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1. Introduction
S. S. Miller and P. T. Mocanu introduced differential subordination and derived

some properties associated with it [11]. Then developed by many authors see
also [12, 13]. Fuzzy subordination and fuzzy differential subordination was first
studied by G. I. Oros and Gh. Oros [14]. Authors have extended the notion
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of subordination from the geometric theory of analytic functions of one complex
variable to the fuzzy set theory. In [15] the authors have defined the notion of fuzzy
differential subordination.
Fuzzy differential subordination theory represents a generalization of the classical
concept of differential subordination which emerged in recent years as a result of
embedding the concept of fuzzy sets into geometric function theory. In this paper
we have studied differential subordination and fuzzy differential subordination for
certain classes of holomorphic functions.
Let U = {z ∈ C : |z| < 1} and H(U) denote the class of holomorphic functions in
U . For a ∈ C and n ∈ N, we denote by H[a, n] = {f ∈ H(U) : f(z) = a + anz

n +
an+1z

n+1+..., z ∈ U} and An={f ∈ H(U) : f(z) = z+an+1z
n+1+an+2z

n+2+..., z ∈
U} with A1=A.

Definition 1.1. [11] For the functions f and g analytic in U , we say that the
function f is subordinate g in U and written as f ≺ g, if there exist a Schwartz
function w analytic in U with w(0) = 0, |w(z)| < 1 (z ∈ U) such that f(z) =
g(w(z)) (z ∈ U). In particular, if the function g is univalent in U, the above
subordination is equivalent to f(0) = g(0), f(U) ⊂ g(U).

Definition 1.2. [22] Let X be a non-empty set. An application F : X → [0, 1] is
called fuzzy subset. An alternate definition, more precise would be the following:
A pair (S, FS), where FS: X → [0, 1] and supp(S, FS) = {x ∈ X : 0 < FS(x) ≤ 1}
is called fuzzy subset. The function FS is called membership function of the fuzzy
subset (S, FS).

Definition 1.3. [14] Let two fuzzy subsets of X be (M,FM) and (N,FN). We say
that the fuzzy subsets M and N are equal if and only if FM(x) = FN(x), x ∈ X
and we denote this by (M,FM) = (N,FN). The fuzzy subset (M,FM) is contained
in the fuzzy subset (N,FN) if and only if FM(x) ≤ FN(x), x ∈ X and we denote
the inclusion relation by (M,FM) ⊆ (N,FN).
Assume that D is a set in C and f, g are holomorphic functions. We indicate by

f(D) = supp(f(D), Ff(D)) = {f(z) : 0 < Ff(D)(f(z)) ≤ 1, z ∈ D}

and

g(D) = supp(g(D), Fg(D)) = {g(z) : 0 < Fg(D)(g(z)) ≤ 1, z ∈ D}.

Definition 1.4. [14] Suppose that D is a set in C, z0 ∈ D is a fixed point and let
the functions f, g ∈ H(D). The function f is named a fuzzy subordinate to g and
write f ≺F g or f(z) ≺F g(z) if
(1) f(z0) = g(z0),
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(2) Ff(D)(f(z)) ≤ Fg(D)(g(z)), z ∈ D.

Definition 1.5. [15] Let h be univalent in U and Ψ : C3×U → C. If P holomorphic
in U satisfies the fuzzy differential subordination

Fψ(C3.U)(ψ(P(z), zP ′(z), z2P ′′(z); z)) ≤ Fh(U)(h(z)), (1.1)

i.e.,
ψ(P(z), zP ′(z), z2P ′′(z); z) ≺F h(z), z ∈ U

then P is called a fuzzy solution of the fuzzy differential subordination. The univa-
lent function q is called a fuzzy dominant of the fuzzy solutions of the fuzzy differ-
ential subordination, or more simple a fuzzy dominant, if P(z) ≺F q(z), z ∈ U for
all P satisfying (1.1). A fuzzy dominant q̃ that satisfies q̃(z) ≺F q(z), z ∈ U for
all fuzzy dominant q of (1.1) is said to be the fuzzy best dominant of (1.1).

Definition 1.6. Suppose that H is the complex Hilbert space and the algebra of all
bounded linear operators is denoted by L(H). Let T be the bounded linear operator
and σ(T) the spectrum on the complex plane. The operator f(T) on H is known as
Riesz-Dunford integral [3] given by

f(T ) =
1

2πi

∫
c

(zI − T )−1f(z)dz (1.2)

where I is the identity operator on H and C is the simple smooth closed contour,
positive oriented and consists the spectrum σ(T) [5]. The operator f(T) converges
in the norm topology and can be written as:

f(z) =
∞∑
n=0

fn(0)

n!
T n (1.3)

For f ∈ A, 0 ≤ θ ≤ 1 and 0 ≤ µ ≤ 1, Dunford [3] defined the operator Rθ
µ : A → A

Rθ
µf(z) =

1

(1− µ)θ+1Γ(θ + 1)

∫ ∞

0

tθ+1e−(t/(1−µ))f(zt)dt

= z +
∞∑
n=2

(1− µ)n+1Γ(n+ θ + 2)

Γ(θ + 1)
anz

n

(1.4)

In [2] they mentioned different types of intuitionistic fuzzy continuities and
intuitionistic fuzzy boundedness in intuitionistic fuzzy pseudo normed linear spaces
which we used at the time of extending the hilbert space operator for fuzzy notions.
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We need the following lemmas in investigating our main results.

Lemma 1.1. [11] (Hallenbeck and Ruscheweyh) Let h be a convex function with
h(0) = a, and let γ ∈ C∗ be a complex number with ℜ(γ) ≥ 0. If P ∈ H[a, n] and

P(z) +
1

γ
zP ′(z) ≺ h(z), z ∈ U

then
P(z) ≺ g(z) ≺ h(z), z ∈ U

where

g(z) =
γ

nz
γ
n

∫ z

0

h(t)t
γ
n
−1dt, z ∈ U.

Lemma 1.2. [11] Let g be a convex function in U and let h(z) = g(z) + nαzg′(z),
for z ∈ U , where α > 0 and n is positive integer. If P(z) = g(0) + Pnzn +
Pn+1z

n+1 + ..., z ∈ U is holomorphic in U and

P(z) + αzP ′(z) ≺ h(z), z ∈ U

then
P(z) ≺ g(z), z ∈ U,

and the result is sharp.

Lemma 1.3. [16] Let h be a convex function with h(0) = a, and let γ ∈ C∗ be a
complex number with ℜ(γ) ≥ 0. If P ∈ H[a, n] with P(0) = a and Ψ : C2.U →
C, ψ(P(z), zP ′(z)) = P(z) + 1

γ
zP ′(z) is holomorphic in U , then

Fψ(C2.U)

[
P(z) +

1

γ
zP ′(z))

]
≤ Fh(U)(h(z)),

implies
FP(U)(P(z)) ≤ Fq(U)(q(z)) ≤ Fh(U)(h(z)), z ∈ U,

i.e.,
P(z) ≺F q(z) ≺F h(z),

where

q(z) =
γ

nz
γ
n

∫ z

0

h(t)t
γ
n
−1dt

the function q is convex and is the fuzzy best (a,n)-dominant.

Lemma 1.4. [16] Suppose that q is convex function in U, let h(z) = g(z)+nγzg′(z),



Differential Subordinations and Fuzzy Differential Subordinations ... 101

γ > 0 and n ∈ N. If P ∈ H[q(0), n] and Ψ : C2 × U → C, ψ(P(z), zP ′(z)) =
P(z) + γzP ′(z) is holomorphic in U , then

Fψ(C2.U) [P(z) + γzP ′(z)] ≤ Fh(U)(h(z)),

implies
FP(U)(P(z)) ≤ Fq(U)(q(z)), z ∈ U,

i.e.,
P(z) ≺F q(z)

and q is the fuzzy best dominant.
Recently Oros and Oros [15, 16], Lupas [6, 7, 8], Hyder [7], Wanas [20], Wanas

and Bulut [19], Altınkaya and Wanas [1] and Wanas and Majeed [18, 21] have
obtained fuzzy differential subordination result for certain classes of holomorphic
functions. In [6] determined certain coefficient inequalities for the classes of q-
starlike and q-convex function. We used to extend this is in fuzzy form. In [4]
defined subclasses of analytic functions which are based upon operators on Hilbert
space involving Wright’s generalized hypergeometric function. Here we used the
Hilbert space operator defined in (1.4), we study differential subordinations and
fuzzy differential subordinations properties associated with it.

2. Subordination Results

Theorem 2.1. Let g be a convex function, g(0) = 1 and let h be the function
h(z) = g(z) + z

ζ
g′(z), z ∈ U, if a, ζ > 0, n ∈ N, f ∈ A and satisfies the differential

subordination (
Rθ
µf(z)

z

)ζ−1 (
Rθ
µf(z)

)′ ≺ h(z), z ∈ U, (2.1)

then (
Rθ
µf(z)

z

)ζ

≺ g(z), z ∈ U,

and this result is sharp.
Proof. Let

Rθ
µf(z) = z +

∞∑
n=2

(1− µ)n+1Γ(n+ θ + 2)

Γ(θ + 1)
anz

n, (0 ≤ θ ≤ 1, 0 ≤ µ ≤ 1)

Consider

P(z) =

(
Rθ
µf(z)

z

)ζ

= 1 + Pζzζ + Pζ+1z
ζ+1 + ..., z ∈ U.
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We deduce that P ∈ H[1, ζ]. Differentiating above equation, we get(
Rθ
µf(z)

z

)ζ−1 (
Rθ
µf(z)

)′
= P(z) +

1

ζ
zP ′(z), z ∈ U,

then (2.1) becomes

P(z) +
1

ζ
zP ′(z) ≺ h(z) = g(z) +

z

ζ
g′(z), z ∈ U.

By using Lemma 1.2, we have

P(z) ≺ g(z), z ∈ U,

i.e., (
Rθ
µf(z)

z

)ζ

≺ g(z), z ∈ U.

It can be observed that this result is sharp.

Theorem 2.2. Let h be a holomorphic function which satisfies the inequality

Re
(
1 + zh′′(z)

h′(z)

)
> −1

2
, z ∈ U, and h(0) = 1. if a, ζ > 0, n ∈ N, f ∈ A and satisfies

the differential subordination(
Rθ
µf(z)

z

)ζ−1 (
Rθ
µf(z)

)′ ≺ h(z), z ∈ U (2.2)

then (
Rθ
µf(z)

z

)ζ

≺ q(z), z ∈ U,

where

q(z) =
ζ

zζ

∫ z

0

h(t)tζ−1dt.

The function q is convex and it is the best dominant.
Proof. Let

P(z) =

(
Rθ
µf(z)

z

)ζ
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=

z +∑∞
n=2

(1−µ)n+1Γ(n+θ+2)
Γ(θ+1)

anz
n

z

ζ

=

(
1 +

∞∑
n=2

(1− µ)n+1Γ(n+ θ + 2)

Γ(θ + 1)
anz

(n−1)

)ζ

=1 +
∞∑

j=ζ+1

Pjzj−1

=1 + ζ

(
∞∑
n=2

(1− µ)n+1Γ(n+ θ + 2)

Γ(θ + 1)
anz

(n−1)

)
+

+
ζ(ζ − 1)

2!

(
∞∑
n=2

(1− µ)n+1Γ(n+ θ + 2)

Γ(θ + 1)
anz

(n−1)

)2

+ ...,

for z ∈ U, P ∈ H[1, ζ]. Differentiating P , we obtain(
Rθ
µf(z)

z

)ζ−1 (
Rθ
µf(z)

)′
= P(z) +

1

ζ
zP ′(z), z ∈ U,

and (2.2) becomes

P(z) +
1

ζ
zP ′(z) ≺ h(z), z ∈ U.

Using Lemma 1.1, we have
P(z) ≺ q(z), z ∈ U,

i.e., (
Rθ
µf(z)

z

)ζ

≺ q(z) =
ζ

zζ

∫ z

0

h(t)tζ−1dt, z ∈ U,

and q is the best fuzzy dominant.

Corollary 2.1. Let h(z) = 1+(2β−1)z
1+z

be a convex function in U, where 0 ≤ β < 1.
If a, ζ ≥ 0, n ∈ N, f ∈ A and satisfies the differential subordination(

Rθ
µf(z)

z

)ζ−1 (
Rθ
µf(z)

)′ ≺ h(z), z ∈ U, (2.3)

then (
Rθ
µf(z)

z

)ζ

≺ q(z), z ∈ U,
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where q is given by

q(z) = (2β − 1) +
2(1− β)ζ

zζ

∫ z

0

tζ−1

1 + t
dt, z ∈ U.

The function q is convex and it is the best dominant.
Proof. Following the same steps as in the proof of the Theorem 2.2 and considering

P(z) =
(

Rθ
µf(z)

z

)ζ
, the differential subordination (2.3) becomes

P(z) +
1

ζ
zP ′(z) ≺ h(z) =

1 + (2β − 1)z

1 + z
, z ∈ U.

By using Lemma 1.2, we have P(z) ≺ q(z) i.e.,(
Rθ
µf(z)

z

)ζ

≺ q(z) =
ζ

zζ

∫ z

0

h(t)tζ−1dt

=
ζ

zζ

∫ z

0

tζ−1 (1 + (2β − 1)t)

1 + t
dt

=
ζ

zζ

∫ z

0

[
(2β − 1)tζ−1 + 2(1− β)

tζ−1

1 + t

]
dt.

Therefore(
Rθ
µf(z)

z

)ζ

≺ q(z) = (2β − 1) +
2(1− β)ζ

zζ

∫ z

0

tζ−1

1 + t
dt, z ∈ U.

3. Fuzzy Subordination Results

Theorem 3.1. Suppose that the convex function h satisfies h(0) = 1. Let f ∈ A
and

1

z

(
Rθ
µf(z)

)
+

∞∑
n=2

(1− µ)n+1Γ(n+ θ + 2)

Γ(θ + 1)
(n− 1)anz

(n−1) + z
(
Rθ
µf(z)

)′′
is holomorphic in U. If

Fψ(C2.U)

[
1
z (Rθ

µf(z))+
∑∞
n=2

(1−µ)n+1Γ(n+θ+2)
Γ(θ+1)

(n−1)anz(n−1)+z(Rθ
µf(z))

′′
]
≤Fh(U)(h(z)), (3.1)

then
F(Rθ

µf)
′(U)(Rθ

µf(z))
′ ≤ Fq(U)q(z) ≤ Fh(U)h(z),
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i.e.,

(Rθ
µf(z))

′ ≺F q(z) ≺F h(z),

where q(z) = 1
z

∫ z
0
h(t)dt is convex and is the fuzzy best dominant.

Proof. Assume that

P(z) = (Rθ
µf(z))

′. (3.2)

Then P ∈ H[1, 1] and P(0) = 1. therefore, we have

P(z) + zP ′(z) = (Rθ
µf(z))

′ + z(Rθ
µf(z))

′′

=1 +
∞∑
n=2

(1− µ)n+1Γ(n+ θ + 2)

Γ(θ + 1)
nanz

(n−1)

+z

(
∞∑
n=2

(1− µ)n+1Γ(n+ θ + 2)

Γ(θ + 1)
n(n− 1)anz

(n−2)

)

=1 +
∞∑
n=2

(1− µ)n+1Γ(n+ θ + 2)

Γ(θ + 1)
n2anz

(n−1)

=
1

z

(
Rθ
µf(z)

)
+

∞∑
n=2

(1− µ)n+1Γ(n+ θ + 2)

Γ(θ + 1)
(n− 1)anz

(n−1) + z
(
Rθ
µf(z)

)′′
.

(3.3)

According to (3.1) and (3.3), we deduce that

Fψ(C2.U) [P(z) + zP ′(z)] ≤ Fh(U)(h(z)).

Thus by applying Lemma 1.3 with γ = 1, we obtain

FP(U)P(z) ≤ Fq(U)q(z) ≤ Fh(U)h(z), z ∈ U.

From (3.2), we find that

F(Rθ
µf)

′(U)(Rθ
µf(z))

′ ≤ Fq(U)q(z) ≤ Fh(U)h(z),

i.e.,

(Rθ
µf(z))

′ ≺F q(z) ≺F h(z),

where q(z) = 1
z

∫ z
0
h(t)dt is convex and is the fuzzy best dominant.

For a = c and h(z) = 1+(2p−1)z
1+z

(0 ≤ p < 1) in Theorem 3.1, we obtain the
following corollary:
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Corollary 3.1. Let f ∈ A and zf ′′(z) + f ′(z) is holomorphic in U . If

zf ′′(z) + f ′(z) ≺F
1 + (2p− 1)z

1 + z
,

then

f ′(z) ≺F q(z) ≺F
1 + (2p− 1)z

1 + z
,

where q(z) = 2p− 1 + 2(1−p)
z

ln(1 + z) is convex and the fuzzy best dominant.

Theorem 3.2. Suppose that the convex function h satisfies h(0) = 1. Let f ∈ A
and (Rθ

µf(z))
′ is holomorphic in U. If

Fψ(C2.U)

[
(Rθ

µf(z))
′] ≤ Fh(U)h(z), (3.4)

then

F(Rθ
µf)(U)

(
Rθ
µf(z)

z

)
≤ Fq(U)q(z) ≤ Fh(U)h(z),

i.e., (
Rθ
µf(z)

z

)
≺F q(z) ≺F h(z),

where q(z) = 1
z

∫ z
0
h(t)dt is convex and is the fuzzy best dominant.

Proof. Assume that

P(z) =

(
Rθ
µf(z)

z

)
. (3.5)

It is clear that P ∈ H[1, 1] and P(0) = 1, we find that

P(z) + zP ′(z) = (Rθ
µf(z))

′. (3.6)

In view of (3.6), the fuzzy differential subordination (3.4) becomes

Fψ(C2.U) [P(z) + zP ′(z)] ≤ Fh(U)(h(z)).

Thus by applying Lemma 1.3 with γ = 1, we obtain

FP(U)P(z) ≤ Fq(U)q(z) ≤ Fh(U)h(z), z ∈ U.

From (3.5), we get

F(Rθ
µf)(U)

(
Rθ
µf(z)

z

)
≤ Fq(U)q(z) ≤ Fh(U)h(z),
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i.e., (
Rθ
µf(z)

z

)
≺F q(z) ≺F h(z),

where q(z) = 1
z

∫ z
0
h(t)dt is convex and is the fuzzy best dominant.

For a = c and h(z) = ebz, |b| ≤ 1 in Theorem 3.2, we obtain the following

Corollary 3.2. Let f ∈ A, f ′(z) is holomorphic in U . If f ′(z) ≺F ebz, then

f(z)

z
≺F q(z) ≺F e

bz,

where q(z) = ebz−1
bz

is convex and the fuzzy best dominant.

Theorem 3.3. Let g be a convex function, g(0)=1 and let h be the function

h(z)= g(z)+ z
ζ
g′(z), z ∈ U . If a, ζ > 0, n ∈ N, f ∈ A and

(
Rθ
µf(z)

z

)ζ−1 (
Rθ
µf(z)

)′
is

holomorphic in U. If

Fψ(C2.U)

(Rθ
µf(z)

z

)ζ−1 (
Rθ
µf(z)

)′ ≤ Fh(U)h(z), (3.7)

then

F(Rθ
µf)

ζ(U)

(
Rθ
µf(z)

z

)ζ

≤ Fg(U)g(z),

i.e., (
Rθ
µf(z)

z

)ζ

≺F g(z),

and this result is sharp.
Proof. Assume that

P(z) =

(
Rθ
µf(z)

z

)ζ

. (3.8)

Then P ∈ H[1, 1] and P(0) = 1, therefore in view of (1.4) and (3.8). We have

P(z) +
1

ζ
zP ′(z) =

(
Rθ
µf(z)

z

)ζ−1 (
Rθ
µf(z)

)′
. (3.9)
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According to (3.7) and (3.9), We obtained

Fψ(C2.U)

[
P(z) +

1

ζ
zP ′(z)

]
≤ Fh(U)h(z),

then by applying Lemma 1.4 with γ = ζ we have

FP(U)(P(z)) ≤ Fq(U)(q(z)) ≤ Fh(U)(h(z)), z ∈ U.

From (3.8) we obtain

F(Rθ
µf)

ζ(U)

(
Rθ
µf(z)

z

)ζ

≤ Fg(U)g(z),

i.e., (
Rθ
µf(z)

z

)ζ

≺F g(z), z ∈ U.

and this result is sharp.

Theorem 3.4. Let h be a holomorphic function which satisfies the inequality

Re
(
1 + zh′′(z)

h′(z)

)
> −1

2
, z ∈ U and h(0) = 1 if a, ζ > 0, n ∈ N, f ∈ A and(

Rθ
µf(z)

z

)ζ−1 (
Rθ
µf(z)

)′
is holomorphic in U . If

Fψ(C2.U)

(Rθ
µf(z)

z

)ζ−1 (
Rθ
µf(z)

)′ ≤ Fh(U)h(z), (3.10)

then

F(Rθ
µf)

ζ(U)

(
Rθ
µf(z)

z

)ζ

≺ Fq(U)q(z), z ∈ U,

i.e., (
Rθ
µf(z)

z

)ζ

≺F q(z), z ∈ U,

where q(z) = ζ
zζ

∫ z
0
h(t)tζ−1dt the function q is convex and it is the best dominant.

Proof. Assume that

P(z) =

(
Rθ
µf(z)

z

)ζ

. (3.11)
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It is clear that P ∈ H[1, 1] and P(0) = 1, we find that

P(z) +
1

ζ
zP ′(z) =

(
Rθ
µf(z)

z

)ζ−1 (
Rθ
µf(z)

)′
. (3.12)

According to (3.10) and (3.12), we obtain

Fψ(C2.U)

[
P(z) +

1

ζ
zP ′(z)

]
≤ Fh(U)h(z).

Then by applying Lemma 1.3 with γ = ζ, we have

FP(U)P(z) ≤ Fq(U)q(z) ≤ Fh(U)h(z), z ∈ U.

From (3.11), we get

Fψ(C2.U)

(Rθ
µf(z)

z

)ζ−1 (
Rθ
µf(z)

)′ ≤ Fq(U)q(z) ≤ Fh(U)h(z),

and (
Rθ
µf(z)

z

)ζ

≺F q(z), z ∈ U,

where q(z) = 1
z

∫ z
0
h(t)dt is convex and is the fuzzy best dominant.

Theorem 3.5. Suppose q is a convex function in U such that q(0) = 1, h(z) =

q(z) + zq′(z). Let f ∈ A and
(
zRθ+1

µ f(z)

Rθ
µf(z)

)′
is holomorphic in U . If

Fψ(C2.U)

[(
zRθ+1

µ f(z)

Rθ
µf(z)

)′]
≤ Fh(U)h(z), (3.13)

then

F(
Rθ+1
µ f

Rθµf

)
(U)

(
Rθ+1
µ f(z)

Rθ
µf(z)

)
≺ Fq(U)q(z), z ∈ U,

i.e., (
Rθ+1
µ f(z)

Rθ
µf(z)

)
≺F q(z), z ∈ U,
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and q is fuzzy best dominant.
Proof. Assume that

P(z) =

(
Rθ+1
µ f(z)

Rθ
µf(z)

)
. (3.14)

It is clear that P ∈ H[1, 1]. Differentiating both sides of (3.14) with respect to z,
it yields

P ′(z) =

(
(Rθ+1

µ f(z))′

Rθ
µf(z)

)
− P(z)

(
(Rθ

µf(z))
′

Rθ
µf(z)

)
Then

P(z) + zP ′(z) =

(
zRθ+1

µ f(z)

Rθ
µf(z)

)′

(3.15)

Using (3.15) in (3.14), we get

Fψ(C2.U) [P(z) + zP ′(z)] ≤ Fh(U)(h(z)).

Thus by applying Lemma 1.4 with γ = 1, we obtain

F(
Rθ+1
µ f

Rθµf

)
(U)

(
Rθ+1
µ f(z)

Rθ
µf(z)

)
≺ Fq(U)q(z), z ∈ U,

i.e., (
Rθ+1
µ f(z)

Rθ
µf(z)

)
≺F q(z), z ∈ U,

and q is fuzzy best dominant.

4. Conclusions
In the present work, we have introduced some properties of fuzzy differential

subordination and subordinations of analytic functions by using Hilbert Space Op-
erator.
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[8] Lupaş A. Alb, A note on special fuzzy differential subordinations using mul-
tiplier transformation, An. Univ. Oradea, Fasc. Mat., XXIII (2) (2016),
183-191.
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