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Abstract: In this paper, we introduce a new notation of reduced linear shift
operator L (¢), and with the aid of this new operator, we study the uniqueness
of meromorphic functions ¢(z) and L.(¢) share co CM in the extended complex
plane. The results obtained in the paper significantly improve a existing result.
Further, using the notion of sets, we deal the same problem. We exhibit a handful
result to justify certain statements relevant to the content of the paper.
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1. Introduction and Preliminaries

We assume in this paper that the readers are familiar with the fundamental
concepts of Nevanlinna value distribution theory, see ([15, 25]). A meromorphic
function is one that is meromorphic across the entire complex plane. By S*(o, ¢),
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we denote any quantity satisfying S(r,¢) = o(T'(r,¢)) as r — oo outside of an
exceptional set E with finite logarithmic measure [ pdr/r < oco. A meromorphic
function « is said to be a small function of ¢ if it satisfies T'(r, «) = o(T'(r, ¢)). We
say that two non-constant meromorphic functions ¢ and 1 share small function «
IM(CM) if ¢ — @ and 1 — « have the same zeros ignoring multiplicities (counting
multiplicities). Let ¢ be a non-constant meromorphic function. We denote by
Ni(r,1/¢) the counting function of simple zeros of ¢.
Let ¢ be non-constant meromophic function.
The order of ¢ is defined by

\— Tim log* 1(r, ¢)
r—>00 log r

Definition 1.1. Let a be a small function of ¢ and ¢ and let S(¢p = o = ) be

the set of all commom zeros of ¢ — a and ¢ — « counting multiplicities. We say

that two non-constant meromorphic functions ¢ and 1 share small function o« CM

almost if

N(r, (ﬁ_%) —i—N(r, wia) CON(r = a =) = S(r, ) + S(r, ).

Definition 1.2. [18] We denote by Ny(r, a; ¢) the sum N(r, a; ¢)+N(r,a; ¢| > 2).
Let ¢ be a nonzero complex constant, and let ¢(z) be a meromorphic function. The
shift operator is denoted by ¢(z + c). Also, we use the notations A.¢ and Ak¢p to
denote the difference and kth-order difference operators of ¢(z), which are defined
respectively by

Ab(z) = 9z + ) — 6(2), AEg(2) = A(ASTG(2)), ke N k> 2.

Carefully observing the definitions, we see that all the variants of difference opera-
tors are nothing but linear combinations of different shift operators. So generalizing
A¥g, it will be reasonable to introduce the linear c-shift operator L.(¢) = L.(¢)(z2)
as follows:

k
Lep = Le(¢)(2) = Z a;p(z +¢;),

where o € C for j = 1,2,....k with a, # 0. For convenience, putting oy, =
Bry ko1 = Br_1,..,a0 = (—=1)kBy, where B; are nonzero complex constants with
Y o(=1)"78; = 0, we get a special operator denoted by L.¢ = Lj(¢)(z) and call
it the reduced linear c-shift operator.
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Putting By = (), Be-1 = (1), B2 = (F_o)s -, B0 = (&) in LL(¢)(2), we easily
verify that L"(¢)(z) = AF¢.

For c-shift operator of meromorphic functions and its certain properties, we
refer to the articles [1], [2], [3], [6], [16], [17]. For recent development in operator
sharing small function aspect of it, we referred to the articles [4], [5], [7], [8].

Nevanlinna [24] proved the following famous five-value theorem.

Theorem A. Let ¢(z) and ¢ (z) be two non-constant meromorphic functions, and
let a;(j =1,2,3,4,5) be five distinct values in the extended complex plane. If ¢(z)
and ¥ (z) share oj(j = 1,2,3,4,5) IM, then ¢(z) = (z).

In 2000, Li and Qiao [20] proved that Theorem A is still valid for five small
functions, they proved.

Theorem B. Let ¢(z) and ¥(z) be two non-constant meromorphic functions, and
let aj(z)(j =1,2,3,4,5) (one of them can be 0o ) be five distinct small functions of
d(2) and P(z). If ¢(z) and P(z) share a;(2)(j = 1,2,3,4,5) IM, then ¢(z) = ¢(z).
Recently, value distribution in difference analogue of meromorphic functions
has become a subject of some interests, see [9].
In 2012, Chen and Chen [9] proved.

Theorem C. Let ¢(z) be a non-constant meromorphic function of finite order, let
a, ¢ be two nonzero finite values, and let n > 7 be positive integer. If [¢p(2)]" and
[Ap(2)|" share o CM, ¢(2) and A¢(z) share oo CM, then ¢(z) = TA¢(z), where
™=1,7#1.

In 2018, Qi, Li and Yang [22] proved.

Theorem D. Let ¢(z) be a non-constant meromorphic function of finite order, let
a, ¢ be two nonzero finite values, and let n > 9 be positive integer. If [¢ (2)]" and
[0(z + )" share a CM, ¢ (2) and ¢(z + ¢) share co CM, then ¢'(2) = T7¢(z + ¢),
where 7" = 1.

Theorem E. Let ¢(z) be a non-constant entire function of finite order, let a,c
be two nonzero finite values, and let n > 5 be positive integer. If [¢'(2)]" and
[0(z + )™ share a CM, ¢ (2) and ¢(z + ¢) share co OM, then ¢ (2) = 7¢(z + c),
where 7" = 1.

In 2020, Wang and Fang [23] removed the condition that the function ¢(z) is
of finite order in Theorems D and E, and proved.

Theorem F. Let ¢(z) be a non-constant meromorphic function, let a,c be two
nonzero finite values, and let n > 5,k be positive integers. If [pF)(2)]" and [¢(z +
)" share a CM, ¢¥)(2) and ¢(z + ) share oo CM, then ¢*(z) = 7¢(z + ¢), where
T =1.
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By above theorems, we naturally pose following problem:
Problem 1. Are Theorem C, Theorem D and Theorem F still valid if the constant
a is replaced by a small function a(z) of ¢(z)?
In this paper, we study the problem and obtain the following results.

Theorem 1.1. Let ¢(z) be a non-constant meromorphic function, let ¢ be two
nonzero finite value, and let n > 10 be positive integer, and let a(z)(Z£ 0) be a
small function of ¢(z). If [¢(2)]" and [LL(p)(2)]" share a CM, ¢(z) and L.(¢)(2)
share oo CM, then ¢(z) = 7L.(0)(2), where 7" = 1,7 # 1.

Hence, Theorem C is still valid if the constant « is replaced by a small function
a(z) of ¢(2).
Theorem 1.2. Let ¢(z) be a non-constant meromorphic function, let ¢ be two
nonzero finite value, and let n > 3 + 2m be positive integer, and let a(z)(# 0)
be a small function of ¢(z). If [p(2)|"P(¢) and [p(z + ¢)|"P(¢) share a(z) CM,
d(2)P(¢) and ¢(z + ¢)P(¢) share oo CM, then either ¢(z)P(¢) = 1¢(z + ¢) P (o),
where 7T =1 or [¢(2)]"P(d)[d(z + ¢)]"P(¢) = ().

2. Lemmas

Lemma 2.1. [24, 25| Let ¢(z) be a non constant meromorphic function, and let k

be positive integer. Then
o)
m(r, ?) = S(r, ¢).

Lemma 2.2. [19] Let ¢(z) be a non constant meromorphic function, and let n > 2
be a positive integer. If ¢ and ¢ have finite many zeros, then ¢ is of finite order.

Lemma 2.3. [24] Let
X// 2X/ Y// 2Y/
M=\w-v—)-\v—v—)
o) i)

where X and Y are two non-constant meromorphic functions. If X andY share 1

CM and M # 0, then

N, (r, Xl_ 1) < N(r, M) + S(r, X) + S(r,Y).

Remark 2.1. We know from the proof in [24] that Lemma 2.3 is valid when X
and Y share 1 CM almost.
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Lemma 2.4. [12, 13] Let ¢(z) be a non constant meromorphic function of finite
order, let ¢ be a nonzero complex number. Then

m(r25) = s

for all r outside of a possible exceptional set E with finite logarithmic measure.

Lemma 2.5. [10, 14] Let ¢(z) be a non constant meromorphic function of finite
order, and let ¢ be a nonzero complex number. Then

T(r,¢(z +c)) = T(r,0) + 5(r, 0),
N(r,¢(z +¢)) = N(r,¢) + 5(r, 9),

1 1
N(T,m) = N(r,a) + S(r, 9).

Lemma 2.6. [11, 12] Let ¢(z) be a non constant meromorphic function of finite
order, and let ¢ be a nonzero complex number. If ¢(z + ¢) = ¢(z), then ¢ is of
order at least 1.

Lemma 2.7. [5] Let ¢(z) be a non constant meromorphic function of finite order,
and let ¢ € C\ {0} be fized. Then

T(r,L.o) = (k+ 1)T(r,¢) + S(r, ¢).

3. Proof of Main Results

Proof of Theorem 1.1.
Let

X =— and Y:[LC¢] )
Q@ o

Since ¢" and [L.¢]" share a CM, we know that X and Y share 1 CM almost. Set

(3.1)

’ ’

X Y
XX vy o (3:2)

We discuss from following two cases.
Case 1: ® =0. By (3.1) we have

X -1 Y —1
=A 3.3
- —, (33)

where A is a nonzero value.
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If A =1, then from (3.3) we get ¢" = [L%¢]", that f = 7L.¢, where 7 is a
complex number such that 7" = 1.
If A+# 1, then from (3.3) we have

1

< 1—A. (3.4)

<
Il

By (3.4) we can obtain
T(r,¢) = T(r, Led) + S(r, ),

S(r,¢) = S(r, LLo). (3.5)

According to (3.1), (3.4), (3.5), Nevanlinna’s Second Fundamental Theorem ([2],
page 19, Theorem 1.6) and Lemma 2.7 we get

nT'(r,¢) =T(r,¢) + S(r,¢)

<N(r,X) + N(r, l) + N(r

1
X 1 )+S(r7¢)

b
X_l—A

<N(r,¢) + N(r, }b) + N(r,L¢) + S(r, ¢)

nT(r,¢) = (k+3)T(r,¢) + S(r, ¢), (3.6)

it follows from (3.6) and n > 6 taht T'(r,¢) = S(r, ¢), a contradiction.

Case 2: & # 0. Let z; be a common pole of ¢ and L] ¢ with multiplicity [/, then
by (3.2) we know that zy is the zero of ¢, and the multiplicity is at least nl — 1.
Since ¢ and L!¢ share oo CM, then

N(r,X)=N(rY) < N(T,%)%—S(r,(b)

nl—1

1
< T
< ——T(r,¢) + 5(r,0)
By using Lemma 2.3 we get,
— 1 1 1
< — — . .

Let M be defined as in Lemma 2.3. Suppose that M # 0, by Lemma 2.3 and
Remark 2.1 we have

— 1 — 1
N(TaM) S N(ﬂ}) +N(T7?> +N0(T7

1 1
X') + No(r, 7) + S(r, ¢). (3.8)
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where Ny(r, %) denotes the counting function corresponding to the zeros of X'
which are not the zeros of X and X — 1; Ny(r, %) denotes the counting function

corresponding to the zeros of Y’ which are not the zeros of Y and Y — 1. By

Nevanlinna’s Second Fundamental Theorem, we get
T(r, X) +T(r,Y) < N(r,X) + N(r, 3)

_ 1 — —, 1 — 1 1 1
+N(T,ﬁ)+N(T,Y)+N(T,?)—f—N(T,Y_ 1)+N0(T,?)+N0(T,7)+S(T7¢>
(3.9)
Since X and Y share 1 almost CM, we have
_ 1 — 1 1 1/— 1 — 1
- < Z
N ) + Wl ) < Ml ) + 5 (M )+ F )
(3.10)
By (3.8)-(3.10) we have
T(r,X)+T(r,Y) < N(r, X)
+2N( 1)+N( Y) +2N( 1)+1 N( ! )+ N( ! )|+ S(r, )
"X r, ny)ts S Ny r, ).
(3.11)

By Nevanlinna’s First Fundamental Theorem ([2], Page 12, Theorem 1.2), we have

N(r, ) + Nl L ) ST X)+T(Y) +5(r9). (3.12)

X-1
By (3.7), (3.11), (3.12) and Lemma 2.7, we can obtain
— 1 — 1 — —
Tr,X)+T(r,Y) <4N(r,—) +4N(r,—) + 2N(r,¢) + 2N (r, L.¢) + S(r, ¢)

¢ "L
T(r, X) + T(r,Y) < (6 L Stk 1”) (T(r, X)+ T(r,Y) + S(r,¢)).  (3.13)

n —
Obviously, by (3.1) we have

Nr.5p) = N 3) + 5(0.0)
N(r, X) = N(r,¢) + 5(r,9),
N 5) = N 75) + S(r.0)
N(Ta Y) - N(Tv LZ¢) + S(?”, ¢)7
T(r,X)=nT(r,¢)+ S(r,¢),
T(r,Y)=nT(r,L.¢) + S(r, ¢).
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Hence, by above formulas, (3.13) and Nevanlinna’s First Fundamental Theorem,
we get
— 1

T2 + 70, 229) < (04 ")V 5+ W 170) + 50,00

< (6 L Stk ”) (T(r, ) + T(r, ') + S(r, ),

n—1

and it follows that

n® —Tn — 6k
n—1

(T'(r,¢) + T(r, Li¢)) < S(r, ¢). (3.14)

Thus by (3.14) and n > 10, we get T'(r, ¢) = S(r, ¢). a contradiction.
Hence, M = 0. Thus we have

1" !/ 1" !

X X Y Y

X ‘X-1 Y Y -1

Solving above equation, we get

1 A A 14+ B—-BX
X-1 Y—1+ Y -1 X-1 7 (3.15)
where A(# 0) and B are constants.
Case 2.1: B # 0, —1. It follows from (3.15) that
T(r, Ltg) = T(r,¢) + 5(r, ¢),
— 1 —
B

So by (3.15), (3.16), Nevanlinna’s Second Fundamental Theorem, Lemma 2.7 and
the fact that ¢ and L.¢ share oo CM, we get

nT(r,¢) <T(r,X)+ S(r, o)

1

~—57) 750, 9)

_ _ 1 _
< N(r,X)+ N(r,—) + N(r,
X - B

X

(r, %) + N, X)+N(r,Y) + S(r, ¢)

(r, é) + N(r,8) + N(r, L) + 5(r.0)

IN
=

IA
=
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nT(r,¢) = (k+3)T(r,¢) + S(r, ¢). (3.17)

Therefore, by (3.17) and n > 10, we can get T'(r, ¢) = S(r, ¢), a contradiction.
Case 2.2: B =0, By (3.15) we obtain
Y+ (A-1)

X= " Y =AX —(A-1), (3.18)

If A#1, by (3.18) we get

N(n ﬁ) _ N, %) ~ N %) +S(r, ). (3.19)

A

By (3.16), (3.19), Nevanlinna’s Second Fundamental Theorem, Lemma 2.7 and the
fact that ¢ and L.¢ share co CM, we get

nT(r,¢) = (k+3)T(r,¢) + S(r, 9). (3.20)

Therefore, by (3.20) and n > 10, we can get T'(r, ¢) = S(r, ¢), a contradiction.
Hence A = 1. It follows from (3.18) that X =Y. Thus by (3.1) we deduce that

¢ =71L.p, where 7" = 1,7 # —1.

Case 2.3: B = —1, by (3.15) we have

A (A+1)X - A
X=—" Y= ) 21
Y+ A+1 X (3:21)
If A # 1, we get from (3.19) that N(r, X_li = N(r,+). Using the same
A+1
arguement as in the Case 2.1, we get a contradiction. Thus, A = —1.

By (3.21), we get XY = 1. It follows from XY =1 and (3.1) that

P"[LB" = o (3.22)
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Set ¢LL¢ = 3, then we get f" = o?. It follows that T'(r,3) = 2T(r,). Thus
B # 0 is a small function of ¢. Since ¢ and L.¢ share oo CM, we deduce from
oLl ¢ = [ that

N, }b> < N(r. %) < T(r. )+ O(1) = 5(r, 6), (3.23)

N(r,¢) < N(r, ) < T(r, B) + O(1) = S(r, 9. (3.24)

Thus by Nevanlinna’s Second Fundamental Theorem, (3.23), (3.24) and Lemma
2.5, we get

¢2

2T(r,¢) = T(r,¢*) < T(r, 7T T(r,)+0(1)
2 1
T4 10 55 4 N (ng ) + 5000
p g .
27(0,6) = N, Z) + 5(0,6) < S(r,0), (3.25)
that is T'(r, ¢) = S(r, ¢), a contradiction.
Hence, we prove that ¢ = 7L.¢, where 7" = 1.
Proof of Theorem 1.2.
Let
a a
Since ¢"P(¢) and [¢(z+¢)]" P(¢) share ae CM, we know that X and Y share 1 CM
almost. Set . ) /
X" 2X ' o2y
V= (Y - ﬁ) - (? - ﬁ) (3:27)
we discuss from following two cases.
Case 1: ¥ = 0. By (3.27) we have
1 A
= B 2
X-1- v-1' "7 (3:28)

where A is a nonzero value.
If A =1, then from (3.28) we get ¢"P(¢) = [¢p(z + ¢)|"P(¢), that is ¢pP(¢) =

7¢.P(¢), where 7 is a complex number such that 7™ = 1.



Unicity of Meromorphic Function with their Shift Operator ... 133

If A1, then from (3.28) we have

X = Y}#“l, Y — AX — (A—1). (3.29)

By (3.29) we can obtain
T(r,oP(¢)) = T(r,¢.P(¢)) + S(r, ),

S(r,¢) = S(r, ¢P()). (3.30)

According to (3.26), (3.29), (3.30) and Nevalinna’s Second Fundamental Theorem
([2], Page 19, Theorem 1.6) we get

(n+m)T(r,¢)

T(r,X)+ S(r,¢)

< N(r,X)+ N( ,—)+N(

< N oP(@) + N (n

(n+m)T(r,¢) =3(1 +m)T(r,¢) + S(r, ¢), (3.31)

it follows from (3.31) and n > 3 + 2m that T'(r, (b) = S(r,¢), a contradiction.
Case 2: ¥ # 0. Let z5 be a common pole of ¢P(¢) and ¢.P(¢) with multiplicity
1. then by (3.2) we know that zq is the zero of £ and the multiplicity is at least
2n — 1. Then we use the same argument as in the proof of Theorem 1.1 and note
that (3.26) is replaced by the following formula.

Since pP(¢) and ¢.P(¢) share oo CM, then

Nir, ) =N %)

IN

IN

Nr. %) < 2n1_ [N %) + N %)] + S(r é), (3.32)

and we prove either ¢P(¢) = 7¢.P(¢), with 7™ =1, or (¢P(¢).¢.P(¢)) = o’
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