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Abstract: Bergman (1974) found that for any prime number p, the endomorphism
ring End(Zp × Zp2) is a semilocal ring which has p5 elements and can not be em-
bedded in matrices over any commutative ring. Later on, Climent et al. (2011)
found that each element of endomorphism ring End(Zp × Zp2) can be identified as
a two by two matrix of Ep where the first and the second row entries belong to Zp

and Zp2 respectively. By this characterization, Long D.T., Thu D. T., and Thuc D.
N. constructed a new RSA variant based on End(Zp × Zp2) (2013). In this paper,
we state the characteristic of the endomorphism ring End (Zp2 ×Zp) and the RSA
analogue cryptosystem based on it.
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1. Introduction
Let p be a prime number. The set Zp × Zp2 is an additive group under

component-wise addition with p3 elements. The set of all group homomorphism
of Zp × Zp2 is a ring under addition and composition, denoted by End(Zp × Zp2).
George M. Bergman (1974) stated that End(Zp × Zp2) is a semilocal ring with p5

elements which can not be embedded in matrices over any commutative ring [2]. In



54 South East Asian J. of Mathematics and Mathematical Sciences

2011, Climent et al. conducted a research about the characteristic of End(Zp×Zp2).
They found that each element of End(Zp × Zp2) can be identified as a two-by-two
matrix which its first row and second row entries belong to Zp and Zp2 respectively
[3].

Cryptosystems is the heart of the communication system. It guarantees data
confidentiality, data integrity, authentication and non-repudiation in transferring
data from one to others. One of the cryptosystems is River-Shamir-Adleman (RSA)
cryptosystem. It was introduced by three researchers from Massachussets Institute
of Technology (MIT), Rivest, Shamir, and Adleman on 1978. It becomes popu-
lar since it is widely used today. RSA is still seen in a range of web browsers,
email, VPNs, chat and other communication channels. Since its popularity, many
researchers have been trying to develop the variants of RSA cryptosystem till now.
Some of them are RSA variant on platform Zn ([5] and [7]), RSA variant on Gaus-
sian integers ring [1], and elliptic curve group [4]. In 2013, Tran D. Long et al.
conducted research to construct an RSA variant on a monoid which its multipli-
cation was defined similarly to multiplication on Bergman ring [6]. This research
enriched the number of new RSA variants.

This paper describes a new algebraic structure, endomorphism ring End(Zp2 ×
Zp) for any prime number p which is different with endomorphism ring End(Zp ×
Zp2). It also explains a set Ep2,p, set of two-by-two matrices which is isomorphic
to End(Zp2 ×Zp). Later, we construct an RSA variant based on End(Zp2 ×Zp) by
constructing a monoid En2,n where n is the product of two different prime numbers.

2. The Characterization of End (Zp2 × Zp)
Let p be a prime number. The set Zp2 × Zp = {(x, y)| x ∈ Zp2 , y ∈ Zp} is an

additive group under the component-wise addition

(x1, y1) + (x2, y2) = ((x1 + x2) mod p2, (y1 + y2) mod p).

The set of all group endomorphism of Zp2 × Zp under the usual addition and
composition function forms an endomorphism ring, denoted by End(Zp2 × Zp).

Theorem 1. Let p be a prime number.
The endomorphism ring End(Zp2 × Zp) can be described as follow:

End(Zp2 × Zp) =
{
α
∣∣α(1p2 , 0) = (pa+ b, d), α(0, 1p) = (pc, e)

}
where a, b, c, d, e ∈ Zp, 1p and 1p2 are multiplicative identity in Zp dan Zp2.
Proof. Since Zp2 × Zp is a module over Zp2 , then it can be expressed as

Zp2 × Zp = Zp2(1p2 , 0)⊕ Zp(0, 1p).
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Thus, every (x, y) in Zp2 ×Zp can be written uniquely as x(1p2 , 0) + y(0, 1p) where
x ∈ Zp2 and y ∈ Zp. Let α ∈ End(Zp2 × Zp) and (x, y) in Zp2 × Zp, then

α(x, y) = α(x(1p2 , 0)) + α(y(0, 1p))

= xα(1p2 , 0) + yα(0, 1p).

From the latter expression, it can be seen that every α in End(Zp2 × Zp) can be
uniquely determined by α(1p2 , 0) and α(0, 1p) in Zp2 × Zp. Now, suppose that
α(1p2 , 0) = (x1, d) and α(0, 1p) = (x2, e) where x1, x2 ∈ Zp2 , d, e ∈ Zp.
Note that

(px2, 0) = p(x2, e) = pα(0, 1p) = α(p(0, 1p)) = α(0, 0) = (0, 0).

Thus, px2 = 0. Since x1, x2 ∈ Zp2 , then x2 = pc for c ∈ Zp and x1 = pa + b for
a, b ∈ Zp. Finally, each α ∈ End(Zp2 × Zp) is uniquely determined by α(1p2 , 0) =
(pa+ b, d) and α(0, 1p) = (pc, e) where a, b, c, d, e ∈ Zp.

Remark 2. The number of elements of the endomorphism ring End(Zp2 × Zp) is
p5.

Later, we introduce the new set Ep for any prime number p.

Ep2,p =

{[
pa+ b pc
d e

]
where a, b, c, d, e ∈ Zp

}
.

Let A1 =

[
pa1 + b1 pc1
d1 e1

]
, A2

[
pa2 + b2 pc2
d2 e2

]
be elements in Ep2,p. Define addition

and multiplication on Ep2,p as follow.

A1 +A2 =

[
(p(a1 + a2) + (b1 + b2)) mod p2 (p(c1 + c2)) mod p2

(d1 + d2) mod p (e1 + e2) mod p

]

A1A2 =

[
(p(a1b2 + b1a2 + c1d2) + (b1b2)) mod p2 (p(b1c2 + c1e2)) mod p2

(d1b2 + e1d2) mod p (e1e2) mod p

]
Theorem 3. Let p be a prime number. The set Ep2,p that is described as above
is a noncommutative unitary ring under the previous addition and multiplication.

The identity element in Ep2,p is I =

[
1p2 0
0 1p

]
.

Proof. The proof is straightforward.

Remark 4. The number of elements of Ep2,p is p5.
On the next theorem, we will show that the endomorphism ring End(Zp2 ×Zp)

is isomorphic to Ep2,p.
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Theorem 5. Let p be any prime number. Define a map as follow:

ψ : End(Zp2 × Zp) → Ep2,p

α 7→
[
pa+ b pc
d e

]
where α(1p2 , 0) = (pa + b, d), α(0, 1p) = (pc, e) ∈ Zp2 × Zp and a, b, c, d, e ∈ Zp.
Then, ψ is a ring isomorphism.
Proof. It is clear that ψ is well-defined. Let α1, α2 ∈ End(Zp2 × Zp) where

α1(1p2 , 0) = (pa1 + b1, d1), α1(0, 1p) = (pc1, e1),

α2(1p2 , 0) = (pa2 + b2, d2), α2(0, 1p) = (pc2, e2)

where ai, bi, ci, di, ei ∈ Zp for i = 1, 2. Note that

(α1 + α2)(1p2 , 0) = α1(1p2 , 0) + α2(1p2 , 0)

= (pa1 + b1, d1) + (pa2 + b2, d2)

= ((p(a1 + a2) + b1 + b2) mod p2, (d1 + d2) mod p)

and

(α1 + α2)(0, 1p) = α1(0, 1p) + α2(0, 1p)

= (pc1, e1) + (pc2, e2)

= ((p(c1 + c2)) mod p2, (e1 + e2) mod p)

Thus,

ψ(α1 + α2) =

[
(p(a1 + a2) + b1 + b2) mod p2 (p(c1 + c2)) mod p2

(d1 + d2) mod p (e1 + e2) mod p

]
= ψ(α1) + ψ(α2).

Note also that

(α1α2)(1p2 , 0) = α1(α2(1p2 , 0)

= α1(pa2 + b2, d2)

= (pa2 + b2)α1(1p2 , 0) + d2α1(0, 1p)

= (pa2 + b2)(pa1 + b1, d1) + d2(pc1, e1)

= (p(a1b2 + b1a2 + c1d2) + b1b2) mod p2, (d1b2 + e1d2) mod p)
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and

(α1α2)(0, 1p) = α1(α2(0, 1p))

= α1(pc2, e2)

= pc2α1(1p2 , 0) + e2α1(0, 1p)

= pc2(pa1 + b1, d1) + e2(pc1, e1)

= (p(b1c2 + c1e2) mod p2, (e1e2) mod p)

So that,

ψ(α1α2) =

[
(p(a1b2 + b1a2 + c1d2) + b1b2) mod p2 p(b1c2 + c1e2) mod p2

(d1b2 + e1d2) mod p (e1e2) mod p

]
= ψ(α1)ψ(α2).

Next, we will prove that ψ is injective.
Let α1, α2 ∈ End(Zp2 × Zp) where ψ(α1) = ψ(α2). Suppose that

α1(1p2 , 0) = (pa1 + b1, d1), α1(0, 1p) = (pc1, e1)

α2(1p2 , 0) = (pa2 + b2, d2), α2(0, 1p) = (pc2, e2)

where ai, bi, ci, di, ei ∈ Zp for i = 1, 2.
Since ψ(α1) = ψ(α2) then a1 = a2, b1 = b2, c1 = c2, d1 = d2, and e1 = e2.
Let (x, y) be any element of Zp2 × Zp, thus

α1(x, y) = xα1(1p2 , 0) + yα1(0, 1p)

= x(pa1 + b1, d1) + y(pc1, e1)

= x(pa2 + b2, d2) + y(pc2, e2)

= α2(x, y).

So, ψ is injective. Since ψ is surjective since |(End(Zp2 × Zp))| = |Ep2,p| then psi
is surjective. So, ψ is a ring isomoprhism. Based on this theorem, every element
of End(Zp2 × Zp) can be identified as a two by two matrix in Ep.

By this theorem, we can identify each element in End(Zp2 × Zp) as a two by
two matrix in Ep2,p.

3. The Arithmetic of Ring Ep2,p

As the consequence of theorem 5, the arithmetic of End(Zp2 ×Zp) can be iden-
tified same as the arithmetic of Ep2,p. So, we will observe the arithmetic in Ep2,p.
In this section, we will regard Zp as a subset of Zp2 even Zp is not subring of Zp2 .

Theorem 6. Let p be a prime number,
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A1 =

[
pa1 + b1 pc1
d1 e1

]
, A2 =

[
pa2 + b2 pc2
d2 e2

]
be elements of Ep2,p, then

A1 +A2 =

p
(
a1 + a2 +

⌊
b1 + b2
p

⌋)
mod p+ (b1 + b2) mod p p((c1 + c2) mod p)

(d1 + d2) mod p (e1 + e2) mod p

 .
Proof. Based on the definition of addition in Ep2,p,

A1 + A2 =

[
(p(a1 + a2) + b1 + b2) mod p2 (p(c1 + c2)) mod p2

(d1 + d2) mod p (e1 + e2) mod p

]
.

By using Lemma 1 from Climent [3],

((pa1+b1)+(pa2+b2)) mod p2 ≡ p

((
a1+a2+

⌊
b1 + b2
p

⌋)
mod p

)
+(b1+b2) mod p

and (pc1 + pc2) mod p2 ≡ p(c1 + c2) mod p.
So,

A1+A2 =

p
(
a1 + a2 +

⌊
b1 + b2
p

⌋)
mod p+ (b1 + b2) mod p p((c1 + c2) mod p)

(d1 + d2) mod p (e1 + e2) mod p

 .
Hence, the proof is completed.

Theorem 7. Let p be a prime number, A1 =

[
pa1 + b1 pc1

d1 e1

]
, A2 =

[
pa2 + b2 pc2

d2 e2

]
be

elements in Ep2,p, then

A1A2 =

p
(
a1b2 + b1a2 + c1d2 +

⌊
b1b2
p

⌋)
mod p+ (b1b2) mod p p((b1c2 + c1e2) mod p)

(d1b2 + e1d2) mod p (e1e2) mod p


Proof. We use the similar argument of proof in Lemma 2 in Climent et al. [3].

Theorem 8. Let p be a prime number and X =

[
pa+ b pc
d e

]
be an element of

Ep2,p. Then X is invertible in Ep2,p if and only if e ̸= 0 and b ̸= 0. Let X−1 be the
inverse of X then

X−1 =

[
pa′ + b′ pc′

d′ e′

]
where

a′ =
(
(b−1)2e−1cd− a(b−1)2 −

⌊bb−1

p

⌋
b−1
)
mod p,

b′ = (b−1) mod p, e′ = (e−1) mod p,
c′ = (−b−1ce−1) mod p, dan
d′ = (−e−1b−1d) mod p.
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Proof. (⇒) Let X =

[
pa+ b pc
d e

]
be an invertible element in Ep2,p. Then there

is Y =

[
pa′ + b′ pc′

d′ e′

]
in Ep2,p such that XY = Y X =

[
1p2 0
0 1p

]
. Hence, bb‘ =

1 mod p and ee′ = 1 mod p. So that, both b and e must not be zero.
(⇐) By the hypothesis, there exist b−1, e−1 in Zp such that bb−1 = 1p = ee−1. Let
Y be an element of Ep2,p which its entries are the same as the entries of X−1 in
this theorem. Then,

XY =

[
pa+ b pc
d e

] [
pa′ + b′ pc′

d′ e′

]

=

p
(
ab′ + ba′ + cd′ +

⌊
bb′

p

⌋)
mod p+ (bb′) mod p p((bc′ + ce′) mod p)

(db′ + ed′) mod p (ee′) mod p


=

[
1p2 0
0 1p

]
= Y X.

Hence, X is invertible in Ep2,p. Thus, the proof is completed.

Example 8.1. In this example, we show how to use theorem 8 to find the inverse
of invertible elements in Ep2,p.

Let A =

[
37 28
3 6

]
be an element of E49,7.

Let a = 5, b = 2 ̸= 0, c = 4, d = 3, and e = 6 ̸= 0, then A =

[
7 · 5 + 2 7 · 4

3 6

]
.

Based on Theorem 8 A is invertible in E49,7.
By theorem 8, we get

a′ =
(
42 · 6 · 4 · 3− 5 · 42 −

⌊2 · 4
7

⌋
· 4
)
mod 7 = 1548 mod 7 = 1 mod 7

b′ = 4 mod 7
c′ = (−4 · 4 · 6) mod 7 = −96 mod 7 = 2 mod 7
d′ = (−6 · 4 · 3) mod 7 = −72 mod 7 = 5 mod 7
e′ = 6 mod 7.

Thus, A−1 =

[
7 · 1 + 4 7 · 2

5 6

]
=

[
11 14
5 6

]
Remark 9. Let p be a prime number and E∗

p2,p is the set of all invertible elements

of Ep2,p. Then, E
∗
p2,p is a multiplicative group and the order of E∗

p2,p is p3(p− 1)2.

4. The New RSA Variant
Before constructing the RSA analogue cryptosystem on the endomorphism ring
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End(Zp2 × Zp), we state some sets and maps as follow.

Definition 1. Let n = p · q where p, q be two different prime numbers. Denote
En2,n as

En2,n =

{[
a nc
b d

] ∣∣∣∣∣ a ∈ Zn2 , b, c, d ∈ Zn

}
.

Let X =

[
a1 nc1
b1 d1

]
, Y =

[
a2 nc2
b2 d2

]
∈ En2,n. Define

XY =

[
a1 nc1
b1 d1

] [
a2 nc2
b2 d2

]
=

[
(a1a2 + nc1b2) mod p2 n(a1c2 + c1d2) mod p2

(b1a2 + d1b2) mod p (d1d2) mod p

]
.

This multiplication is an associative binary operation on En2,n. Thus, En2,n is
a monoid.

Define two maps θ1 and θ2 as follows:

θ1 : En2,n → Ep2,p where[
a nc
b d

]
7−→

[
a mod p2 p(qcmod p)
b mod p d mod p

]
and

θ2 : En2,n → Eq2,q where[
a nc
b d

]
7−→

[
a mod q2 q(pcmod q)
b mod q d mod q

]
.

It is easily seen that θ1 and θ2 are well defined.

Theorem 10. θ1 and θ2 defined above are monoid-homomorphisms.

Proof. Let X =

[
a1 nc1
b1 d1

]
, Y =

[
a2 nc2
b2 d2

]
be elements of En2,n. Note that

θ1(X) =

[
a1 mod p2 p(qc1 mod p)
b1 mod p d1 mod p

]
and θ1(Y ) =

[
a2 mod p2 p(qc2 mod p)
b2 mod p d2 mod p

]
.

Hence,

θ1(XY ) = θ1

([
(a1a2 + nc1b2) mod n2 n(a1c2 + c1d2) mod n2

(b1a2 + d1b2) mod n (d1d2) mod n

])

=

[
(a1a2 + nc1b2) mod p2 p

(
q(a1c2 + c1d2) mod p

)
(b1a2 + d1b2) mod p (d1d2) mod p

]
= θ1(X)θ1(Y ).
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So that, θ1 is a monoid-homomorphism. The similar argument can be used to prove
that θ2 is also a monoid-homomorphism.

Theorem 11. Define a map γ : En2,n → Ep2,p × Eq2,q where
A 7→

(
θ1(A), θ2(A)

)
Then, γ is injective.

Proof. Let A1 =

[
a1 nc1
b1 d1

]
, A2 =

[
a2 nc2
b2 d2

]
be elements of En2,n such that

γ(A1) = γ(A2). Hence,

θ1(A1) = θ1(A2)[
a1 mod p2 p(qc1mod p)
b1 mod p d1 mod p

]
=

[
a2 mod p2 p(qc2mod p)
b2 mod p d2 mod p

]
and

θ2(A1) = θ2(A2)[
a1 mod q2 q(pc1mod q)
b1 mod q d1 mod q

]
=

[
a2 mod q2 q(pc2mod q)
b2 mod q d2 mod q

]
Therefore, we will get the following equations:

(i) a1 mod p2 = a2 mod p2 dan a1 mod q2 = a2 mod q2

(ii) b1 mod p = b2 mod p dan b1 mod q = b2 mod q

(iii) c1 mod p = c2 mod p dan c1 mod q = c2 mod q

(iv) d1 mod p = d2 mod p dan d1 mod q = d2 mod q

Since p2, q2 ∈ Zp, gcd(p
2, q2) = 1, 0 ≤ a1, a2 < p2, 0 ≤ a1, a2 < q2, then a1 = a2.

The similar argument can be applied to prove that b1 = b2, c1 = c2, and d1 = d2.
Hence, A1 = A2 and γ is an injective map. So that, the proof is completed.

The next theorem shows the requirement for elements in En2,n such that their
maps under θ1 and θ2 is invertible in Ep2,p and Eq2,q respectively.

Theorem 12. Let A =

[
nu+ v nc
b d

]
∈ En2,n where u, v, b, c, d ∈ Zp, then θ1(A) ∈

E∗
p2,p and θ2(A) ∈ E∗

q2,q if and only if gcd(d, n) = 1 dan gcd(v, n) = 1.
Proof. Based on the definition of θ1 dan θ2,

θ1(A) =

p
(⌊

nu+ v

p

⌋
mod p

)
+ v mod p p(qc mod p)

b mod p d mod p
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and

θ2(A) =

q
(⌊

nu+ v

q

⌋
mod q

)
+ v mod q q(pc mod q)

b mod q d mod q

 .
By Theorem 8, θ1(A) ∈ E∗

p2,p if and only if

v mod p ̸= 0 and d mod p ̸= 0.

Hence, gcd(v, p) = 1 and gcd(d, p) = 1. Since q is also a prime number, then
θ2(A) ∈ E∗

q2,q if and only if

v mod q ̸= 0 and d mod q ̸= 0.

By this result, we also get that gcd(v, q) = 1 and gcd(d, q) = 1.
Since n = p·q, then gcd(v, n) = 1 and gcd(d, n) = 1. Hence, the proof is completed.

The most important step in constructing RSA cryptosystem is finding positive
integers r, s such that Ars = A where A is an element in En2,n. In the next theorem,
we state these numbers.

Theorem 13. Let A be an element of En2,n such that θ1(A) ∈ E∗
p2,p and θ2(A) ∈

E∗
q2,q. Then A

rs = A where r, s are natural numbers such that rs ≡ 1 mod L where

L = lcm(p3(p− 1)2, q3(q − 1)2).

Proof. Since θ1 and θ2 are monoid-homomorphism, then θ1(A
rs) =

(
θ1(A)

)rs
and

θ2(A
rs) =

(
θ2(A)

)rs
. By the hypothesis, θ1(A) ∈ E∗

p2,p and θ2(A) ∈ E∗
q2,q which

their order is p3(p− 1)2 and q3(q − 1)2 respectively. Thus,

θ1(A
rs) =

(
θ1(A)

)rs
=
(
θ1(A)

)1 mod L
= θ1(A) and

θ2(A
rs) =

(
θ2(A)

)rs
=
(
θ2(A)

)1 mod L
= θ2(A).

So that,

γ(Ars) = (θ1(A
rs), θ2(A

rs))

=
((
θ1(A)

)rs
,
(
θ2(A)

)rs)
by Theorem 10

= (θ1(A), θ2(A)) by Theorem 13

= γ(A) by the definition of γ

Since γ is injective, then Ars = A. Hence, the proof is completed.
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Now, we are ready to construct RSA analogue cryptosystem by using our the-
orems above. There are three main activities in RSA analogue cryptosystem: gen-
erating key, encryption, and decryption. Here are the algorithm for all of them:

Generating Key Algorithm
Input : Choose p, q different prime numbers.
Process : Calculate L = lcm(p3(p− 1)2, q3(q − 1)2),

: Choose positive integer 0 < r < L where gcd(L, r) = 1,
: Calculate s ≡ r−1 mod L,

Output : Publish (n, r) as public key, keep (n, s) as a private key.
Encryption Algorithm
Input : Choose 0 ≤ b ≤ n− 1 as a plaintext.
Process : Choose c, d, u, v ∈ Zn such that gcd(d, n) = 1, gcd(v, n) = 1.

: Choose positive integer 0 < r < L where gcd(L, r) = 1,

: Let A =

[
nu+ v nc
b d

]
.

: Calculate B = Ar.
Output : B:= ciphertext.
Decryption Algorithm
Input : Recall B:= ciphertext.
Process : Calculate Bs.

Output : A =

[
nu+ v nc
b d

]
, b := plaintext.

Example 13.1. Ali will sent a message to Bob, that is ”math”. Ali will use RSA
cryptosystem based on End(Zp2 × Zp) to send it to Bob.
Let p = 5 and q = 7, then n = 35 and L = 6174000.
Choose r = 17 then we get s = r−1 mod L = 726353. Publish (35, 17) as a public
key and keep (35, 726353) as a private key. Bob must keep this key to decrypt
ciphertext from Ali.
Let a plaintext ”math” is corresponding to b = 1 in the first column and second

row of a matrix A =

[
35 · 1 + 9 35 · 4

1 3

]
=

[
43 140
1 3

]
. The message ”math” will

be encrypted as B = A17. Bob must use the private key to decrypt this message
by calculating B726353.

5. Conclusion

By this research, the endomorphism ring End(Zp2 × Zp) is isomorphic to Ep2,p,
a set of two by two matrices where the first and the second row entries belong to
Zp2 and Zp respectively. It means, each element of End(Zp2 ×Zp) can be identified
as a two by two matrix in Ep2,p. The arithmetic in End(Zp2 ×Zp) can also be seen
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from the arithmetic in Ep2,p. This paper also provide the other RSA variant based
on the endomorphism ring End(Zp2 ×Zp). For further research, we can observe the
structure of End(Zpm × Zpn) where m is different from n. If it is possible, we also
can construct the RSA variant based on this ring.

References

[1] Abdul-Nasser El-Kassar, Ramzi Haraty, Yahia Awad, and Narayan Debnath,
Modified rsa in the domains of gaussian integers and polynomials over finite
fields, 01 (2005), 298–303.

[2] Bergman G. M., Some examples in pi ring theory, Israel J. Math, 18 (1974),
257–277.

[3] Climent J. J., Navarro P. and Tortosa L., On the arithmetic of the endomor-
phisms ring End (Zp × Zp2), AAECC, 22, 03 (2011).

[4] Demytko N., A new elliptic curve based analogue of rsa, In Advances in
Cryptology - EUROCRYPT ’93, Vol. 765 (1993), 40–49.

[5] Fiat A., Batch rsa, Journal of Cryptology, 10 (1997).

[6] Long D. T., Thu D. T. and Thuc D. N., A bergman ring based cryptosystem
analogue of rsa, In 2013 International Conference on IT Convergence and
Security (ICITCS), (2013), pages 1–4.

[7] Thomas Collins, Dale Hopkins, Susan Langford, and Michael Sabin. Public
key cryptographic apparatus and method. (RE40530), October (2008).


