, 2, 3, ..., n the set of vertices $(u_i v_1), (u_i v_2), (u_i v_3), ..., (u_i v_m)$ induces n paths P_m . Using a similar argument used in the previous case, we get $\sum f(e) \ge n \frac{m}{2} = \frac{mn}{2}$. Therefore, $\gamma'_I(P_n \Box P_m) = \frac{mn}{2}$.

Corollary 2.11. For $n \ge 2$, the edge Italian domination number of the strong product of the path graphs P_n and P_m is given by,

$$\gamma'_I(P_n \boxtimes P_m) = \left\lceil \frac{mn}{2} \right\rceil = \begin{cases} \frac{mn+1}{2}, & \text{if both m and n are odd} \\ \frac{mn}{2}, & \text{otherwise} \end{cases}$$

Proof. Consider the strong product $P_n \boxtimes P_m$. We know that $P_n \square P_m$ is an induced subgraph of $P_n \boxtimes P_m$. So, consider the minimum EIDF for $P_n \square P_m$ as defined in the proof of the theorem 2.10 and extend it to $P_n \boxtimes P_m$. In this EIDF, the edges of $P_n \boxtimes P_m$, which are not the edges of $P_n \square P_m$ can be given the weight 0, as each of them is incident with at least two edges of $P_n \square P_m$, having weight 1 and hence the weight of these edges of $P_n \boxtimes P_m$ do not affect the minimum weight for $P_n \boxtimes P_m$. Hence, $\gamma'_I(P_n \boxtimes P_m) = \left\lceil \frac{mn}{2} \right\rceil$.

References

 Chellali M., Haynes T. W., Hedetniemi S. T. and McRae A. A., Roman {2}-domination, Discrete Appl. Math., 204 (2016), 22–28.

- [2] Cockayne E. J., Dreyer P. M. Jr., Hedetniemi S. M., and Hedetniemi S. T., On Roman domination in graphs, Discrete Math., 278 (2004), 11–22.
- [3] Harary Frank, Graph Theory, Addison Wesley, Reading Mass, 1969.
- [4] Henning M. A. and Klostermeyer W. F., Italian domination in trees, Discrete Appl. Math., 217 (2017), 557–564.
- [5] Jyothi V. and Suresh Kumar J., Edge Italian domination in graphs, South East Asian Journal of Mathematics and Mathematical Sciences, Vol. 17, No. 2 (2021), 233-240.
- [6] Mitchell S. and Hedetniemi S. T., Edge domination in trees, Congr. Numer., 19 (1977).
- [7] Roushini Leely Pushpam P., and Malini Mai TNM., Edge Roman domination in graphs, J. Combin. Math. Combin. Comput, 69 (2009), 175-182.
- [8] Richard Hammack, Wilfred Imrich and Sandy Klavzar, Handbook of product graphs, Taylor & Francis Group, LLC, 2011.