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1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive inte-
gers \y > Ay > --- > A\ such that A\ + Ao+ - -+ A\, = n. A partition is a {-regular
partition of n if none of the part is divisible by ¢.

Andrews, Lewis and Lovejoy [1] investigated a new class of partitions with
designated summands by taking ordinary partitions and tagging exactly one of
each part size. The total number of partitions of n with designated summands is
denoted by PD(n). The generating function for PD(n) is given by

Je
ZPD f1f2f3 (1.1)

where
o0

for= 0= qY)n > 1. (1.2)

Jj=1

For example PD(4) = 10, namely

4 3 +1, 27+2, 242, 24+1U+1, 27+14+1, I'+14+1+1,
I1+1V+1+1, 14+141+1, 1+14+1+1"

Mahadeva Naika and Gireesh [10] studied PDs(n), the number of partitions of
n with designated summands whose parts are not divisible by 3 and the generating
function is given by

- n ik
2 Pl = 5 (13)

Andrews et al. [1], Baruah and Ojah [2] have also studied PDO(n), the number
of partitions of n with designated summands in which all parts are odd. The
generating function for PDO(n) is given by

- n afd
;%PDO(n)q =G (1.4)

Mahadeva Naika and Shivashankar [16] established many congruences for BPD(n),
the number of bipartitions of n with designated summands and the generating
function is given by

0 2
> BPD(n)q" = ffﬁ—z?g (1.5)
n=0
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For more details, one can see [5, 11, 12, 13, 14, 15, 18].

Motivated by the above works, in this paper, we define By(n), the number
of bipartitions of n with odd designated summands. The generating function for
Bsy(n) is given by

> Bl = Sl (16)
— Ji I3
In this paper, we list few dissection formulas which are helps to prove our main
results in section 2. In section 3, we obtain many infinite families of congruences
for By(n) modulo powers of 2 and congruences modulo powers of 3 in section 4.

2. Preliminary Results
In this section, we list few dissection formulas which are helps to prove our main
results.

Lemma 2.1. The following 2-dissections hold:

1 14 2 r4
7 =y

R 7
The equation (2.1) is essentially (1.9.4) in [6]. The equation (2.2) can be obtained
from (2.1) by replacing ¢ by —q. Also, see [4, p. 40, Entry 25].
Lemma 2.2. The following 3-dissection holds:
fi _ fiafis qfﬁzfg’f%
fi o B 5 15

Identity (2.3) is nothing but Lemma 2.6 in [2].

9 2f6f18f36.

+ 2¢q 7 (2.3)

_|_

Lemma 2.3. The following 3-dissections hold:

118 Bl
B s Uiy 24
fi_ Sfefs S (2.5)

A fshs L fa

and \ e
é_ f6f9 _'_2

A i
2B T

T IE (26)
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Lemma 2.3 was proved by Hirschhorn and Sellers [9].
Lemma 2.4. The following 2-dissections hold:

1 131 i3
_ 7
- RhaE Ty 27)
f2f8f]_2 f4f6f24

W= e, (28)

The equation (2.7) was proved by Baruah and Ojah [2]. Replacing ¢ by —¢ in (2.7)

and using the fact that (—¢; —¢)e = , we get (2.8).

13
fifs
Lemma 2.5. The following 2-dissections hold:

B BE

f e T (29)

fs S PP

TFA T T (2.10)
2 r£2 3 r6

]{_ ) fg%fm ) q]}f o)

R_f g ifh (2.12)

fs fz R

Hirschhorn et al. [7] proved (2.9). For a proof of (2.10), we can see [3]. The proof
of the equations (2.11) and (2.12) follows by replacing —¢ by ¢ in the equations

3
(2.9) and (2.10) respectively with the fact that (—¢; —¢)s = ff_j‘
1J4
Lemma 2.6. The following 3-dissection holds:
Jofs 2f3f148
fifo= —qfofis — . 2.13
1/2 = ol 9J18 f6f92 (2.13)
For a proof, we can see [8].
Lemma 2.7. The following 3-dissection holds:
B_Jo g BB oo BRI 2% 2.1
5k e 13 f3fo

The identity (2.14) was proved by Toh [17].
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Lemma 2.8. [6, p. 85, 8.1.1] We have the following 5-dissection formula

fi= fos (G(QS) —q—- QQ/G(qs)) ) (2-15)
where
N (YT
a:=a(q): G T (2.16)

Lemma 2.9. We have

L (B) A, SO
fl‘f49<0<q7> "Bl “qA(q?))’ (2.17)

where A(q) = f(=¢*,—q"), B(q) = f(—¢*, —¢°) and C(q) = f(—q, —¢°).
Lemma 2.9 is an exercise in [6], see [6, 10.5]. Also, we can see [4, p.303, Entry

17(v)].

Lemma 2.10. For positive integers k and m, we have

Sm = fm (mod 3), (2.18)

o= fam (mod 9), (2.19)

= 2 (mod 4) (2.20)
and

Smo= fim (mod 8). (2.21)

3. Congruences modulo powers of 2

Theorem 3.1. Let ¢; € {23,47,71,119}, then for alln > 0 and 5 > 0, we have

By(24n+7) =0 (mod 16), (3.1)
> By (2450 +19-5%) " = 8f1f§ (mod 16), (3.2)
n=0
> By (24-5%n 42357 ¢" =8¢ f5 {5 (mod 16), (3.3)
n=0
By (24-5**n +¢; - 5°°T1) =0 (mod 16), (3.4)

B, (125712 4 52012) = 30+1 . By(12n + 1) (mod 8), (3.5)
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By (60(5n+14) +25) =0 (mod 8), (3.6)
where 1 = 1,2, 3, 4.
Proof. From the equation (1.6), we find that

. . ﬁﬁ(]-y
B = —
HZZ; 2 (n)q f122 fl f3

:fffé( Rl Jif )
fo \SBLfifz CfRRR)

from which we extract

iBg(Qn)q" _ fffﬁS +q 2.]012 (38)
=0 Fifirs "R

and
- _ o L2 fs
B
2 Bal2n+ Do = 2555
()
BREAVE: 39
7 (f6 Jofs o o fofafh 3f6f18)2
A\ g 0T TR ) o (B10)
which implies
iBg(6n+ 1)q" ;i +72‘”€2fi”f6 +48q;§;6 + 2882 2f2 , (3.11)
1J3 1 3
i32(6n+3)qn 12 ]]:fl];f +21GQf2f3f6 (3.12)
n=0
and
D By(6n+5)q" = 21108 +24f2f3f6 +288q°f2f3f6. (3.13)
_ fl fﬁ 1 1
The equation (3.11) reduce to
3
;BQ 6n+1)¢" = 2 + 8¢ fofS (%)
op f4fg> 3 (fi”fe @)
=21} (i i ) +sansi (G ) nod 10

(3.14)
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from which we extract

- n_ o3 f3
nz; By(12n+ 1)q" = f_jQ + 8qf2 - f—i (mod 16) (3.15)
and
e 3
232(12n+7)q" =8f, +8f; - %
n=0
Cas o ags [ SifE f_i’a)
= 8f, + 815 (f22f12 +4q 7, (mod 16), (3.16)
which implies
D By(24n+T)q" = 8f] +8f1f; (mod 16) (3.17)
n=0
and .
> By(24n+19)¢" = 8f1fi (mod 16). (3.18)
n=0

From the equation (3.17), we arrive at (3.1).
The equation (3.18) is 8 = 0 case of (3.2). Suppose that the congruence (3.2)
is true for § > 0, we have

> By (24-5%n+19-57) ¢"
n=0

= 8fos(a(q’) — g — ¢*/a(¢®)) x fS (a(¢"™®) — ¢* — ¢°/a(¢*®))"  (mod 16), (3.19)

from which we extract

> By (24-57n 4235 ¢" =8¢ f5 {5 (mod 16), (3.20)

n=0

which proves (3.3) and which implies

> By (2450 +19-5712) " =8, (mod 16), (3.21)

n=0
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which implies that the congruence (3.2) is true for § + 1. So, by induction, the
congruence (3.2) holds for all g > 0.
Extracting the terms involving ¢°"* for ¢ = 0, 1,2, 4 from (3.3), we obtain (3.4).
The congruence (3.15) reduces to

> By(12n +1)¢" = 2f2 = 2f3 (alg®) — ¢ — ¢*/a(q?))”  (mod 8),  (3.22)

n=0

from which we extract

> By(60n+25)¢" = 6f (mod 8), (3.23)
n=0

which implies
> " Ba(300n +25)¢" =6 (mod 8). (3.24)
n=0

From the congruences (3.22) and (3.24), we find that
By(300n + 25) =3 - By(12n+ 1)  (mod 8). (3.25)

By using the above relation and by induction on /3, we arrive at (3.5).
Extracting the terms involving ¢°"* for ¢ = 1,2,3, 4 from (3.23), we get (3.6).

Theorem 3.2. Let ¢y € {21,93,237,309}, then for alln >0 and § > 0, we have

By(72n +69) =0 (mod 32), (3.26)
By (2 3% 4 3%%3) = By(6n +3) (mod 32), (3.27)
i By (72-5%n+33-5%) ¢" = 16fof; (mod 32), (3.28)

n=0
iBZ (72520 4+ 21 - 5% ¢ = 16¢° fio fi;  (mod 32), (3.29)

n=0

By (725704 ¢y - 5°711) =0 (mod 32), (3.30)
i By (72-7Pn+15-7) ¢" =8f} (mod 16), (3.31)

n=0
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D By (12704337 ¢ =8¢f?  (mod 16), (3.32)
n=0
B, (18- 5°712n 4+ 3. 5%12) = 3771 . By(18n+3)  (mod 16), (3.33)

B(90(5n +1i) +75) =0 (mod 16), (3.34)

where i = 1,2, 3, 4.
Proof. The equation (3.12) reduces to

. 1o f2 15
> By(6n +3)q" flf

n=0
_ o3 (1
—12f6 (f1)+24 fafs

— f_§’ (f6 f6f9 2f6f9f18 3f6f18>
= s P T T T,
+24qfifs  (mod 32), (3.36)

+24qfs fe  (mod 32) (3.35)

which implies

o0

> By(18n+3)¢" = 12f{ + 16¢f1f§ (mod 32), (3.37)
n=0
> By(18n 4 9)¢" f2f3 + 24t £ (mod 32) (3.38)
—~ f1 fe
and .
> By(18n+15)q" = 8f7 f3f¢  (mod 32). (3.39)
n=0

From the equation (3.38), we have

i32(18n+9)q”54—35 (f2> YU (fifo) (3.40)
7o \ P

_‘3;5 (fﬁ f6f9 2f6f9f18 3f6f18)

Bo \fs TPUps g, 0T P12 e

+24(f6f9 ~ afofis - 20 205

4
fafis fﬁfg) (mod 32),  (3.41)
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from which we extract

Z By (54n + 27)¢" ;23? + 24qfifé (mod 32). (3.42)
n=0
In the view of congruences (3.35) and (3.42), we see that
By(54n + 27) = By(6n + 3)  (mod 32). (3.43)

Using the above relation and by induction on (3, we get (3.27).
From the equation (3.39), we have

3" By(18n + 15)q" = 8f2(f1f)?

n=0
o (Fof2y f4f6f24) .
=8Js (fffﬁfzi Trpw) ted® G4

from which we extract

> By(36n+ 15)q" = 8f7 f7 + 8qf i{g (mod 32) (3.45)
n=0 1
and .
> Ba(36n +33)q" = 16f,f3  (mod 32). (3.46)

n=0
Comparing the coefficients of ¢**™! on both sides of the equation (3.46), we obtain
(3.26).
The congruence (3.46) implies that

i By(72n + 33)¢" = 16fof2  (mod 32), (3.47)

n=0

which is 8 = 0 case of (3.28). Suppose that the congruence (3.28) is true for g > 0,
we have

> By (7250 +33-57) ¢

n=0

= 16f50 (a(q") — ¢* — " /a(¢"")) x fZ (ald”®) — ¢ — ¢°/a(¢"®))"  (mod 32),
(3.48)
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which implies

> By (7250 +21- 5% " = 16¢° fro fi;  (mod 32), (3.49)

n=0
which proves (3.29) and which implies that

> By (72570 4 33-5712) " = 16fof;  (mod 32), (3.50)

n=0

which implies that the congruence (3.28) is true for 5+ 1. Hence, by induction, the
congruence (3.28) holds for all g > 0.

Extracting the terms involving ¢ for i = 0,1, 3,4 from (3.29), we arrive at
(3.30).

The congruence (3.45) reduces to

oo 6
Z By(36n + 15)¢" = 8f5 + 8(]";—6 (mod 16), (3.51)
n=0 2
which implies
> By(72n+15)¢" = 8f) (mod 16), (3.52)
n=0

which is 8 = 0 case of (3.31). Suppose that the congruence (3.31) is true for g > 0,
we have

> By (127 +15-77) ¢

n=0
=82 =815 (o) et~ + q5%)5 (mod 16),  (3.53)
from which we extract
i By (72-7P"'n 433 - 7%%1) ¢* = 8¢f? (mod 16), (3.54)
n=0
which implies
i By (7277120 415 - 7%9%%) ¢" = 87 (mod 16), (3.55)

n=0
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which implies that the congruence (3.31) is true for § + 1. So, by induction, the
congruence (3.31) holds for integers 8 > 0.

Employing (2.17) in (3.31) and then collecting the terms involving ¢™3, we
arrive at (3.32).

The equation (3.37) reduces to

o0

Z B>(18n + 3)¢" = 12} = 12f5; (a(¢’) — g — q2/a(q5))4 (mod 16), (3.56)

n=0

from which we extract

> " Ba(90n + 75)¢" = 4f:  (mod 16), (3.57)
n=0

which implies
> " By(450n + 75)¢" = 4f; (mod 16). (3.58)
n=0

From the congruences (3.56) and (3.58), we see that
Ba(450n +75) = 3 By(18n+3) (mod 16). (3.59)

Using the above relation and by induction on 3, we arrive at (3.33).
Extracting the terms involving ¢°" for i = 1,2, 3,4 from the equation (3.57),
we obtain (3.34).

Theorem 3.3. Let c3 € {7,31,79,103}, then for alln > 0 and 3 > 0, we have

By(24n+23) =0 (mod 8), (3.60)
> By (24-5n+11-5%) " =4ff]  (mod 8), (3.61)
n=0
D By (245 4+ 75 " = 4¢’ fioffs (mod 8), (3.62)
n=0
By (2450 +¢3-5°7T) =0 (mod 8), (3.63)
> By (24-7n+5-7P)¢" =2f) (mod 4), (3.64)

n=0
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> By (2474117 g =22 (mod 4). (3.65)

n=0

Proof. The equation (3.13) reduces to

> 2 £6
Z By (6n+5)q¢" = 2f2J;3
n=0 fl

_ o f_3)
=2/ <f1

(mod 8)

3 2 3\ 2
=2f; (% + q%) (mod 8), (3.66)
which implies
o0 4
Z By (12n+5)q¢" = 2;?2;22 + 2qf§2‘£66 (mod 8) (3.67)
n=0
and .
> By(12n+11)¢" = 4fif¢  (mod 8). (3.68)

n=0

Extracting the terms involving ¢*"™! from both sides of the equation (3.68), we get
(3.60).
The congruence (3.68) implies that

i By (24n +11) ¢" = 4f,f; (mod 8), (3.69)

n=0

which is 8 = 0 case of (3.61). The rest of the proofs of the identities (3.61)-(3.63)
are similar to the proofs of the identities (3.28)-(3.30). So, we omit the details.
The congruence (3.67) reduces to

o 6
Z By (12n+5)¢" = 2f5 + 2q‘;—6 (mod 4), (3.70)
n=0 2
which implies
> By(24n+5)q" =2f7 (mod 4), (3.71)

n=0
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which is = 0 case of (3.64). The remaining proofs of the identities (3.64) and
(3.63) are similar to the proofs of the identities (3.31) and (3.32). So, we omit the

details.

4. Congruences modulo powers of 3

Theorem 4.1. Let ¢y € {88,136, 184,232}, ¢5 € {22,34,46,58}, then for alln >0

and o > 0, we have
By(6n+5) =0 (mod 6),

By(24n+20) =0 (mod 9),
By (3-2%n 4 22015) = B, (12n+8)  (mod 9),

D By (48-5"n+8-5")¢" =6f1f; (mod9),

n=0
D By (48-5%Fn4+8-57%2) ¢ = 6f5 15 (mod 9),

n=0
Bs (48 - 5" n 4+ ¢, - 5°**) =0 (mod 9),

> By (12-5%n+2-5")¢" = 2f (mod 3),

n=0

> By (12-5%Fn+2.5772) ¢ = 22 (mod 3),
n=0

By (12-5*n+¢; - 5**7) =0 (mod 3).
Proof. From the equation (1.6), we have
- fo  I1
By(n)q" = :
; f32f12 ft

_ fé <f12f18 f6f9f36 2f6f18f36)
e\ T Cam T g )

which implies

S N
By(3 = 4
2 BaBmd" = et + 40T

- LTRSS f3 18 1)
E By(3 1 4
— 23+ 1)g" f1f4f12Jr TR

(4.5)
(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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and

- i 1313
B (3 2 = .
2 Baldn + 90" =t A

The equation (4.13) reduces to

N n_ i (f3> W J2 58 (f1>
B =
nZ:O 2{3n +2)a fofife \ fi o fuofie \ f§

f (f4f6 f12> +4f2f§’ (fszffz B

Ef2f42ffs szfuJr J Jafi2 1l

which implies

S Byon 2y = L2 RS (g

i 13
and
ZBQ (6n +5)¢" = Js (mod 9).
— fifs
From the equation (4.16), we arrive at (4.1).
The equation (4.15) reduces to
S fs
ZB2<6”+2)Q =5/2/e
—~ 7
fif5 fifeft
= 5fafi ( + 3q mod 9),
AR, ) tmed?
from which we extract
Z By(12n + 2)¢" = f2 fs (mod 9)
2 R P
and
ZBQ 12n + 8)¢" f2f3f6 (mod 9).
— fP
The equation (4.19) reduces to
ZBQ (12n + 8)¢" = 61 (mod 9).

n=0 f

15

(4.13)

(mod 9),
(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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Extracting the terms involving ¢?"*! from both sides of the above equation, we get
(4.2).
The equation (4.20) implies that

; By(24n + 8)¢" = fji
_ (1R S )
=6 (f22f12 +4q f4 (mod 9), (4.21)
which implies
ZBQ (48n + 8)¢" = ;3 (mod 9) (4.22)
n=0 1
and . ,
> By(48n+32)" = J]i_ﬁ (mod 9). (4.23)
n=0 2

In the view of congruences (4.20) and (4.23), we see that
By(48n + 32) = By(12n+8) (mod 9). (4.24)

Using the above relation and by induction on «, we arrive at (4.3).
The equation (4.22) becomes

> By(48n+8)¢" =6f1fs (mod 9), (4.25)

n=0

which is @ = 0 case of (4.4). Suppose that the congruence (4.4) is true for o > 0,
we have

Z B, (48 -5**n+8-5°*) ¢" = 6f1 f3

! = 6/ (a(¢®) — 4 — ¢*/ald))
% frs(a(@®) — ¢ — ¢*/a(q"®)) (mod 9), (4.26)

from which we extract

> By (48-5%Fn+8-572) ¢ = 6f5 15 (mod 9), (4.27)

n=0
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which implies

> By (48-5% %0 4+8-52) ¢" = 6ff; (mod 9), (4.28)

n=0

which implies that the congruence (4.4) is true for a 4+ 1. So, by induction, the
congruence (4.4) holds for all a > 0.

Using (2.15) in (4.4) and then collecting the coefficients of ¢°*** from both
sides, we get (4.5).

From the congruence (4.5), we get (4.6).

The equation (4.18) reduce to

f:Bz(lzn +2)¢" =2f} (mod 3), (4.29)

n=0

which is a = 0 case of (4.7). Suppose the congruence (4.7) is true for a > 0, we
have

> By (12-5%n+2-52) ¢" = 2f} = 2f5; (a(¢®) — g — ¢*/(¢")"  (mod 3),

n=0

(4.30)
from which we extract
iBg (12-5** ! p +2.5%%%) ¢" = 2f) (mod 3), (4.31)
n=0
which implies
i By (12-5*n +2-5*") ¢" = 2f} (mod 3), (4.32)
n=0

which implies that the congruence (4.7) is true for av+ 1. Hence, by induction, the
congruence (4.7) holds for all integers o > 0.

Using (2.15) in (4.7) and then comparing the coefficients of ¢°*™ on both sides,
we get (4.8).

Extracting the terms involving ¢°"* for i = 1,2, 3,4 from the congruence (4.8),
we arrive at (4.9).

Theorem 4.2. For alln > 0 and a > 0, we have

Bs(144n +120) =0 (mod 9), (4.33)
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By (2-3%"n+3%?) =271 By(6n +3)  (mod 9), (4.34)
By (9-2°*"n 4 3.2%%1) = By(36n+12)  (mod 9), (4.35)
> By (72-5%n+12-5") ¢" = 3fif; (mod 9), (4.36)
n=0
> By (712-5%F 0 +12-5%%2) " = 3f; fi5 (mod 9), (4.37)
n=0
By (72-5*n+¢5-5**) =0 (mod 9), (4.38)

where cg € {132,204,276, 348}.
Proof. The congruence (4.11) reduces to

x I (f_) 21
2 Dol = Tt 5 ) + e

R (fszflz_ fom) - \
= T ) T (med9). o (439)

which implies

nf; By (6n)q" = f? j: Ggf 2 (mod 9) (4.40)
and . )
Z By(6n+3)¢" = ;j ;z + 8;;;2 (mod 9). (4.41)
The congruence (4.41) reduces to
Z By(6n+3)q" = 3f1f2f3f6 (4.42)
—0
Jfo /o N 2f3f18>
= 3/f3/e (f3f18 qfofis — 2 o (mod 9), (4.43)
we extract -
> By(18n+9)¢" = 6fifofsfs (mod 9). (4.44)

In the view of congruences (4.42) and (4.44), we see that

By(18n4+9) =2 By(6n+3) (mod 9). (4.45)



Congruences for bipartitions with odd Designated Summands 19

Using the above relation and induction on «, we obtain (4.34).
The congruence (4.40) reduces to

)
2 Balona" = % o

n=0

;f—zg(gém ficjg +4q2f6f§18) (mod 9), (4.46)
which implies
9
ZBQ (18n)q" = jzi ;z +7qf5fe  (mod 9), (4.47)
iBQ(Bn—l—G)q”E f3 13 + 7q YN (mod 9) (4.48)
— fife f3
and
_
; By(18n +12)¢" = -
= 3f; <gﬁ2 + %) (mod 9), (4.49)
we extract
;BQ 36n + 12)¢" = flfczf?’
f3
f1
_ (LS
=3 (f22f12 +q f4 ) (mod 9), (4.50)
which implies
> By(72n+12)¢" = 3f1fs (mod 9) (4.51)
n=0
and .
> Ba(72n + 48)¢" 3Jo (mod 9). (4.52)

n=0 f2
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Extracting the terms involving ¢*"*! from the equation (4.52), we get (4.33).
The equation (4.52) implies

f3

) By(144n + 48)¢" = 7
1

n=0

(mod 9). (4.53)

From the congruences (4.50) and (4.53), we see that
By(144n + 48) = By(36n +12)  (mod 9). (4.54)

Using the above relation and by induction on «, we arrive at (4.35).

The congruence (4.51) is a = 0 case of (4.36). The rest of the proofs of the
identities (4.36)-(4.38) are similar to the proofs of the identities (4.4)-(4.6). So, we
omit the details.

Theorem 4.3. Let c; € {264,408,552,696}, cs € {66,102,138,174}, then for all
n >0 and o > 0, we have

By(72n+70) =0 (mod 9), (4.55)
By (9-2%"'n 4+ 6-22T) = By(36n +24) (mod 9), (4.56)
D By (144-5*n+24-5") ¢" = 6f1f; (mod 9), (4.57)
n=0
> By (14450 424 5°F) " = 3f; 15 (mod 9), (4.58)
n=0
By (144-5*n+ ¢; - 5**T) =0 (mod 9), (4.59)
> By (36-5"n+6-5)¢" = f{ (mod 3), (4.60)
n=0
> By (365" +6-5") ¢" = fi (mod 3), (4.61)
n=0
Bs (36 - 5°*"n + ¢ - 5**) =0 (mod 3). (4.62)

Proof. The equation (4.48) becomes

- n_ f_25<f£’f§ f12) (fszffz_ f2f12)
;;Bz<18n+6)q =45, Ty ) V7 af3fg T (mod 9),

(4.63)
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from which we extract

232 36n+6) f1f3f2 —|-6 flfg (mod 9)

=0 & f3f2

and

By(36n + 24)¢" = (mod 9).
Z f1 ?fﬁ

n=0 3

The congruence (4.65) reduces to

oo 3
nZ% By(36n + 24)¢" = % (mod 9).

21

(4.64)

(4.65)

(4.66)

Extracting the terms involving ¢***! form the above equation, we get (4.55).

The congruence (4.66) implies that

ZBQ 720+ 24)¢" = f3
n=0 f

E6(f4f6 + @) (mod 9),

f3 fia Ja

which implies

f: By(144n +24)¢" =6 f1f3 (mod 9)

n=0
and

Z B,y (144n + 96)¢" = 6f—

n=0 f
In the view of congruences (4.66) and (4.69), we see that

(mod 9).

Bo(144n + 96) = By(36n + 24) (mod 9).

Using the above relation and by induction on «, we arrive at (4.56).

(4.67)

(4.68)

(4.69)

(4.70)

The rest of the proofs of the identities (4.57)-(4.59) are similar to the proofs of

the identities (4.4)-(4.6). So, we omit the details.
The congruence (4.64) reduces to

i By(36n +6)¢" = f{ (mod 3).

n=0

(4.71)
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The rest of the proofs of the identities (4.60)-(4.62) are similar to the proofs of the
identities (4.7)-(4.9). So, we omit the details.

Theorem 4.4. For alln > 0 and o > 0, we gave
By (4-3*Fn+2-3%%%) = By(36n + 18)  (mod 9). (4.72)

Proof. The congruence (4.47) reduces to

> By(18n)q" = 3 (—3) + 7415 f5
n=0

fe \h
3
= % (é‘i + %) +7qf3f5  (mod 9), (4.73)
from which we extract
ZBQ (36n) jzi 397 1;? S (mod 9) (4.74)
and
N 3 A
By(36 18)¢" = 3—=+
; 2(36n + 18)q f1f3+ f2f3+ T f3
3
§—§ (fé) ++ ;—2 (%) + 7/ f (mod9).  (4.75)
Employing (2.4), (2.5) and (2.8) in the above equation and then collecting the
coefficients of ¢*"*!, we get
> 2 £2
Z By (108n + 54)q" = 3% + ;: ;2 +7f2f2 (mod 9). (4.76)
n=0

In the view of congruences (4.75) and (4.76), we see that
B(108n + 54) = B,(36n + 18)  (mod 9). (4.77)

Using the above relation and by induction on «, we arrive at (4.72).

Theorem 4.5. For alln > 1 and o > 0, we have

B»(216n +180) =0 (mod 9), (4.78)
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By(4-3°3n) = By(36n) (mod 9), (4.79)
B, (27-2**T'n + 9. 22¢") = B,(108n + 36) (mod 9), (4.80)
B, (27 2*T'n + 18 - 2°°%%) = B,(108n + 72)  (mod 9). (4.81)

Proof. The congruence (4.74) reduces to

. n_ fufafs
> By(36n)¢" =1+ 3¢5 (mod 9), (4.82)
n=0 f3
which implies
Z Bs(36n)q f1f2f6 (4.83)
f3
f8 (fafél 2 f3fis
= 3q== —qfofis — 2q mod 9), 4.84
73 gz, ~ S0 g ) (mod®) sy
which implies
ZBZ (108n)q 397 ljzf S (mod 9), (4.85)
f3
Z B, (108n + 36)¢" = f—3 (mod 9) (4.86)
n=1 1
and
Z By(108n + 72)¢" = J;ﬁ (mod 9). (4.87)
n=1 2
Extracting the terms involving ¢*"*! from both sides of the equation (4.87), we get
(4.78).

In the view of congruences (4.83) and (4.85), we see that
By(108n) = B2(36n) (mod 9). (4.88)

Using the above relation and by induction on «, we arrive at (4.79).
The proofs of the identities (4.80) and (4.81) are similar to the proof of the
identity (4.3). So, we omit the details.

Acknowledgment
The authors are thankful to the referee for his/her useful comments.



24

[1]

[10]

[11]

[12]

South FEast Asian J. of Mathematics and Mathematical Sciences
References

Andrews G. E., Lewis R. P. and Lovejoy J., Partitions with designated sum-
mands, Acta Arith., 105 (2002), 51-66.

Baruah N. D. and Ojah K. K., Partitions with designated summands in which
all parts are odd, Integers, 15 (2015), #A9.

Baruah N. D. and Ojah K. K., Analogues of Ramanujan’s partition identities
and congruences arising from the theta functions and modular equations,
Ramanujan J., 28 (2012), 385-407.

Berndt B. C., Ramanujan’s Notebooks Part III, Springer-Verlag, New York,
1991.

Chen W. Y. C., Ji K. Q., Jin H. T. and Shen E. Y. Y., On the number of
partitions with designated summands, J. Number Theory, 133 (2013), 2929-
2938.

Hirschhorn M. D., The Power of ¢, Springer International Publishing, Switzer-
land, 2017.

Hirschhorn M. D., Garvan F. and Borwein J., Cubic analogs of the Jacobian
cubic theta function 6(z, ¢), Canad. J. Math., 45 (1993), 673-694.

Hirschhorn M. D. and Sellers J. A., A congruence modulo 3 for partitions
into distinct non-multiples of four, J. Integer Seq., 17 (2014), Article 14.9.6.

Hirschhorn M. D. and Sellers J. A., Arithmetic properties of partition with
odd distinct, Ramanujan J., 22 (2010), 273-284.

Mahadeva Naika M. S. and Gireesh D. S.; Congruences for 3-regular partitions
with designated summands, Integers, 16 (2016), #A25.

Mahadeva Naika M. S. and Harishkumar T., On ¢—regular partition triples
with designated summands, Palest. J. Math., 11 (1), (2022), 87-103

Mahadeva Naika M. S., Harishkumar T. and Veeranna Y., On (3,4)-regular
bipartitions with designated summands, Proc. Jangjeon Math. Soc., 23 (4),
(2020), 465-478.



Congruences for bipartitions with odd Designated Summands 25

[13]

[14]

[15]

[16]

[17]

[18]

Mahadeva Naika M. S., Hemanthkumar B. and Bharadwaj H. S. Sumanth,
Congruences modulo small powers of 2 and 3 for partitions into odd desig-
nated summands, J. Integer Seq., 20 (2017), Article 17.4.3.

Mahadeva Naika M. S. and Nayaka S. Shivaprasada, Congruences for (2, 3)-
regular partition with designated summands, Note Mat., 36 (2), (2016), 99-
123.

Mahadeva Naika M. S. and Nayaka S. Shivaprasada, Arithmetic properties
of 3-regular bipartitions with designated summands, Mat. Vesnik, 69 (3),
(2017), 192-206.

Mahadeva Naika M. S. and Shivashankar C., Arithmetic properties of bipar-
titions with designated summands, Bol. Soc. Mat. Mex., 24 (1), (2018),
37-60.

Toh P. C., Ramanujan type identities and congruences for partition pairs,
Discrete Math., 312 (2012), 1244-1250.

Xia E. X. W., Arithmetic properties of partitions with designated summands,
J. Number Theory, 159 (2016), 160-175.



26

South FEast Asian J. of Mathematics and Mathematical Sciences



