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1. Introduction and Preliminaries
We recall Saigo’s fractional integral and differential operators involving the
Gauss’s hypergeometric function oF; as kernel. Let a, 8, n € C, R(«) > 0 and

x > 0, then the Saigo’s fractional integral and differential operators (Igf i f) (),
(If’ﬂ’nf> (x) and (DS‘f’"f) (x), (Df’ﬁ’"f) (x) are defined as (see, e.g., [12, 13, 24,
25, 30]):

x—o B t

(16275) (0) = ey [ e =0 am (a+ﬁ,—77; . ;> fyd, (1)

<Ii“5’” f) (x) = ﬁ / (= 2ot Ry (a B -l — %) F(£) dt (1.2)

and
(D57f) @) = (127 ) (@)
:(%)n(fof*”’“’“*“f) (1) (=[R@]+1),  (13)

(D2275) () = (12 720f) (o)
d " —aTn,—p—n,x
() (Ee) @) =R, (1)
respectively. When 5 = —a, (1.1), (1.2), (1.3) and (1.4) coincide with the classical

Riemann-Liouville fractional integrals and derivatives of order o € C (R(«r) > 0)
and x > 0 (see, e.g., [12, 13, 25]):

(137 ) () = (I3, f) () = ﬁ /O (o= 1o () dt, (1.5)
(1) (2) = (1°F) (x) = %a) / Tl — e () at (1.6)
and
37 0) = (D8.0) @) = () ey | o= 0 s at
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(D2F) () = (D2 f) (&) = (~1)" (di) mom e w a

~c () M@ =R+, (13)

respectively, where [R(«)] is the integral part of R(«).

If 5 =0, (1.1), (1.2), (1.3) and (1.4) are the so-called Erdélyi-Kober fractional
integrals and derivatives defined for « € C (R(a) > 0) and x > 0 (see, e.g., [12,
13, 25)):

A

(3271 (@) = (1) @) = oy [ =0 0s@a (19)

(I2) () = (Ko ) (2) = 15 / (t—a) ' A (110)
and
(D5 f) ()

=(i) (et ) (= R@] +1),  (L11)

= (=1)" (i) (o7 ) (2)  (n = [R(e)] + 1), (1.12)

) @) = () e [ e = @ o= @)+ ),

d\" 1 o0
D~ — nta [ 7 - Ny . \n—a—1 _ 1
(Drad) @) =7 () gy [ =0 A (0= RG] 4 ),
(1.14)
respectively. In recent years, extensions of a number of well-known special functions

have been investigated and studied the (p, ¢)—variant, and in turn, when p = ¢ the
p—variant together with the set of related higher transcendental hypergeometric
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type special functions (see, for details, [1, 2, 3, 4, 7, 8, 11, 14, 15, 17, 19, 21, 27]).
In particular, Choi et al. [9, p. 201, Eq. (2.1)] introduced and studied the p-
extended Mittag-Leffler function £ , () in the form:

[e.9]

1.15
)"”’ ZF)\n—k,u n! (1.15)

n=

(2, u, v € C; R(A) >0, R(p) > 0; R(p) > 0),

provided that the series on the right-hand side converges.
Clearly, when p = 0 in (1.15) yields the generalized Mittag-Leffler function
introduced by Prabhakar [22]

n

& ZWL#); (1.16)

n=

when (R(p) > 0. They developed and studied its certain basic properties, Mellin
transform, Euler-Beta transform, Laplace transform and Whittaker transform, and
so on. The concept of the Hadamard product (or convolution) of two analytic
functions is required in our current investigation. It can aid in the decomposition
of a newly emerged function into two known functions. If one of the power series,
in particular, describes an entire function, then the Hadamard product series also
defines an entire function. If we assume

= chz” |z| < Ry) and h(z Zd 2" (2] < Ry)

n=0

two given power series and whose radii of convergence are given by R; and R,,
respectively. Then their Hadamard product(or convolution) is the power series
defined by( see also, [26])

o0

(g% h)(2) =Y cadnz" = (h % g)(2) (|2| < R) (1.17)
n=0
where
Cp dp . C, . d,
R=1 =11 1 =R;.R

so that, in general, we have R = Ry - R,.
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The Fox-Wright function,W,(z) (r, s € Ny), which is a generalization of hy-
pergeometric function, is defined as follows (see, for details, [12, 16]; see also [25,

29)):

v, [ (a1, Ay), -+, (as } i (ay + Ain) - F(ar+Arn) 2" (1.18)

<b17B1)7"' 7( bl‘{‘BlTL (bS‘I‘Bsn) g

n=

(AgéR* (t=1,....,r); BeRT (t=1,...,s); 1+ZBg—ZAg§0),
/=1 /=1

where the equality in the convergence condition holds true for

P (H A> | (H Bfe> |

The Fox—Wright function extends the generalized hypergeometric function , F, 2]
which power series form reads

(e
z} -y = k|, (1.19)
k>0 ll;[l( Dk

Ay, -, Qr

blv"' abs

where, as usual, we make use of the Pochhammer symbol (or raising factorial)

I(t+ k)

(T)o=1;, (t)h=7(tr+1)---(7+k—-1)= )

, ke N.
In the special case A; = B; = 1;¢=1,--- ,r;5 =1,--- , s, the Fox-Wright function
»Ws[z] reduces (up to the multiplicative constant) to the generalized hypergeometric
function
(alal)a"' 7<a1”71> ’ } F(al)"'r(aT) [ala"' y Gy i|
z| = - z|.
(b171)7"' 7(b571) F(bl)r(bs) bl?"' 7bs

The H-function is defined as the Mellin-Barnes type path integral ( see, for
details, [16]):

m, n _ m, n (au7 Au) _ m, n (ah Al)a T (auv Au)
() = i [Z | (0 By) | =P P 0By, (0B
L o) 2 ds (1.20)
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where
ﬁ D(b; + Bjs) [1 T(1 — a; — Ays)
Os) = —— = (1.21)
H P =b; = Bjs) I I'a;+ 4;s)

and L is a suitable contour of the Mellin-Barnes type separating the poles of I'(b; +
Bjs) (j =1,---,m) from those of I'(1—a;—A;s) (j = 1,--- ,n). An empty product
is interpreted as 1, the integers m, n, u, v satisfy the inequalities 0 < m < v and
0 < n < wu, the coefficient A; (j = 1,---,u) and B; (j = 1,--- ,v) are positive
real numbers, and the complex parameters a; (j =1,--- ,u) and b; (j =1,--- ,v)
are so constrained that no poles of the integrand coincide. Also, the Mellin-Barnes
contour integral representing in the H-function converges absolutely and defines
an analytic function for |arg (2)| < 7€, where

m q
Q=) "B,— > B +ZA - Z Aj > 0.
j=1 j=m+1 j=n+1

In this and other instances, the sets of positive integers, integers, real numbers,
and complex numbers will be denoted by N, Z, R, and C, respectively.

In this paper, we obtain certain image formulas of the p—extended Mittag-LefHler
function &) o p( z) by using Saigo’s hypergeometric fractional calculus (integral and
differential) operators (1.1), (1.2), (1.3) and (1.4). Corresponding assertions for
the classical Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral
and differential operators are deduced. All the results are represented in terms of
the Hadamard product of the p-extended Mittag-Leffler function &} “ p( z) and Fox-
Wright function ,Ws(z). We also established Jacobi and its particular assertions for
the Gegenbauer and Legendre transforms of the p—extended Mittag-LefHer function

Exupl?)-

2. Fractional integration of the &  (z)

We begin the main results exposition with presenting a composition formulas of
generalized fractional integrals (1.1) and (1.2) involving p—extended Mittag-Leffler
function &) A p( z). We prove that such compositions are expressed in terms of the
Hadamard product (1.17) of p-extended Mittag-Lefler function (1.15) and Fox-
Wright function ,W4(2) (1.18).

Lemma 1. Let a, B, n € C. Then there exists the relation
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(a) If R(a) > 0 and R(c) > max[0, R(B — n)], then
M +n=0) 5

U @) = 5o g b 2.
In particular, for x > 0 we have
a jo—1 _ P(U) ot+a—1
(ISt ) () = mm (R(a) >0, R(o) > 0), (2.2)
T+ o1 _ Tloe+n) .
(1) at” )(x) = mx (R(a) >0, R(o) > —R(n)). (2.3)

(b) If R(a) > 0 and R(o) < 1+ min[R(5), R(n)], then

B0+ DM —0+1)
Fl—o)l(a+B+n—0+1) '
In particular, for x > 0 we have

(1907 (z) =

(2.4)

(I°t°H(z) = %x‘”o‘_l (0 < R(a) < 1—R(0)), (2.5)

P(n — 0+ 1) o—1
x
MNa+n—0o+1)
Theorem 1. Let p,«, 5,n,0,w, 1,7 € C, p >0 be such that R(p) >0, R(a) >0

and R(o) > max[0, R(8 — n)]. Then the following Saigo hypergeometric fractional
integral 137" of Exp(wt?) holds true:

(1677 {771E0,p (@)} ) (1) = 27 2]

A

(171)>(U7P)7(U+77—5,P); P
’ 3%[ (0= B.0), (0 +a+np); "] 27

where it is assumed that the left-sided hypergeometric fractional integral in (2.7)

er1sts.

Proof. Applying definition (1.15), using (1.1) and (2.1) and changing the orders

of integration and summation, we find for x > 0

(QBWfla J(t)}) (@)
Z )\k+u i ng’”tmkfl) (@)

_ 08— e T+ k(o4 pk)T(oc+n— 5+ pk) i
=z ! Z I( )\k—i—,u Ykl T(o+ o+ n+ pk)T(oc — B+ pk) k! (wz?)*.  (2.8)

(K, o7 ) (2) = (R(o) < 1+ R(0)). (2.6)

(wa”)
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By applying the Hadamard product (1.17) in (2.8), which in view of (1.15) and
(1.18), yields the desired formula (2.7).

Theorem 2. Let p,a, 3,1,0,w,pu,y € C, p >0 be such that R(p) >0, R(a) >0
and R(o) < 14+min[R(B), R(n)]. Then the following Saigo hypergeometric fractional
integral 17" of & . ( 2) holds true:

(1103, (2)]) =2, (2)

(1’1)’(1+5_07p)7<1+77—0',,0); w
*3\112[ (1—o0,p),0l+a+F+n—0,p); ;], (2.9)

where it is assumed that the right-sided hypergeometric fractional integral in (2.9)
ex1sts.

Proof. Applying definition (1.15), using (1.2) and (2.4) and changing the orders
of integration and summation, we find for x > 0

(127 {’f" 15;W ()}) @
2; o + @ () @

:xa_g_li (vip)e  TA+KIA+B—0+pk)I(1+n— 0+ pk) (g)k
FAe+p)k! TAl—o+pk)l(1+a+F+n—o+pk)k! \ar/ ~

k=0
(2.10)

By applying the Hadamard product (1.17) in (2.10), which in view of (1.15) and
(1.18), yields the desired formula (2.9).

Corollary 2.1. Let p,c,0,w,p,v € C, p > 0, be such that R(p) > 0, ,R(a) >
0,R(c) > 0. Then the following Riemann-Liouville fractional integral I, of
EN . p(wt?) holds true:

(13, {167, 0)}) (@) = 2”18

A p(wxp>

(171)7(07p); o
* oWy (0 + a, p): wr’ |, (2.11)

where it is assumed that the left-sided Riemann-Liouwville fractional integral in
(2.11) exists.

Corollary 2.2. Let p,a,n,0,w,pu,y € C, p >0, be such that R(p) > 0, R(a) >0
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and R(o) > —R(n). Then the following Erdélyi-Kober fractional integral 1", of

EN . p(wt?) holds true:

([;fa {t"_lglmp(wt")}) () = 2°71&]

)\“u,p(w’xp)
(L), (e+mp)
* 2\111 (O’—FO&—l—?],p), wx s (212)

where it is assumed that the left-sided Erdélyi-Kober fractional integral in (2.12)
er1sts.

Corollary 2.3. Let p,a,0,w,u,v € C, p >0 be such that R(p) >0, 0< R(a) <
1—R(o). Then the following Riemann-Liouville fractional integral I¢ of Ez%p (

holds true:
({8 (5)}) @) =218, ()

% (1,1),(1—&—U,p); i
2 W1 { (1= a,p); xp} ; (2.13)

w
tP

where it is assumed that the right-sided Riemann-Liouville fractional integral in
(2.13) exists.

Corollary 2.4. Let p,a,n,0,w, pu,y € C, p >0 be such that R(p) > 0, R(a) >0
and R(o) < 1+ R(n). Then the following Erdélyi-Kober fractional integral K, , of
&) (t%) holds true:

A 5P

(Kra {802 }) (@) =27 EL,, ()

(171)7(1 +77_U7p)u i
*2%{ (I+a+n—o0,p); z¢]’ (2.14)

where it is assumed that the right-sided Erdélyi-Kober fractional integral in (2.14)
er1sts.

3. Fractional differentiation of the &, ()
In this section, we obtain a composition formulas of generalized fractional dif-
ferentiation (1.3) and (1.4) involving p-extended Mittag-Leffler function & , (2).

We prove that such compositions are expressed in terms of the Hadamard product
(1.17) of p-extended Mittag-Leffler function and Fox-Wright function ,VU,(2).

Lemma 2. Let o, B, n,u,y € C, p > 0. Then there exists the relations
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(a) If R(a) >0 and R(c) > —min[0, R(a + 8+ n)], then

F@W@+a+ﬁ+mﬂw4

(D)) = =Rt (5.1)
In particular, for x > 0 we have
a y4o—1 _ F(U) o—a—1
(Dgyt” ) () = mm (R(a) >0, R(o) > 0), (3.2)

F(U +oa+ 77) CC,o‘—l

(Dq—yi_,ata_1>(x) = F(O’ + 77)

(R(a) > 0, R(0) > —R(a +1)).
(3.3)

(b) If R(a) > 0,R(0) < 1+ min[R(—F —n),R(a+1n)] and n = [R(a)] + 1, then

Pl—0-AT(1—ota+n) ..,
F(1—o)'(1—0c+n—p) '

(D> (z) = (3.4)

In particular, for x > 0 we have

(Dt N (z) = F(Il,(;—il_)a)x"_a_l (R(a) > 0, R(o) < 1+ R(a) — n),
(3.5)

(Dyat™™)@) = 15 i - Z)mxol (R(a) > 0, R(o) < 1+ R(a+1) - n).
(3.6)

Theorem 3. Let p,«a, 5,n,0,w, 1,7 € C, p>0 be such that R(p) >0, R(a) >0
and R(o) > —min[0,R(a + B + n)]. Then the following Saigo hypergeometric
fractional differentiation Dy 5" of &, ,(wt?) holds true:

(Dg‘f”{t" 151 wtp >(:B = o tP- 151Hp(w:vp)
. (1,1), (o, )Aa+0+n+ﬂp) P
] R ’ &0

where it is assumed that the left-sided hypergeometric fractional derivative in (3.7)
ex1sts.
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Proof. By virtue of the formulas (1.3) and (1.15), the term-by-term fractional
differentiation and the application of the relation (3.1), yields for z > 0

(D""B’" {tff—lg; (wt”)}) ()

k
_ v o,Bm O’erk*l)
Z I'( Ak +u <D0+ t (z)

e~ (wpk TA+KT(o+ph)T(o+a+n+B+pk),
=27 ) TNk + 1) & T(c + B+ pk) (0 + 1 + pk) k! (wa?)".

o (3.8)

By applying the Hadamard product (1.17) in (3.8), which in view of (1.15) and
(1.18), yields the desired formula (3.7).

Theorem 4. Let p, o, 3,1n,0,w,pu,y € C, p >0 be such that R(p) >0, R(a) >0
and R(o) < 14+ min[R(—F—n), R(a+n)],n = [R(a)]+1. Then the following Saigo
hypergeometric fractional differentiation Dehn of ng%p (t%) holds true:

(P 8 (35) ) @) = 2780, (5)

(1,1),1=0—=8,p),1+a+n—o0,p); w
*atl [ (1—0,p),(1=B+n—o0,p); E} ’ (3.9)

where it is assumed that the right-sided hypergeometric fractional derivative in (3.9)
er1sts.

Proof. By virtue of the formulas (1.3) and (1.15), the term-by-term fractional
differentiation and the application of the relation (3.4), yields for z > 0

(P2 {t” 151 un (5)1) @

N (w)t (D@Pe=rk=1) (g)
Zo IN¢ )\k —i—,u ) k! ( )

U+’Blz F(1+k:)1“(1—ﬁ—a+pk)l“(1+oz+77—a+pk) (i)k
F)\k—i—u F'l—o+pk)I'(1—0+n— 0+ pk)k! xr)

(3.10)
By applying the Hadamard product (1.17) in (3.10), which in view of (1.15) and
(1.18), yields the desired formula (3.9).

Corollary 3.1. Let p, v, 0,w, pu,y € C, p > 0, be such that R(p) > 0, and R(a) >
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0,R(0) > 0. Then the following Riemann-Liouville fractional differentiation D,
of &3, ,(wt?) holds true:

(wz”)

(D8‘+ {t"_lglﬂ,p(wtp)}) (v) =27 *1&)

App

(1,1),(e,0):
* oWy (0 — a, p): wa’| (3.11)

where it is assumed that the left-sided Riemann-Liouville fractional derivative in
(3.11) exists.

Corollary 3.2. Let p,a,n,0,w, i,y € C, p >0, be such that R(p) > 0, R(a) >0
and R(c) > —R(n+a). Then the following Erdélyi-Kober fractional differentiation
Dy, of €], ,(wt?) holds true:

(D;r, {tg 15;\)/;1,;7( )}) (x) =2~ 1gj\yup(wx"’)
(L 1), (0 +a+mn,p);

U
"2t (o +1,p);

wa’ |, (3.12)

where it is assumed that the left-sided Erdélyi-Kober fractional derivative in (3.12)
er1Sts.

Corollary 3.3. Let p,a,0,w, i,y € C, p > 0 be such that R(p) > 0, R(a) >
0,R(c) < R(aw) — [R()]. Then the following Riemann-Liouville fractional differ-
entiation D of & , (£) holds true:

(0 1, -5 2
% oW, { ( )’(gljgo‘p;a ) ;‘;] : (3.13)

where it is assumed that the right-sided Riemann-Liouville fractional derivative in
(3.13) exists.

Corollary 3.4. Let p,a,n,0,w,pu,y € C, p >0 be such that R(p) > 0, R(«a) >
0 and R(o) < R(a+n) — [R(a)]. Then the following Erdélyi-Kober fractional
differentiation D, , of 8:\7%17 (t%) holds true:

,Q

({600 (2)]) =550

* 2\1,1 |: (171)7(1+04_U+777P)a i (314)

Y

(1_0-_77ap)7 P



Fractional Calculus Operators of the Generalized Extended Mittag-Leffler ... 149

where it is assumed that the right-sided Erdélyi-Kober fractional derivative in (3.14)
exists.

4. Jacobi and Related Integral Transforms
In this section, we obtain Jacobi and related integral transforms of the p-
extended Mittag-Leffler functions (1.15). The classical orthogonal Jacobi poly-

nomials P (t) is defined by (see, for details, [23, 28, 29]):

PEO(t) = (—=1)"(—t) = (w;rn> zFl[_n’w;iJ{nJr ! ‘%} (4.1)

where o F} denotes the Gauss hypergeometric function [23].

Definition 1. (see, for example, [10, p. 501]) The Jacobi transform of a function
ft) is defined as follows:

1

1=yl = [ (=07 (140 PO (12

-1
(min{R(w), R(0), } > —1; n € Ny),
provided that the function f(t) is so constrained that the integral in (4.2) exists.

The Jacobi transform of the power function "~ (see, for example, [10]) is given
by

1
JEO el ] = / (1=t (1 + )P PO )t de
-1

o4+ n a:—nw+0+n+1;1—p;

(7 ot

n a+n: w+1l;

(4.3)
(min{R(c), R(n), } > 0; p,u,v € C; n € Ny),
where F%" denotes the Kampé de Fériet’s function in two variables (see, e.g.,
29, p. 22, Eq. 1.3(2)] and [29, p. 37, Eq. 1.4(21)]). In particular, upon setting
a =w+1and n = 0+1, this last integral formula (4.3) would reduce immediately
to the following form:

1
JEO -1, ] :/ (1= 8 (1+ 1) PO (1) =1 dt
—1
©4+n @+ li-nw+0+n+L1-p
_ 2w+9+1( > B(w + 1,0+ 1)FL2 1,2
n w+0+2: w+l
(4.4)
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(min{R(w), N(0), } > —1; p,u,v € C; n € Ny),

Indeed, in its further special case when p = m 4+ 1(m € Ny), (4.4) yields the
following well-known result for the Jacobi transform of " (m € Ny), which is given
by (see, for example, [23, p. 261, Eq. (14) and (15)])

J=O[™; n)

= /1 (1=t 1+ ) PO ()t dt

'_10 (m=0,1,2-,n—1)

270 I B(ew +n+ 1,0 + n+ 1) (m =n)

200 L (MB(w +n+ 1,0 +n+1)

(m=n+1ln+2n+3--)
(4.5)

n—m,w+n-+1
'2F1[ ‘:|7

w+0+2n+2

\

(min{R(w), (@), } > —1; m,n € Ny)

For various choices of the parameters w and #, the Jacobi polynomials ng,e) (t)
contain, as their special cases, such other classical orthogonal polynomials as (for
example) the Gegenbauer (or Ultraspherical) polynomials C¥(t), the Legendre (or
spherical) polynomials P,(t), and the Tchebycheff polynomials T,,(t) and U, (t) of
the first and second kind (see, for details, [29]). In fact, we have the following re-

lationships with the Gegenbauer polynomials C¥(z) and the Legendre polynomials
P,(z):

o) = (1/+n— §> ! <2V—|—n— 1) Pty (46)

n n

and

P.(t) = G (1) = PO (1), (4.7)

respectively, which, in conjunction with (4.2), yields the corresponding Gegenbauer
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transform G®)[f(t); n] given by

VIS
o G I G EE TR
_ /_11(1 2y o) f(de (R() > —%; n € No), (4.8)

and the corresponding Legendre transform L[f(¢); n] defined by
1
L) =GP0l = [ PO meN).  (@49)

Now, we prove three results which exhibit the connections between the Jacobi,
Gegenbauer and Legendre transforms with the following p-extended Gauss’ hyper-
geometric function (1.15).

Theorem 5. Under the condition stated in (1.15), the following Jacobi transform
formula holds true:

IO, (wh); )

+n
_ gm+o+1 (W 1,0
( n ) w+lo+1 ZF)\kJru

w+1l:—nw+0+n+1;1—p—k; i
- Fiy 1,2 — (4.10)
w+60+2: w41,  —
(R(p) > 0; m, n € No;min{R(w), R(0),} > —1; p,u,y € C),

where it is assumed that the Jacobi transforms in (4.4) exists.
Proof. By applying the definition (4.2) in conjunction with (1.15), we have

IO, £, (wt); 7]

- [T B & e a

AP
1

1 °° . wt)®
— /_ltp_l(l — )7 (1 41) P=9 (1) Z F((;k]iz m (kt!) dt, (4.11)
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Now, upon changing the order of integration and summation (which can be justified
easily by absolute convergence), we make use of the Jacobi transform formula (4.4)
with the parameter p replaced by p+ k (p, u,v € C; k € Np).

By applying the Jacobi transform formula (4.5), we can simplify the assertion
(4.10) of Theorem 5 in their special case when p = m + 1 (m € Ny). Moreover, in
view of the relationship (4.6), Theorem 5 yields the following corollary by setting

- =, 1
w=0=v 5-

Corollary 4.1. Under the condition stated in (1.15), the following Gegenbauer
transform formula holds true:

GO &, (wh); 7]

2v+n—1
:221/ B
( n ) (v+ ZFAkjLu

V—i—l.—n,QV—I—n,l—p—k, k

1:2;1 2 W
FllO 172 F7 (412)

2v+1: V—i—%; —; '

(R(p) > 0; m, n € No; p, 1,7 € C),

where it is assumed that the Gegenbauer transforms in (4.12) exists.
For the Legendre transform defined by (4.9), a special case of Theorem 5 when
w = 0 = 0 (or, alternatively, Corollary 4.1 with v = %) yields the following result.

Corollary 4.2. Under the condition stated in (1.15), the following Legendre trans-
form formula holds true:

L[t & p(wt); 1]
1:—n,n+1;1—p—Kk; k

w
L2| o (4.13)

’—‘w
[ Jya

2ZF)\k+,u

=0 2. |

(R(p) > 0; m, n € No; p, 1,7 € Cp),
where it is assumed that the Legendre transform in (4.13) exists.

5. Concluding Remarks

In this paper, we obtain certain image formulas of the p—extended Mittag-Leffler
function & , (z) by using Saigo’s hypergeometric fractional calculus (integral and
differential) operators (1.1), (1.2), (1.3) and (1.4). Corresponding assertions for
the classical Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral
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and differential operators are deduced. All the results are represented in terms of
the Hadamard product of the p—extended Mittag-Leffler function 5;’ “’p(z) and Fox-
Wright function , W4(z). We also established Jacobi and its particular assertions for
the Gegenbauer and Legendre transforms of the p—extended Mittag-Lefler function

5;%1)(2).
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