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generalizations of the ¢g—Taylor’s formula and the g—differential transform and its
inverse are obtained using the operator ng’ﬁ .- Additionally, a few properties of
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1. Introduction

The theory of fractional ¢-difference calculus, which generalizes the concept of
g-derivatives and g-integrals up to non-integer orders, emerged from the work of Al-
Salam [3], Agarwal [2], Rajkovic et al. [26]. They presented a number of g-variants
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of the Riemann-Liouville fractional integral and derivative, as well as several well-
known properties. Garg et al. [8] defined the generalized composite fractional
g-derivative and obtained some of its key findings. The subject is explored and
provided a number of intriguing findings in [4] and its sources.

In 2014, Katugampola [16] developed new fractional integral and derivative
operators by using t* f(t) in the integrals concerned, which generalize and unify
well-known Riemann-Liouville and Hadamard fractional integral and derivative
operators. A novel class of fractional g-integral and ¢-derivative operators with the
parameter p was also introduced by Momenzadeh et al. ([19], [20]) in the g-calculus.
They described how their new classes of operators generalize all formerly known
operators and can include Riemann-Liouville and Hadamard fractional ¢-integral
and g¢-derivative operators. Chanchlani et al. then enhanced the work in [6] by
using the findings from [19] as a basis.

The Hilfer-Katugampola (HK) fractional derivative, which resembles both the
Hilfer and the Hilfer-Hadamard fractional derivatives, was introduced in 2017 by D.
S. Oliveira and E. C. Oliveira [22] based on the generalized fractional integral and
derivative operators defined by Katugmapola [16]. Jing and Fan [12] first proposed
the idea of the g¢-differential transform method to address g¢-difference equations.
Later Garg et al. [7] extended the method to solve ¢-difference equations with
Caputo fractional g-derivative.

In this study, we define a g-analogue of the HK fractional derivative as a con-
sequence of the research indicated above. This will unify all previously specified,
well-known fractional g-derivatives. In addition, we develop a novel generalization
of ¢-differential transform and provide a generalized HK fractional ¢-Taylor’s for-
mula.

2. Preliminaries

Definition 2.1. Fora >0,0<|q| <1, p> 0 and f : [a,b] = C , the Katugam-
pola fractional g-integral is defined as [6):

(pjachqb) (ZE) — % /az tp—l (rp _ (tQ)p)((;_l)gb(t)dqt.

(1 - qp)qp (21>
_ ) [T e gy @D
=) /a | (tQ)),  O(t)dgt.

Definition 2.2. Ifn—1<a <n, 0<|q| <1 and p > 0, then the corresponding
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Katugampola fractional g-derivative is defined as [6]:
("Dig0) (@) = (¢"77Dy)" (T ) b(x)

_ ([p]q)l_n+a 2P )" ; p=1(,p _ p\ (n—a—1)
- i (D) / 2@ — (1) Vot (22)

("Da40) () = ¢(2).
provided that ¢ € L} [a,b] and ?T) b € AC} la, b].

Lemma 2.1. Fora > 0,0 < |q| <1, p >0 and A > —1, the following Jackson
integral holds true [20]:

L1 ey e, 1 Lo (a)Tgp (A +1) p_p\ (@)
[ - g (A (-]
(2.3)

Theorem 2.1. Ifa € RT, 0 < |q| <1, p >0 and A € (—1,00), then the Images
of power function (xP — ap)((;)‘) under PJ., is given by [6]:

poa(p o1 (A +1) by (@A)
T (2P —a )qp = WL" (qu(a+ o 1>> (2 —a )qp+ , (2.4)

Theorem 2.2. For o, B € R, 0<|q| <1 andp >0, if ¢ € L;jp[a, b, then the
semi-group property for Katugampola fractional q-integral * 7', is given by 6]

(ijqu;ng) (z) = (Pja%;%) (), (0<a<z<b). (2.5)

Theorem 2.3. For0<|¢[ <1,p>0andn—-1<f<n,neN, if fe Ll [a b
and *Jr P f € ACT [a, b], then for any a > 0 [6]:

n ([l ( "D M) (a)
(T8 Dig0) (@) = "D P0(w) = ) qu(gz—kJrl))

k=1

(a—k)
@

(2.6)

(a*— )

for x € (a,b.

Theorem 2.4. Assume that ¢(x) and ¢(x) be continuous on [a,b]. Then, ¥ q €
(G,1) where ¢ € (0,1), 3 p € (a,b), such that [25]

/ (6)dot = 6(10) / o(2)d,t. (2.7)



80 South FEast Asian J. of Mathematics and Mathematical Sciences

3. Generalized ¢’-Mittag Leffler Function
Here, we define generalized ¢P-Mittag Leffler functions by adopting the concept
from the formulations of ¢g-Mittag Leffler functions provided in [7], as

Definition 3.1. For «, 5, v € C with Re(ar) > 0, Re(f) > 0, Re(y) > 0 and
lg| <1, p> 0, we define some q—analogues of Mittag-Leffler functions as

RO = S 1)
” 0 qu O{k3+ ) '
oo (ak)
(. —a)g
»Fq D (3.2)
q 5 ; qP Oék—f—ﬁ)
and (o)
- )i, (x — a) ?f
v B 5 (A x —a) 4 3.3
q Z ook + AL 39
In particular, for v = 2, it gives
- E k4 g (2 —a)l5”
»E2 - 1—¢” T 4
B Ovr—a) =3 (M1-¢)) T (3:4)

k=0

Remark.

1. Forq — 17 and a = 0, we have the Mittag-Leffler functions introduced by G.
M. Leffler [17], Wiman [28] and Prabhakar [23] respectively.

2. For p = 1, we have the q-variants of Mittag-Leffler functions given in ([4,13,27]).

4. Hilfer-Katugampola Fractional ¢-Derivative

Definition 4.1. The Hilfer-Katugampola (HK) fractional q-derivative (left-sided
/ right-sided) of a order and  type, wheren —1 < o < mn and 0 < § < 1 with
p>0,neNand0<|q| <1, of a function ¢ is defined as follows

(D286) 0= (P22 (2 ) 710

a (4.1)
— (& gy ey r L) ()

where P J2, is the katugampola fractional g-integral defined by (2.1).

Only left-sided HK fractional g-derivatives are used to establish the results in this

study. It is possible to establish similar results for the right-sided HK fractional

g-derivative.
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The derivative PD. of T, can be expressed in terms of the Katugampola fractional
g-integral P 7" and Katugampola fractional g-derivative PDg

("D30) (@) = ("T20 ) rar v 10) (@) = ("I DL 6) (@), (42)

where v = a + f(n — «a).
The operator pDZ‘f , 10 view of the (2.6) can be expressed as:

(D2l ,0) (@) = (P20 *DL, ) ()

n_([plg)kPln—e “ k)ﬁb (a) (B(n—a)—k)
="D5 y8() = 3~ W_g) ! k+1>) (v~ a)"

k=1

qP

where ¢ € L] [a,b] and ?J)" P € AC? [a,b], L}, [a,b] is the Banach space of all
the functions defined on [a, b], satisfying [4]

b
171l = / 1 (1)t < o,

AC7 [a,b] is the space of all the functions f for which, f, Pd,(f), ..., (Pd,)" ' (f)
are g-regular at a and (P,)""'(f) € AC, ,[a, b] [18].

For p — 1, ijj;B’ , gives the g-extension of Hilfer (also called composite) fractional
derivative (D:;B qb) () defined by Hilfer [11] and for p — 0, pDZ‘f , gives the g¢-
extension of Hilfer-Hadamard fractional derivative [24].

In particular, for § = 0, we have Katugampola fractional g-derivative (2.2), and
if we further let p — 1, then from (4.1), we get Riemann-Liouville type fractional
g-derivative of order « [4] and for p — 07 and ¢ — 17, we obtain the Hadamard’s
fractional derivative [15].

Also, for § = 11in (4.1), we obtain Caputo Katugampola fractional ¢-derivative [20].
In which, further on taking limit as p — 1, we get Caputo fractional ¢-derivative
of order « [4] and for p — 0 and limit as ¢ — 17, we reach at Caputo-Hadamard’s
fractional derivative [14].

Theorem 4.1. For A € (—1,00),n—1<a<n0<<1and0 <|q| <1,

)
p > 0, the image of power function (:cp — a”) under pDZ"fq 18:
qv ’

N o L Te(A+1) (A-a)
qP
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Proof. On using (4.1) and (2.4) , we have

M)
ppgch <a;p _ ap)
) qP

= ([plg)”

W{([p] ) B(n—a) Cpp(A—7v+1) (xp _ ap) (ﬂ(n—a)+>\—7)}
Fep(A=v+1) q qu<ﬁ(n—oz)—|—)\—7+1) qP

- (o) (=),

[P}q) ()
Particularly, for A\ = 0, we have ( pD:ff’ ql)(x) = ( (xp — ap> , and for

Lyp(1—a) @

(@)

A = «a, we have pDZ‘fq (xp - ap> = ([p]q>a I'yp(ac+ 1), which is constant.

qP

Theorem 4.2. Forn—1<a<n,0<<1,0<|¢/<1,p>0v=a+p(n—a)

and 0 < a < b <oco. If ¢ € L [a,b] and (P g )(x) € AC) [a,b], then for
€ (a,b]

7T "D20) @) = T (7D ) (@)

()= (0 8) @, e (43)
To(y—k+1) (“” — @ >qp

3

—o(x) -

k=1
Proof. The proof of this theorem follows with the help of (2.5) and (4.2).
Theorem 4.3. Forn—1 < a <n0 < 8<1,0< ¢ <1, p >0 and

y=a+p(n—a). Let ¢ € L, [a,b] and prDﬂ o)y e L) la, b] exists, then
a,B «a B(n— a) B n— a)
rpef r e ¢ =P TP ) (4.4)
Proof. Using the (2.2), (2.5) and (4.1), we obtain
DL T8 g8 = T DL T 6 = T Yy P T
_ ._7'8 n—a) 6” pjn Bn ) ¢ jﬁ(n a)pDB(n a)¢.

5. Law of Exponent for Hilfer-Katugampola Fractional ¢-Derivative

Here, we present the law of exponents for HK fractional g-derivative, which
holds under particular conditions. Various fractional derivatives follow similar laws
of exponents [9, 10, 21].
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(o)
h

¥(x) having the generalized series expansion (x) = Z ap———

Theorem 5.1. For ¢(x) = Y(x) with a, A >0 and 0 <|q| <1, p >0,

(m)

()
D12 P () =D 0(x), for all xp_—(w)q € (0,R) (5.1)
) [pj| A ’ ’

with a radius

of convergence R >0, 0 < a < 1, we have

q

p=mazx (6+n+p(n|+1-n)—16+n+8(0+n|+1—n—0)—1) and ei-
ther

(a) X\ > p, or
(b) X\ =p, ap =0, or
(C) )\</~Lf ak:07f0rk:071’27'“’_L_Hoz;)\J_l

Here || denotes the greatest integer less than or equal to «.
Proof. For part (a), by the definition of HK fractional g-derivative (4.1), we have

(ka+X)
o] (.’ﬂp — &p)

(pDZ’fq¢> () = ( jﬁ L5J+1 Dpp 5+B(L5J+1 5)) Z S
| = ([1,)

Differentiating terms one from another is permitted under the conditions A > p >
(ka+X)
()
qP
kot
(1)

(M)
€ (0, R), thus on using Dy, | (a:p — ap> =

qP

(5.2)

—1, the derivatives of order 6 + 5 (|d] + 1 — 0) of the series involved

(:EP—aP) ;Z)
(1)

are uniformly convergent for
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< [p} q> ) Lgp (A+1) (A—a)
(:cp — ap> , we obtain
qu ()\—Oc-‘rl) qp

(pD5ﬁ d’)( ) = /5(|_5J+1 5)

kat+A—5—B(6]+1—5
<J,‘p B ap)( (193] )

Z qp(ka + A + 1) qP
T (ka+ A —6— B([0) +1—0)+ 1) (m )’Wﬂ—é—ﬁ(téﬁl—é) ’
q

Additionally, we have A > u > § + (6] +1 —9) — 1 and uniformly convergence

()
(11

of series for € (0, R), and by reversing the integration and summation

) r (o))
. _ 1 p (A1)
s w07 (0 0) = () o)
q
able to obtain
(kat+A—0)
P
s(ka+ A +1 (‘” ‘“)
(P29)0) = Yo s . 53)

p k' +A—0+ (ko+A—0)
Lo (ko 1) (M,l)

Using the same premise as before with A > u > 0 —1, A > pu > 0 +n+
B(ln] +1—mn)—1, we now have

(ka+A—0)

2
p(ka+ A +1) (5” “ ) .
ppnP pD&ﬁ pDn B I q
at,q “at Z qu kOé +A—0+ 1) <[p] )(k()Hr)x&)
q

, » (ko+-A—n—06)
> Lp(ka+ A +1) (m _a>qp
Z kT (

p(ka+A—n—0+1 (kat+A—n—0)
g (R U] ) <[p]q>

Then, for A\>p > —land A>p>d+n+8([0+n]+1—-n—0)—1

(ka+A—n—9)
=

pyn+6,8 > qu(]fOé+)\+1) qP
<D+ ¢>() ;aqup(ka%—/\—n—éjtl) <[p} )(ka+k—n—5) ’ (5.5)
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which is exactly pD”B pD ,P(x), according to (5.4).

For parts (b) and (¢ ) i. e )\ < i, we begin with ay = 0, for k =0,1,--- ;[ —1, where
l=— L—“Q;AJ, we take into account the uniform convergence of derived series up
to order [0 + 1

55 i k‘a ot 1) (.Z'p — ap) (ia-i-/\_é)
(pDa+ (/5) Z k T qka oy Y ({p] >(ki+)\6)
q

((i4+7)a+A=9) <56)

P _ P
_Z L (@ +j)a+A+1) (4” a)qp
2+Jqu ((i+j)a+A—=0+1) <[p]>((i+j)a+)\6)
q

If we assume A\ = ja + A, then (5.6) becomes identical to (5.3) (with A substituted
by A'), and the proof continues as in part (a).

6. Hilfer-Katugampola Fractional ¢-Taylor’s Formula

Lemma 6.1. Forn—1<a<n 0<5<1,0<|¢|<1,p>0,y=a+p(n—a)
and 0 < a <b<oolf¢ € Ll [ab] and (PT)1¢)(x) € ACE,[a,b], D ¢ €
Cla, b, x € (a,b], then there exists c € (a,x), such that

)= (7l 0) @
qu (’}/ — k’ + 1)

1—2«
( v p) ('yfk)_i_ <[p]q> o o )( » p> (@)
r—a —_———— ) C)\ T —a
qP qu (CY + 1) atyg qP

n([plq
dla) =) :

Proof. On using (2.1) and (2.7), we have

p7a ppap _ ([p] )17 o,B ‘ p— p_ p) (@—1)
T2 D ola) = D o) / 2o — (1) Vgt (6.)

By making use of (2.3) (with A = 0), (6.1) gives
1-2a
[p]q>
p T pDa,B _ ( pDa,B P __ P
T2 D g0(0) = e gy Pat 0@ (2 - @)

On taking Theorem 4.2 in account, we get

n () (7D 96) ) o ()
o)=Y MS_M) (o) o)
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Lemma 6.2. Forn—1<a<n0<<1,0<]¢/<1,p>0,7 —0z+6(n—oz)
and 0 < a < b < 0. ]pr:f’Sgb € L}, la,b] and pj"+;pDka’B¢ € AC) [a,b],
k=0,1,2,....m+1, m €N, thenwehcwe
jmap,D;nfz6¢( ) a(T;_l)apD m+1)oc/3¢( )
j—ma—=y 5 p\(maty—j) 6.2
—Z ) (x a )qp pDW ]poa5¢( ) (6.2)
p(ma+7—j+1)

Proof. By using (2.5), we can write the left hand side of (6.2) as
o ote) 5 o)
o mao ma,3 o a,f ma,3
=" q[pD O(x) = "TE DD 6()| (63)
Using Theorem 4.2, (6.3) becomes

n )J ’7($p ap)(v )

P
_p anl?éq pD;TfZ;%( ) poa ng _|_ Z 7 1)!1 pDZ+]poa ﬂ¢( )]
L 7=1

[ ([ple) (@ —a?) g prs
=T | Y e e LD o)

Lj=1

Finally, we obtain the right hand side of (6.2) by using (2.4).

Theorem 6.1. Forn—1<a<n,0< <1, 0<|q|<1p>0,7—a+ﬁ(n—a)
and 0 < a < b < oo. prDkaﬁngEL ol b]paﬁwpDkangEA Ja, 0], k=

0,1,2,...,m+1, pD(n+1 aﬁqb € Cla, b], then there ezists ¢ € (a,x) such that

i

k=0 j=1

n ka—y+j __p\ (katy—j)
] ) (x @ )q” pDW JpDka B¢( )
qP ka + Y= .] + 1)
m+1)a,
prHj; %(C) (mp B ap)((m+1)a)
Lo ((m+1a+1) "
Proof. From (6.2), we have

m

S { e gke ko) (@)~ (TP D ) @) |

k=0

3

m ka— (ka j)
ZZ fI)] ’y(xp—ap)qp o pD,y ]pDka6¢( )
plka+y—7+1) at

k=0 j=1
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After simplifying, we obtain

m  n j —ka—y p__p (ka+v—3)
Z q (x a )qP pD'y ]pDk’oc ﬁ¢( )
k=0 j=1 wlka+9-7+1) T

+ (pja(f:;l apD m+1)a ¢)( )
On using (2.1), we get

([p](I) (LL’ @ )qp p,DA, JPDkO‘ 5¢< )
Top(ka+~—j+1) ara

([p ] ) (mt o 2 p=1(pp _ (m+1)a—=1), m+1a5
- )/t (o  (tg)") DU (1),

| ((m +1)a @

Using (2.3) (with A = 0) and (2.7), we have

m n j ka— 7(:Ep _ p)(ka‘i"y ])

q P ka,
=y ot 74T DY D (a)
k=0 j=1 qp Y J

Dy [ )
. ((73+1)a) ;e e (a,x)
L ((m + Da+ 1) ([p]q)
pr;T+1)a B¢(C) (xp_ap>2;m+l)a)

Now, if the remainder term ] — 0 as m — o0, we

qp((m+1)a+1) ([p]q)«mﬂ)a)

have the generalized ¢-Taylor’s formula involving HK fractional ¢-derivative as

J ka— W(xp_ p)(ka+v 7)

‘1 qr pDV JpDkaB
ZZ plka+~y—j+1) gb()

k=0 j=1

In particular, for 0 < o < 1, the HK fractional g-Taylor’s formula is given by

o 1—ka—y P —a (ka+vy-1)
= & qu((kzoﬂr'y))qp "D} D () (6.4)

k=0

Remark. (i) For p — 1, we have the generalized Taylor’s formula for involving
composite fractional q-derivative D:fq [5].
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(ii) For ¢ — 17, we get the results for HK fractional derivative pDz"f [22].

7. Generalized HK Fractional ¢g-Differential Transform

Here, in this section, we make use of generalized ¢-taylor’s formula obtained in
previous section, for pDka 5¢ € L} [a, b]PD], quka by e AC b, 0 <a <1,
0<8<1,0< |q| <l,p > 0, we deﬁne the HK generahzed q- dlfferentlal transform
Pd, 5(k) of function qb( ) at point = = a as follows

1905(0) = oy ["DA A DA 0] (7.1)

L (ka+ r=a

where pDka'g pDZ‘f pDz‘f . pDZ‘f , (k—times), and the inverse HK generalized
g-differential transform of p<I>a s(k) in view of (6.4) is given as follows

=S (0 [(Ip - )()]
([p]q) !

k=0
Remark. 1. Ifweletp — 1 in (7.1) and (7.2), we have generalized q-differential
transform and its inverse for composite fractional q-derivative which are same as
obtained in [5].

If g = 17, p — 1, we get the results for composite fractional derivative obtained
in [9].
The HK generalized g-differential transform’s fundamental characteristics are de-
scribed here.

Theorem 7.1. The following results hold true if 7@y 5(k), PUq s(k) and 2Ve (k)
are generalized q-differential transforms of functions ¢(x), u(z) and v(x), respec-
tively, at point x = a

(7.2)

1. In the case if ¢(x) = u(x) £ v(x), then P®, (k) = PU, (k) £ PV, 5(k) will
follow.

2. P, (k) = U, p(k) follows if ¢(x) = cu(x), where c is a constant.

(na+~v—1)
(27—a )qp ——, with n € N, then bU, s(k) = d(k — n), where

5(k) = {1, when k=0

0, otherwise

3. For ¢(x) =
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4. For ¢(x) = pD:fqu(x), with 0 < a < 1, 0 < 8 < 1, the following equation
hold true
qu(kaé +a+ ’Y)

p L) —
qUocs (k) Ly (ka4 )

f;Uaﬁ(k; +1)

Proof. The generalized ¢-differential transform’s linearity property enables it sim-
ple to obtain the findings 1. and 2.

(a:p—ap) (na+vy—1)

3. With the help of (7.2), ¢(z) = T(ZLH’ we can write
[plq
o0 (e7—ar) "7
o) = 3 6(k) | 7=
k=0 ([p]q)

On using inverse HK generalized ¢-differential transform (7.2), we have ?®, (k) =
d(k —n).
4. By taking ¢(z) = pDZ"fqu(x) in (7.1), we have

1
Pp, 5(k) =—— [P’D'Y_lp'Dkaﬁpraﬁ ]
1 ”8( ) qu(ka +7) at,g Tatq a*,qu(m) —a
1 - Cp(ka+a+7)
— pD’y IPD(]‘?+1)@75 :| — q pUa k 1
qu(kaZ—F’)/) [ at,q at,q U(l’) r—a qu(k’(l/—i—’}/) q 7/B( + )

The next finding is highly helpful in solving differential equations including frac-
tional derivatives of order ¢.

Theorem 7.2. Ifu(z) satisfies the conditions stated in law of exponents [Theorem
5.1 and ¢(x) = pDZ’fqu(x), then

PP, 5(k) =
q ’B( ) qu(kOé‘i"}/)

PU, sk + 0/a) (7.3)

8. Applications
In this part, we will use the HK generalized g¢-differential transform to solve

certain fractional g-difference equations incorporating HK fractional g-derivative for

"D,y € Lyl 0PD). PDy € AGY [a,b], y=a+ B(1 — ), and 0 < || < 1,

p > 0.

Problem 1. For 0 < a < 1, 0 < 8 < 1, we consider the following fractional
g-initial value problem

PDY y(x) — My(x) =0, € R, (8.1)
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with initial condition

pDZ;;y(a) = Yp. (8.2)
Solution to the problem is provided by
(v-1)
(xp - ap)qp )\

—— wE., |- — (2" — a” PN | 8.3
7| ) (@ =) 53

Solution. By applying the generalized g—differential transform (7.1) to both sides
of (8.1) and (8.2), and then utilizing the results outlined in the Theorem 7.1, we
are able to derive

qu(k@ +« +’}/)p

y(z) = yo

Yoglk+1)— XY, 3(k)=0 8.4
qu(k‘ ’7) q »5( ) q 75( ) ( )
and .

Py, 5(0) = —— 8.5

We have obtained the following values of 7Y, s(k) by the application of recurrence
relation (8.4) and transformed initial condition (8.5)

1 1
qu (a + 'Y) Pqp (20& + '7)

1

PY,5(1) =\ -
q 76( ) Fqﬁ(?)Oé""}/)

Yo, DY 5(2) = N2 Yo, DYo 5(3) = N° Yo
and so on.
In view of inverse HK generalized g-differential transform defined by (7.2) and using

the values of Y, 5(k), we get

() = (a:” — ap)gfl) 1 . \ (;Up — apqp(v—l))((;)
O = T\ Te)  Tplat )| (o)
A2 (xp — apqp(%l))éia) \3 (xp — apqp(vfl));io‘)
* T (204 7) (lpla)™ ] Ty (30 +7) ()™ +-- }

Which in view of the definition (3.2) of ¢P-Mittag-Leffler function gives (8.3) as the
solution.

Problem 2. Next, for 0 < a < 1,0 < <1, we consider the following fractional
g-initial value problem

»_ p\(r—1)
(ZE a )qp qua

(Ipl)"™

1
([p]q)

rDef y(x) — ¢Py(x) =

_ (xp _ apqp(vl))] ) (8.6)
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with initial condition

pDZI,;y(a) = Yo- (8.7)
Solution to the problem is provided by
('Ip o ap) (v=1) qp
y(z) :yo—_qp 2 EBoq | ——=, (2P — apqp(vfl))
(Ipl)" " [(0el) (

(8.8)

+ (a7 — a”);:H_l) ) [ 1
(1-4q)

B (xp _ apqp(oﬂrv—l))] )
a+vy—1 q ooy a+1”’
([ ]Q> ! q ([p]q>
Solution. With the help of the results listed in the Theorem 7.1 and generalized
g-differential transform (7.1) applied to both sides of (8.6), (8.7), we get

Lo (ka+a+7), 1
Yog(k+1)—¢"*Y,3k) = ———.
qu(kCK—F’Y) a ”8( ) 1 a 75( ) qu(@k +’Y>

(8.9)

and
1

1Yes(0) = s (8.10)

By making use of recurrence relation (8.9) and transformed initial condition (8.10),
we have

1 q°

pYa 1) = )
Hesl) =T lar ) P Tl )

2,0 2
PY,p(2) = d + :
Yes = F e (ar ) T Tpat )

3] o
Py, 5(3) = Kl
q ’B( ) qu(2a—|—(oz+7)) + qu<306+’}/)y0

and so on. Therefore

[k + 1] ¢!
Lgp(ka+ (a+7)) Te((k+1a+y
In view of inverse HK generalized g-differential transform defined by (7.2) and using
the values of 7Y, 5(k), we get

ZYaﬂ(kle): )yo, k=0,1,2,3,---.

(v=1) —1)\ (@)
o) = (2P — ap)qz ! " . ¢ (27 — aPq?0 1))qp o
(Ipl)"™ Tp()  Tala+7)  ([pl)
(.’L'p _ ap)l(lz_l) [1]qp (a:p o apqp('y—l))((;‘)

([p]qy_l Lorla+1) ([p]q)a
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+ [2]qp (l’p — apqp(’y_l))f;a) L
Fpla+a+7) ([p]q)2a
y(x) — % (ZL‘p ap)i(% 1) i qk;p (IP _ apqp(vfl));’;a)
By LT erar) ()
X (xp — ap)((;Jr'y—l) i [k‘ I l]qp (xp _ apqp(a—&—y—l))((;a)
([p]q)a-i-’y—l — qu (k’a + o+ 7) ([p]q>]m

Which in view of the definitions (3.2) and (3.4) of ¢P-Mittag-Leffler functions gives
(8.8) as the solution.

Problem 3. For 1 < 2a < 2, 0 < g < 1, we take the following g-initial value
problem

(I’p . ap) (na+y—1)

qp

(1),)"""

PD2Oy(x) — (14 ¢*) DY y(x) + ¢y(z) = (8.11)

with initial conditions

th’;y(a) = %, pDZﬁf%ly(a) =1 (8.12)

a 7q

Solution to the problem is provided by

(2 —ar) )"

()" Te()

y(r) = yo

(20+y—1)
q° (3373 - ap)q .
N - pE2 7 p __ p. p(2at+y—1)
Yo ([p]q) 2a+v—1 qu (,7)11 o204y [(1 _ q)([p]q)a_H (.T aq )]

(Ip . ap) (atvy—1)

1
+ aqp - pEi,a Iy o (xp _ apqp(a+71))]
(l)™" T L = ) (l) ™
Lo (no+7) (2P — a”)f]inﬂ)“”’”

Do (na + o+ ’y) ([p} >(n+1)a+w1
q

(8.13)
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Solution. With the help of Theorem 7.2 and generalized g-differential transform
(7.1) applied to both sides of (8.11), (8.12) we get

Lo (ko + 2+ )

Yo p(k +2
Tptha+q) o ost?
Cp(ka+a+7)
=(1+¢" )~ PYops(k+1) —q"Y, (k) +6(k — 14
() Gy el 1) = Yos (k) + 00k =) (.14
and ) .
Y, 5(0) = —— 4o, PYag(l) = — 8.15
q »5( ) Fql’(f}/)yo q 75( ) Pqp(Oé‘i"}/)yl ( )

By making use of recurrence relation (8.14) and transformed initial conditions
(8.15), we have

[2] q°[1] g

PY 4(2) = — T gy — 2 "

q e L (200 +7) h Ly (200 + 7)‘%
[3]gr " [2]

pYa 3) = .

Yos) = T T T T @Ba+ )
[4]qp qp[?’]q”

PY. 4(4) = — 1 110"

Fer T o+ T Tata )"

and so on. Which gives

Py, ok +2) = _ k=012, k#n.

Yeslk 42 = T ) T Tp((k - 2o + 7)™ #n
2p P 1p Pp

Wosnt2) = — I He o dntl, e (ne +7)

To((n+2)at+7)'  Tplnt+2a+)® Tphatatn)

Putting these values of PY,, (k) in (7.2), we have

(v=1)
(27 —a?), 1 P(1]r
y(x) = yo ! - 11,

(a? — apqp(v—l))éia)
([p]q)’y_l g»(7) N L (2 +7) ([p]q)2a ]
(zp — ap)((;_l) 1 (xp _ apqp(v—l)) ((;é) 2. ($p B al’qp(v—l))
([p]q)y_l LCop(a+7)

2
([plg)” Lor (2004 7) ([p]q)za ]
[Blgr

(2P — apqp('v—l))((;o‘) N Ty (no+ ) (a? — ap)((lin—i-l)a-i-’v—l)
| 9 (Ba+7) ([p]q)Sa Lyp (na + o+ 7) ([p] )(n+1)a+7—1
q

+ Y1
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In view of the ¢’-Mittag-Leffler function, we arrive at (8.13).

Remark. By allowing p — 1 in Sections 4 and 6, we arrive to the identical results
for the generalized composite fractional q-derivative D:;Bq as carried out in [5].

9. Conclusion

In this study, we have introduced the Hilfer-Katugampola Fractional ¢-derivative
ijﬁ . of order v and type [ in the function space Lip[a, b]. The operator pDZ‘fj .
serves as a g-extension the Hilfer-Katugampola fractional derivative initially de-
fined in [22]. Then, we have given the Hilfer-Katugampola fractional ¢-Taylor’s
formula involving the operator D! of Sgw Also, generalized Hilfer-Katugampola frac-
tional g¢-differential transform method has been developed and applied to solve
three fractional ¢-difference equations.
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