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1. Introduction, Notations and Definitions
For |¢q| < 1, the g—shifted factorial is defined by

. — L, =
(a;9)n = { (1—a)(1—aq)..(1—ag™ '), neN.

(a3 4)o = lim (a;9)n = [ J(1 — ag"):.
r=0

Also, it A =" B, is a mock theta function then B,, = > ' B, is called partial
mock theta function. For the definitions of mock theta functions of order three,
five and seven one is refereed chapters 2 and 3 of the ‘Resonance of Ramanujan’s
Mathematics, Vol. II’, due to Agarwal R. P. [1] and also one can refers the some
results established on mock theta functions in [2, 4, 5, 6, 7, 8] .
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In 1949 Bailey [3] established following simple but very useful transform, viz.,
If

= Z Uy Uy gy (1.1)
r=0

and

= i OpUy—pUpin (1.2)

then under suitable convergence conditions

Z QpYn = Z ﬁn5n7 (13>
n=0 n=0

where u,., v, a,. and ¢, are arbitrary functions of r alone.
Choosing Up = Uy = 1 in above Bailey’s transform, it takes the form,

If g, = Z a, and v, = Z 0, then under suitable convergence conditions we

r=n
have

Z QpYn = Z Bn(sn‘ (14>
n=0 n=0

By simple manipulation (1.4) can be expressed as

00 00 00 n
D ) 0= 0D o
n=0 r=n n=0 r=0

n

ian iar—zfsrmn} :ianzn:a,
n=0

r=0 r=0
Zan25 —i—Zan n—ZO@Z& —1—2(5 Zar (1.5)
n=0 r=0 n=0 r=0

Taking 0, = «, in (1.5) we get the identity,

(1.6)
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In next section we shall establish main results by making use of the identity (1.6)
and Ramanujan’s mock theta functions.
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2. Main Results

Here we shall establish results for mock theta functions of order three.

n2

q
(—q;9)?

(a) Putting for av, in (1.6) we get

2n?

2q)+z(_q,

n=>0 & Dn

(2.1)

(b) Taking «,, = in (1.6) we have

(—a%a*)n
) + Z Z P, (q) (2.2)
ne— :0 7 n
(c) For a,, = (qf]qQ) , (1.6) yields,
o) q n2 B o0 qnz
) + Z =2)  ———T,(q). (2.3)
n= 0 n=0 (q’ q )n

n2

q

d) Taking «,, =
(@) (—wq, —w2q; @)n

, (where w is the cube root of the unity) in (1.6)

we get,
oo n2 [oe} n2
)+ Xn(Q). (2.4)
2 —wg, w2q )H ZO —wq, —wq; @)n
q2n(n+1)
(e) Choosing a,, = ———— in (1.6) we obtain,
(¢ @*)na
0 q4n (n+1) 0 2n(n+1)
W)+ T Z (2.5)
(F) Tak " (1)
aking o, = ————— in (1.6) we get,
(=@ 6%)n+1
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q2n(n+1)

(g) For o, = (7.9 P (1.6) gives,
s n(n—l—l) > 2n(n+1)
)+ n(q). 2.7
nz: wq,w?q 2 ; (@00 Par @ (27)

3. Mock Theta Functions of order Five

In this section we shall use the identity (1.6) in order to establish results in-
volving mock theta functions of order five. See chapter 3, page 92 of the book
“Resonance of Ramanujan mathematics, Volume II,” due to Agarwal R. P. [1]

a) Putting «a,, = in (1.6) we find
@) (=4 @)n (16)
—(~q;:9)2 — (—¢;
(b) Putting a,, = ¢V +2/2(_g- ) in (1.6) we get,
Sg)+ ) g (g )2 = 22@1 (DL (g ), Tonlg).  (32)
n=0 n=0
(c) Taking a,, = % in (1.6) we obtain,
"5 q)n
)+ T Z n+1 XO"(Q)‘ (3.3)
n:0 n :0

(d) For ay, = ¢" (—q; %), (1.6) yields,

@)+ (—ag —QZq )n®o.n(q). (3.4)

(e) Choosing «a,, = " (¢;¢%), in (1.6) we find,

+Zq4” ¢4 —22612” (@ 6)nFon(q)- (3.5)
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qn(nJrl)
(f) Taking o, = 20 in (1.6) we get,
o q 2n(n+1) o0 (n+1)
B Z - fnla). (3.6)
—~ (¢ 9s — (=¢; @)n
() For a, = ¢" ™ (=g;¢*), (1.6) yields,
H@) + Y P (=g = 2> " (=41 ¢7)n®in(9)- (3.7)
n=0 n=0
(h) Putting a,, = ¢""*V/2(—¢; ¢),, in (1.6) we get,
@ +> " (—g0n =2) """ (—g;0)a V10 (0). (3.8)
n=0 n=0
0 T w0
i) Taking a,, = ———— in (1.6) we find,
(45 ¢*)n+1
.~ 4n(n+1) 0 2n(n+1)
—|— Z Z Fl,n(Q)' (39)
n= n+1 :0 7 TL+1

n

T
(an; Q)n+1

+ Z n+1 . Z n+1 Xl n( ) (310)
n:0

4. Mock Theta Functions of order Seven

In this section we shall establish results involving mock theta functions of order
seven. For mock theta functions of order seven see Agarwal R. P. [1 ; chapter 3,
page 125].

(j) Lastly, taking a,, = n (1.6) we have,

(¢ D .
— 1
(¢;q)2n

+Zq Zq qq = Fonl0) (4.1)

n=0

(a) Taking o, = n (1.6) we have,
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(n+1)?
q .
b) For o, = ———, (1.6) yields
() (" Qnsa’ - (1:6)
2(n+1) > q(n+1)2
)+ =2 ——F1.(q). (4.2)
Z (@ @)nia % (@ Qs @
n(n+1)
. q .
(c) Putting o, = —————— in (1.6) we obtain,
(@Y Dot
2n(n+1) o n (n+1)
+ Z gl Z gt +1f2,n(Q)- <43)
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