J. of Ramanujan Society of Mathematics and Mathematical Sciences Vol. 10, No. 2 (2023), pp. 187-198 DOI: 10.56827/JRSMMS.2023.1002.14 ISSN (Online):

ISSN (Online): 2582-5461 ISSN (Print): 2319-1023

FUZZY PRE β -OPEN SET AND ITS APPLICATIONS

Anjana Bhattacharyya

Department of Mathematics, Victoria Institution (College) 78 B, A.P.C. Road, Kolkata - 700009, INDIA E-mail : anjanabhattacharyya@hotmail.com

(Received: Feb. 21, 2023 Accepted: Apr. 18, 2023 Published: Jun. 30, 2023)

Abstract: This paper deals with a new type of fuzzy open-like set, viz., fuzzy pre β -open set, the class of which is strictly larger than that of fuzzy preopen set [7]. Using fuzzy pre β -open set as a basic tool, here we introduce fuzzy pre β -regular space in which fuzzy open set and fuzzy pre β -open set coincide. Here we introduce two new types of functions, viz., fuzzy pre β -continuous function, fuzzy pre β -irresolute function. The applications of these two functions on fuzzy pre β -regular space are discussed here.

Keywords and Phrases: Fuzzy β -open set, fuzzy pre β -open set, fuzzy pre β -regular space, fuzzy pre β -continuous function, fuzzy pre β -irresolute function, fuzzy almost compact space.

2020 Mathematics Subject Classification: 54A40, 03E72.

1. Introduction

After introducing fuzzy open set by Chang [4], different types of fuzzy openlike sets are introduced and studied. In [6], fuzzy β -open set is introduced. With the help of this set here we introduce fuzzy pre β -open set, the class of which is strictly larger than that of fuzzy preopen set [7]. In [4], fuzzy continuous function is introduced and in [3], fuzzy β -irresolute function is introduced. Here we introduce fuzzy pre β -continuous function, the class of which is strictly larger than that of fuzzy continuous function, the class of which is strictly larger than that of fuzzy continuous function and fuzzy β -irresolute function.

2. Preliminary

Throughout this paper, (X, τ) or simply by X we shall mean a fuzzy topological space. A fuzzy set A is a function from a non-empty set X into the closed interval I = [0, 1], i.e., $A \in I^X$ [9]. The support [9] of a fuzzy set A, denoted by suppA or A_0 and is defined by $supp A = \{x \in X : A(x) \neq 0\}$. The fuzzy set with the singleton support $\{x\} \subseteq X$ and the value $t \ (0 < t \leq 1)$ will be denoted by x_t . 0_X and 1_X are the constant fuzzy sets taking values 0 and 1 respectively in X. The complement [9] of a fuzzy set A in an fts X is denoted by $1_X \setminus A$ and is defined by $(1_X \setminus A)(x) = 1 - A(x)$, for each $x \in X$. For any two fuzzy sets A, B in X, $A \leq B$ means $A(x) \leq B(x)$, for all $x \in X$ [9] while AqB means A is quasicoincident (q-coincident, for short) [8] with B, i.e., there exists $x \in X$ such that A(x) + B(x) > 1. The negation of these two statements will be denoted by $A \not < B$ and A \not/B respectively. For a fuzzy set A, clA and intA will stand for fuzzy closure [4] and fuzzy interior [4] of A respectively. A fuzzy set A in X is called a fuzzy neighbourhood (nbd, for short) [8] of a fuzzy point x_t if there exists a fuzzy open set G in X such that $x_t \in G \leq A$. If, in addition, A is fuzzy open, then A is called fuzzy open nbd of x_t . A fuzzy set A is said to be a fuzzy quasi neighbourhood (q-nbd for short) of a fuzzy point x_t in an fts X if there is a fuzzy open set U in X such that $x_t q U \leq A$. If, in addition, A is fuzzy open, then A is called a fuzzy open q-nbd of x_t [8].

A fuzzy set A in an fts (X, τ) is called fuzzy regular open [1] (resp., fuzzy β -open [6], fuzzy preopen [7]) if A = intclA (resp., $A \leq cl(int(clA))$, $A \leq int(clA)$). The complement of a fuzzy β -open set is called fuzzy β -closed [6]. The union (intersection) of all fuzzy β -open (resp., fuzzy β -closed) sets contained in (resp., containing) a fuzzy set A is called fuzzy β -interior [6] (resp., fuzzy β -closure [6]) of A, denoted by $\beta intA$ (resp., βclA). A fuzzy set A in an fts X is called a fuzzy β -neighbourhood (fuzzy β -nbd, for short) [6] of a fuzzy point x_{α} in X if there exists a fuzzy β -open set U in X such that $x_{\alpha} \in U \leq A$. The collection of all fuzzy β open (resp., fuzzy β -closed) sets in X is denoted by $F\beta O(X)$ (resp., $F\beta C(X)$) and that of fuzzy preopen (resp. fuzzy preclosed) sets is denoted by FPO(X) (resp. FPC(X)).

3. Fuzzy Pre β -open Set : Some Properties

In this section, we introduce and study fuzzy pre β -open set. Also here we introduce fuzzy pre β -closure operator which is an idempotent operator.

Definition 3.1. A fuzzy set A in an fts (X, τ) is called fuzzy pre β -open if $A \leq \beta$ int(clA). The complement of this set is called fuzzy pre β -closed set. The collection of all fuzzy pre β -open (resp., fuzzy pre β -closed) sets in (X, τ) is denoted by $FP\beta O(X)$ (resp., $FP\beta C(X)$).

The union (resp., intersection) of all fuzzy pre β -open (resp., fuzzy pre β -closed) sets contained in (containing) a fuzzy set A is called fuzzy pre β -interior (resp., fuzzy pre β -closure) of A, denoted by $p\beta intA$ (resp., $p\beta clA$).

Result 3.2. Union of two fuzzy pre β -open sets in an fts X is also so.

Proof. Let $A, B \in FP\beta O(X)$. Then $A \leq \beta int(clA), B \leq \beta int(clB)$. Now $\beta int(cl(A \lor B)) = \beta int(clA \lor clB) \geq \beta int(clA) \lor \beta int(clB) \geq A \lor B$.

Remark 3.3. Intersection of two fuzzy pre β -open sets need not be so, follows from the next example.

Example 3.4. Let $X = \{a, b\}, \tau = \{0_X, 1_X, A\}$ where A(a) = 0.5, A(b) = 0.6. Then (X, τ) is an fts. Now $F\beta O(X, \tau) = \{0_X, 1_X, U\}$ where $U \not\leq 1_X \setminus A$. Consider two fuzzy sets B and C defined by B(a) = 0.6, B(b) = 0.3, C(a) = 0.3, C(b) = 0.6. Then clearly $B, C \in FP\beta O(X, \tau)$. Let $D = B \bigwedge C$. Then D(a) = D(b) = 0.3. But $\beta int(clD) = \beta int(1_X \setminus A) = 0_X \not\geq D \Rightarrow D \notin FP\beta O(X, \tau)$.

So we can conclude that the set of all fuzzy pre β -open sets does not form a fuzzy topology.

Note 3.5. For any fuzzy set A in an fts X, int $A \leq \beta$ intA, so clearly fuzzy preopen set is fuzzy pre β -open, but not conversely follows from the next example.

Example 3.6. Let $X = \{a, b\}, \tau = \{0_X, 1_X, A\}$ where A(a) = 0.5, A(b) = 0.4. Then (X, τ) is an fts. Consider the fuzzy set B defined by B(a) = B(b) = 0.5. Then $int(clB) = A \geq B \Rightarrow B \notin FPO(X, \tau)$. But $\beta int(clB) = \beta int(1_X \setminus A) = 1_X \setminus A \geq B$ (as every fuzzy set in (X, τ) is fuzzy β -open in (X, τ)) $\Rightarrow B \in FP\beta O(X, \tau)$.

Definition 3.7. A fuzzy set A in an fts (X, τ) is called fuzzy pre β -neighbourhood (fuzzy pre β -nbd, for short) of a fuzzy point x_{α} if there exists a fuzzy pre β -open set U in X such that $x_{\alpha} \in U \leq A$. If, in addition, A is fuzzy pre β -open, then A is called fuzzy pre β -open nbd of x_{α} .

Definition 3.8. A fuzzy set A in an fts (X, τ) is called fuzzy pre β -quasi neighbourhood (fuzzy pre β -q-nbd, for short) of a fuzzy point x_{α} if there exists a fuzzy pre β -open set U in X such that $x_{\alpha}qU \leq A$. If, in addition, A is fuzzy pre β -open, then A is called fuzzy pre β -open q-nbd of x_{α} .

Remark 3.9. It is clear from definitions that fuzzy nbd (resp., fuzzy q-nbd) of a fuzzy point is a fuzzy pre β -nbd (resp., fuzzy pre β -q-nbd) of that fuzzy point in an fts. But converse may not be true follows from the following example.

Example 3.10. Let $X = \{a, b\}, \tau = \{0_X, 1_X\}$. Then (X, τ) is an fts. Now con-

sider the fuzzy point $a_{0.5}$ and the fuzzy set A defined by A(a) = A(b) = 0.6. Since every fuzzy set in (X, τ) is fuzzy pre β -open set in (X, τ) , clearly A is fuzzy pre β -nbd (resp., fuzzy pre β -q-nbd) of $a_{0.5}$. But A is not a fuzzy nbd (resp., fuzzy q-nbd) of $a_{0.5}$ as there is no fuzzy open set U in X such that $a_{0.5} \in U \leq A$ (resp., $a_{0.5}qU \leq A$).

Theorem 3.11. For any fuzzy set A in an fts (X, τ) , $x_{\alpha} \in p\beta clA$ iff every fuzzy pre β -open q-nbd U of x_{α} , UqA.

Proof. Let $x_{\alpha} \in p\beta clA$ for any fuzzy set A in an fts (X, τ) . Let $U \in FP\beta O(X)$ with $x_{\alpha}qU$. Then $U(x) + \alpha > 1 \Rightarrow x_{\alpha} \notin 1_X \setminus U \in FP\beta C(X)$. Then by definition, $A \not\leq 1_X \setminus U \Rightarrow$ there exists $y \in X$ such that $A(y) > 1 - U(y) \Rightarrow A(y) + U(y) > 1 \Rightarrow UqA$.

Conversely, let the given condition hold. Let $U \in FP\beta C(X)$ with $A \leq U \dots (1)$. We have to show that $x_{\alpha} \in U$, i.e., $U(x) \geq \alpha$. If possible, let $U(x) < \alpha$. Then $1 - U(x) > 1 - \alpha \Rightarrow x_{\alpha}q(1_X \setminus U)$ where $1_X \setminus U \in FP\beta O(X)$. By hypothesis, $(1_X \setminus U)qA \Rightarrow$ there exists $y \in X$ such that $1 - U(y) + A(y) > 1 \Rightarrow A(y) > U(y)$, contradicts (1).

Theorem 3.12. $p\beta cl(p\beta clA) = p\beta clA$ for any fuzzy set A in an fts (X, τ) . **Proof.** Let $A \in I^X$. Then $A \leq p\beta clA \Rightarrow p\beta clA \leq p\beta cl(p\beta clA) \dots$ (1). Conversely, let $x_{\alpha} \in p\beta cl(p\beta clA)$. If possible, let $x_{\alpha} \notin p\beta clA$. Then there exists $U \in FP\beta O(X)$,

 $x_{\alpha}qU, U \not qA...(2)$

But as $x_{\alpha} \in p\beta cl(p\beta clA)$, $Uq(p\beta clA) \Rightarrow$ there exists $y \in X$ such that $U(y) + (p\beta clA)(y) > 1 \Rightarrow U(y) + t > 1$ where $t = (p\beta clA)(y)$. Then $y_t \in p\beta clA$ and y_tqU where $U \in FP\beta O(X)$. Then by definition, UqA, contradicts (2). So

 $p\beta cl(p\beta clA) \le p\beta clA...(3)$

Combining (1) and (3), we get the result.

4. Fuzzy pre β -Continuous Function : Some Characterizations

In this section we introduce and characterize fuzzy pre β -continuous function, the class of which is strictly larger than that of fuzzy continuous function [4] and fuzzy β -irresolute function [3].

Definition 4.1. A function $f : X \to Y$ is said to be fuzzy pre β - continuous if for each fuzzy point x_{α} in X and every fuzzy nbd V of $f(x_{\alpha})$ in Y, $cl(f^{-1}(V))$ is a fuzzy β -nbd of x_{α} in X.

Theorem 4.2. For a function $f : X \to Y$, the following statements are equivalent :

(a) f is fuzzy pre β -continuous,

(b) $f^{-1}(B) \leq \beta int(cl(f^{-1}(B)))$, for all fuzzy open set B of Y,

(c) $f(\beta clA) \leq cl(f(A))$, for all fuzzy open set A in X.

Proof. (a) \Rightarrow (b). Let *B* be any fuzzy open set in *Y* and $x_{\alpha} \in f^{-1}(B)$. Then $f(x_{\alpha}) \in B \Rightarrow B$ is a fuzzy nbd of $f(x_{\alpha})$ in *Y*. By (a), $cl(f^{-1}(B))$ is a fuzzy β -nbd of x_{α} in *X*. So $x_{\alpha} \in \beta int(cl(f^{-1}(B)))$. Since x_{α} is taken arbitrarily, $f^{-1}(B) \leq \beta int(cl(f^{-1}(B)))$.

(b) \Rightarrow (a). Let x_{α} be a fuzzy point in X and B be a fuzzy nbd of $f(x_{\alpha})$ in Y. Then $x_{\alpha} \in f^{-1}(B) \leq \beta int(cl(f^{-1}(B)))$ (by (b)) $\leq cl(f^{-1}(B))$. So $cl(f^{-1}(B))$ is a fuzzy β -nbd of x_{α} in X.

(b) \Rightarrow (c). Let A be a fuzzy open set in X. Then $1_Y \setminus cl(f(A))$ is a fuzzy open set in Y. By (b), $f^{-1}(1_Y \setminus cl(f(A))) \leq \beta int(cl(f^{-1}(1_Y \setminus cl(f(A))))) = \beta int(cl(1_X \setminus f^{-1}(cl(f(A))))) \leq \beta int(cl(1_X \setminus f^{-1}(f(A)))) \leq \beta int(cl(1_X \setminus A)) = \beta int(1_X \setminus A) = 1_X \setminus \beta clA$. Then $\beta clA \leq 1_X \setminus f^{-1}(1_Y \setminus cl(f(A))) = f^{-1}(cl(f(A)))$. So $f(\beta clA) \leq cl(f(A))$.

(c) \Rightarrow (b). Let *B* be any fuzzy open set in *Y*. Then $int(f^{-1}(1_Y \setminus B))$ is a fuzzy open set in *X*. By (c), $f(\beta cl(int(f^{-1}(1_Y \setminus B)))) \leq cl(f(int(f^{-1}(1_Y \setminus B)))) \leq cl(f(f^{-1}(1_Y \setminus B))) \leq cl(1_Y \setminus B) = 1_Y \setminus B \Rightarrow B \leq 1_Y \setminus f(\beta cl(int(f^{-1}(1_Y \setminus B))))$. Then $f^{-1}(B) \leq f^{-1}(1_Y \setminus f(\beta cl(int(f^{-1}(1_Y \setminus B))))) = 1_X \setminus f^{-1}(f(\beta cl(int(f^{-1}(1_Y \setminus B))))) \leq 1_X \setminus \beta cl(int(f^{-1}(1_Y \setminus B)))) = 1_X \setminus \beta cl(int(f^{-1}(1_Y \setminus B))) = \beta int(cl(f^{-1}(B))).$

Note 4.3. It is clear from Theorem 4.2 that the inverse image under fuzzy pre β -continuous function of any fuzzy open set is fuzzy pre β -open.

Theorem 4.4. For a function $f : X \to Y$, the following statements are equivalent: (a) f is fuzzy pre β -continuous,

(b) $f^{-1}(B) \leq \beta int(cl(f^{-1}(B)))$, for all fuzzy open set B of Y,

(c) for each fuzzy point x_{α} in X and each fuzzy open nbd V of $f(x_{\alpha})$ in Y, there exists $U \in FP\beta O(X)$ containing x_{α} such that $f(U) \leq V$,

(d) $f^{-1}(F) \in FP\beta C(X)$, for all fuzzy closed set F in Y,

(e) for each fuzzy point x_{α} in X, the inverse image under f of every fuzzy nbd of $f(x_{\alpha})$ is a fuzzy pre β -nbd of x_{α} in X,

(f) $f(p\beta clA) \leq cl(f(A))$, for all fuzzy set A in X,

(g) $p\beta cl(f^{-1}(B)) \leq f^{-1}(clB)$, for all fuzzy set B in Y,

(h) $f^{-1}(intB) \leq p\beta int(f^{-1}(B))$, for all fuzzy set B in Y,

(i) for every basic open fuzzy set V in Y, $f^{-1}(V) \in FP\beta O(X)$.

Proof. (a) \Leftrightarrow (b). Follows from Theorem 4.2 (a) \Leftrightarrow (b).

(b) \Rightarrow (c). Let x_{α} be a fuzzy point in X and V be a fuzzy open nbd of $f(x_{\alpha})$ in Y. By (b), $f^{-1}(V) \leq \beta int(cl(f^{-1}(V))) \dots$ (1). Now $f(x_{\alpha}) \in V \Rightarrow x_{\alpha} \in f^{-1}(V)$

(= U, say). Then $x_{\alpha} \in U$ and by (1), $U(= f^{-1}(V)) \in FP\beta O(X)$ and $f(U) = f(f^{-1}(V)) \leq V$.

(c) \Rightarrow (b). Let V be a fuzzy open set in Y and let $x_{\alpha} \in f^{-1}(V)$. Then $f(x_{\alpha}) \in V \Rightarrow V$ is a fuzzy open nbd of $f(x_{\alpha})$ in Y. By (c), there exists $U \in FP\beta O(X)$ containing x_{α} such that $f(U) \leq V$. Then $x_{\alpha} \in U \leq f^{-1}(V)$. Now $U \leq \beta int(clU)$. Then $U \leq \beta int(clU) \leq \beta int(cl(f^{-1}(V))) \Rightarrow x_{\alpha} \in U \leq \beta int(cl(f^{-1}(V)))$. Since x_{α} is taken arbitrarily, $f^{-1}(V) \leq \beta int(cl(f^{-1}(V)))$.

(b) \Leftrightarrow (d). Obvious.

(b) \Rightarrow (e). Let W be a fuzzy nbd of $f(x_{\alpha})$ in Y. Then there exists a fuzzy open set V in Y such that $f(x_{\alpha}) \in V \leq W \Rightarrow V$ is a fuzzy open nbd of $f(x_{\alpha})$ in Y. Then by (b), $f^{-1}(V) \in FP\beta O(X)$ and $x_{\alpha} \in f^{-1}(V) \leq f^{-1}(W) \Rightarrow f^{-1}(W)$ is a fuzzy pre β -nbd of x_{α} in X.

(e) \Rightarrow (b). Let V be a fuzzy open set in Y and $x_{\alpha} \in f^{-1}(V)$. Then $f(x_{\alpha}) \in V$. Then V is a fuzzy open nbd of $f(x_{\alpha})$ in Y. By (e), there exists $U \in FP\beta O(X)$ containing x_{α} such that $U \leq f^{-1}(V) \Rightarrow x_{\alpha} \in U \leq \beta int(clU) \leq \beta int(cl(f^{-1}(V)))$. Since x_{α} is taken arbitrarily, $f^{-1}(V) \leq \beta int(cl(f^{-1}(V)))$.

(d) \Rightarrow (f). Let $A \in I^X$. Then cl(f(A)) is a fuzzy closed set in Y. By (d), $f^{-1}(cl(f(A))) \in FP\beta C(X)$ containing A. Therefore, $p\beta clA \leq p\beta cl(f^{-1}(cl(f(A)))) = f^{-1}(cl(f(A))) \Rightarrow f(p\beta clA) \leq cl(f(A)).$

(f) \Rightarrow (d). Let *B* be a fuzzy closed set in *Y*. Then $f^{-1}(B) \in I^X$. By (f), $f(p\beta cl(f^{-1}(B))) \leq cl(f(f^{-1}(B))) \leq clB = B \Rightarrow p\beta cl(f^{-1}(B)) \leq f^{-1}(B) \Rightarrow f^{-1}(B) \in FP\beta C(X).$

(f) \Rightarrow (g). Let $B \in I^Y$. Then $f^{-1}(B) \in I^X$. By (f), $f(p\beta cl(f^{-1}(B))) \leq cl(f(f^{-1}(B))) \leq clB \Rightarrow p\beta cl(f^{-1}(B)) \leq f^{-1}(clB)$.

(g) \Rightarrow (f). Let $A \in I^X$. Let B = f(A). Then $B \in I^Y$. By (g), $p\beta cl(f^{-1}(f(A))) \leq f^{-1}(cl(f(A))) \Rightarrow p\beta clA \leq f^{-1}(cl(f(A))) \Rightarrow f(p\beta clA) \leq cl(f(A))$.

(b) \Rightarrow (h). Let $B \in I^Y$. Then intB is a fuzzy open set in Y. By (b), $f^{-1}(intB) \leq \beta int(cl(f^{-1}(intB))) \Rightarrow f^{-1}(intB) \in FP\beta O(X) \Rightarrow f^{-1}(intB) = p\beta int(f^{-1}(intB)) \leq p\beta int(f^{-1}(B)).$

(h) \Rightarrow (b). Let A be any fuzzy open set in Y. Then $f^{-1}(A) = f^{-1}(intA) \leq p\beta int(f^{-1}(A))$ (by (h)) $\Rightarrow f^{-1}(A) \in FP\beta O(X)$. (b) \Rightarrow (i). Obvious.

(i) \Rightarrow (b). Let W be any fuzzy open set in Y. Then there exists a collection $\{W_{\alpha} : \alpha \in \Lambda\}$ of fuzzy basic open sets in Y such that $W = \bigvee_{\alpha \in \Lambda} W_{\alpha}$. Now

$$f^{-1}(W) = f^{-1}(\bigvee_{\alpha \in \Lambda} W_{\alpha}) = \bigvee_{\alpha \in \Lambda} f^{-1}(W_{\alpha}) \in FP\beta O(X)$$
 (by (i) and by Result 3.2).
Hence (b) follows

Hence (b) follows.

Theorem 4.5. A function $f : X \to Y$ is fuzzy pre β -continuous if and only if for each fuzzy point x_{α} in X and each fuzzy open q-nbd V of $f(x_{\alpha})$ in Y, there exists a fuzzy pre β -q-nbd W in X such that $f(W) \leq V$.

Proof. Let f be fuzzy pre β -continuous function and x_{α} be a fuzzy point in Xand V be a fuzzy open q-nbd of $f(x_{\alpha})$ in Y. Then $f(x_{\alpha})qV$. Let f(x) = y. Then $V(y) + \alpha > 1 \Rightarrow V(y) > 1 - \alpha \Rightarrow V(y) > \beta > 1 - \alpha$, for some real number β . Then V is a fuzzy open nbd of y_{β} . By Theorem 4.4 (a) \Rightarrow (c), there exists $W \in FP\beta O(X)$ containing x_{β} , i.e., $W(x) \ge \beta$ such that $f(W) \le V$. Then $W(x) \ge \beta > 1 - \alpha \Rightarrow x_{\alpha}qW$ and $f(W) \le V$.

Conversely, let the given condition hold and let V be a fuzzy open set in Y. Put $W = f^{-1}(V)$. If $W = 0_X$, then we are done. Suppose $W \neq 0_X$. Then for any $x \in W_0$, let y = f(x). Then $W(x) = [f^{-1}(V)](x) = V(f(x)) = V(y)$. Let us choose $m \in \mathcal{N}$ where \mathcal{N} is the set of all natural numbers such that $1/m \leq W(x)$. Put $\alpha_n = 1 + 1/n - W(x)$, for all $n \in \mathcal{N}$. Then for $n \in \mathcal{N}$ and $n \geq m, 1/n \leq 1/m \Rightarrow 1 + 1/n \leq 1 + 1/m \Rightarrow \alpha_n = 1 + 1/n - W(x) \leq 1 + 1/m - W(x) \leq 1$. Again $\alpha_n > 0$, for all $n \in \mathcal{N} \Rightarrow 0 < \alpha_n \leq 1$ so that $V(y) + \alpha_n > 1 \Rightarrow y_{\alpha_n} qV \Rightarrow V$ is a fuzzy open q-nbd of y_{α_n} . By the given condition, there exists $U_n^x \in FP\beta O(X)$ such that $x_{\alpha_n}qU_n^x$ and $f(U_n^x) \leq V$, for all $n \geq m$. Let $U^x = \bigvee \{U_n^x : n \in \mathcal{N}, n \geq m\}$. Then $U^x \in FP\beta O(X)$ (by Result 3.2) and $f(U^x) \leq V$. Again $n \geq m \Rightarrow U_n^x(x) + \alpha_n > 1 \Rightarrow U_n^x(x) + 1 + 1/n - W(x) > 1 \Rightarrow U_n^x(x) > W(x) - 1/n \Rightarrow U_n^x(x) \geq W(x)$, for each $x \in W_0$. Then $W \leq U_n^x$, for all $n \geq m$ and for all $x \in W_0 \Rightarrow W \leq U^x$, for all $x \in W_0 \Rightarrow f(U) \leq V \Rightarrow U \leq f^{-1}(f(U)) \leq f^{-1}(V) = W \dots$ (2). By (1) and (2),

 $x \in W_0 \Rightarrow f(U) \leq V \Rightarrow U \leq f^{-1}(f(U)) \leq f^{-1}(V) = W$... (2). By (1) and (2), $U = W = f^{-1}(V) \Rightarrow f^{-1}(V) \in FP\beta O(X)$. Hence by Theorem 4.2, f is fuzzy pre β -continuous function.

Note 4.6. Since fuzzy regular open set is fuzzy open, by Note 4.3, we can easily say that the inverse image of fuzzy regular open set under fuzzy pre β -continuous function is fuzzy pre β -open.

Let us recall the following definition from [4, 3] for ready references.

Definition 4.7. A function $f : X \to Y$ is called fuzzy continuous [4] (resp., fuzzy β -irresolute [3]) if the inverse image of fuzzy open (resp., fuzzy β -open) set in Y is fuzzy open set (resp., fuzzy β -open set) in X.

Remark 4.8. (i) It is clear from definitions that fuzzy β -irresolute function (resp. fuzzy continuous function) is fuzzy pre β -continuous, but the converse need not be so follows from the following example.

(ii) Composition of two fuzzy pre β -continuous functions need not be so, follows

from the following example.

Example 4.9. (i) Let $X = \{a, b\}, \tau_1 = \{0_X, 1_X, A\}, \tau_2 = \{0_X, 1_X\}$ where A(a) = 0.5, A(b) = 0.6. Then (X, τ_1) and (X, τ_2) are fts's. Consider the identity function $i : (X, \tau_1) \to (X, \tau_2)$. Then clearly i is fuzzy pre β -continuous function. Now every fuzzy set in (X, τ_2) is fuzzy β -open in (X, τ_2) . Consider the fuzzy set B defined by B(a) = B(b) = 0.4. Then $B \in F\beta O(X, \tau_2)$. Now $i^{-1}(B) = B \not\leq cl_{\tau_1}(int_{\tau_1}(cl_{\tau_1}B)) = 0_X \Rightarrow B \notin F\beta O(X, \tau_1) \Rightarrow i$ is not fuzzy β -irresolute function. (ii) Consider above Example and the identity function $i : (X, \tau_2) \to (X, \tau_1)$. As every fuzzy set in (X, τ_2) is fuzzy pre β -open set in (X, τ_2) , clearly i is fuzzy pre β -continuous function. But $A \in \tau_1, i^{-1}(A) = A \notin \tau_2$. So i is not fuzzy continuous function.

(iii). Let $X = \{a, b\}, \tau_1 = \{0_X, 1_X, A\}, \tau_2 = \{0_X, 1_X\}, \tau_3 = \{0_X, 1_X, B\}$ where A(a) = 0.5, A(b) = 0.6, B(a) = B(b) = 0.4. Then $(X, \tau_1), (X, \tau_2)$ and (X, τ_3) are fts's. Consider two identity functions $i_1 : (X, \tau_1) \to (X, \tau_2)$ and $i_2 : (X, \tau_2) \to (X, \tau_3)$. Clearly i_1 and i_2 are fuzzy pre β -continuous functions. But $B \in \tau_3$, $(i_2 \circ i_1)^{-1}(B) = B \not\leq \beta int_{\tau_1}(cl_{\tau_1}B) = 0_X \Rightarrow B \notin FP\beta O(X, \tau_1) \Rightarrow i_2 \circ i_1$ is not a fuzzy pre β -continuous function.

Lemma 4.10. [2]. Let Z, X, Y be fts's and $f_1 : Z \to X$ and $f_2 : Z \to Y$ be functions. Let $f : Z \to X \times Y$ be defined by $f(z) = (f_1(z), f_2(z))$ for $z \in Z$, where $X \times Y$ is provided with the product fuzzy topology. Then if B, U_1, U_2 are fuzzy sets in Z, X, Y respectively such that $f(B) \leq U_1 \times U_2$, then $f_1(B) \leq U_1$ and $f_2(B) \leq U_2$.

Theorem 4.11. Let Z, X, Y be fts's. For any functions $f_1 : Z \to X, f_2 : Z \to Y$, if $f : Z \to X \times Y$, defined by $f(x) = (f_1(x), f_2(x))$, for all $x \in Z$, is fuzzy pre β -continuous function, so are f_1 and f_2 .

Proof. Let U_1 be any fuzzy open q-nbd of $f_1(x_\alpha)$ in X for any fuzzy point x_α in Z. Then $U_1 \times 1_Y$ is a fuzzy open q-nbd of $f(x_\alpha)$, i.e., $(f(x))_\alpha$ in $X \times Y$. Since f is fuzzy pre β -continuous, there exists $V \in FP\beta O(Z)$ with $x_\alpha qV$ such that $f(V) \leq U_1 \times 1_Y$. By Lemma 4.10, $f_1(V) \leq U_1$, $f_2(V) \leq 1_Y$. Consequently, f_1 is fuzzy pre β -continuous.

Similarly, f_2 is fuzzy pre β -continuous.

Lemma 4.12. [1]. Let X, Y be fts's and let $g : X \to X \times Y$ be the graph of a function $f : X \to Y$. Then if A, B are fuzzy sets in X and Y respectively, $g^{-1}(A \times B) = A \bigwedge f^{-1}(B)$.

Theorem 4.13. Let $f : X \to Y$ be a function from an fts X to an fts Y and $g : X \to X \times Y$ be the graph function of f. If g is fuzzy pre β -continuous function, then f is so.

Proof. Let g be fuzzy pre β -continuous function and B be a fuzzy open set in Y. Then by Lemma 4.12, $f^{-1}(B) = 1_X \bigwedge f^{-1}(B) = g^{-1}(1_X \times B)$. Now since B is fuzzy open in Y, then $1_X \times B$ is fuzzy open in $X \times Y$. Again, $g^{-1}(1_X \times B) = f^{-1}(B) \in FP\beta O(X)$ as g is fuzzy pre β -continuous function. Hence f is fuzzy pre β -continuous.

5. Fuzzy pre β -Irresolute Function: Some Properties

In this section we introduce fuzzy pre β -irresolute function, the class of which is strictly coarser than that of fuzzy pre β -continuous function.

Definition 5.1. A function $f : X \to Y$ is called fuzzy pre β -irresolute if the inverse image of every fuzzy pre β -open set in Y is fuzzy pre β -open in X.

Theorem 5.2. For a function $f : X \to Y$, the following statements are equivalent: (a) f is fuzzy pre β -irresolute,

(b) for each fuzzy point x_{α} in X such that each fuzzy pre β -open nbd V of $f(x_{\alpha})$ in Y, there exists a fuzzy pre β -open nbd U of x_{α} in X such that $f(U) \leq V$,

(c) $f^{-1}(F) \in FP\beta C(X)$, for all $F \in FP\beta C(Y)$,

(d) for each fuzzy point x_{α} in X, the inverse image under f of every fuzzy pre β -open nbd of $f(x_{\alpha})$ is a fuzzy pre β -open nbd of x_{α} in X,

(e) $f(p\beta clA) \leq p\beta cl(f(A)), \text{ for all } A \in I^X,$

(f) $p\beta cl(f^{-1}(B)) \leq f^{-1}(p\beta clB)$, for all $B \in I^Y$,

(g) $f^{-1}(p\beta intB) \leq p\beta int(f^{-1}(B))$, for all $B \in I^Y$.

Proof. The proof is similar to that of Theorem 4.4 and hence is omitted.

Theorem 5.3. A function $f : X \to Y$ is fuzzy pre β -irresolute if and only if for each fuzzy point x_{α} in X and corresponding to any fuzzy pre β -open q-nbd V of $f(x_{\alpha})$ in Y, there exists a fuzzy pre β -open q-nbd W of x_{α} in X such that $f(W) \leq V$.

Proof. The proof is similar to that of Theorem 4.5 and hence is omitted.

Note 5.4. Composition of two fuzzy pre β -irresolute functions is also so.

Theorem 5.5. If $f : X \to Y$ is fuzzy pre β -irresolute and $g : Y \to Z$ is fuzzy pre β -continuous (resp., fuzzy continuous), then $g \circ f : X \to Z$ is fuzzy pre β -continuous.

Proof. Obvious.

Remark 5.6. Every fuzzy pre β -irresolute function is fuzzy pre β -continuous, but the converse is not true, in general, follows from the following example.

Example 5.7. Fuzzy pre β -continuous function \neq fuzzy pre β -irresolute function. Consider Example 4.9(i). Here *i* is fuzzy pre β -continuous function. Also here $B \in FP\beta O(X, \tau_2)$ as every fuzzy set in (X, τ_2) is fuzzy pre β -open set in (X, τ_2) . But $i^{-1}(B) = B \notin FP\beta O(X, \tau_1) \Rightarrow i$ is not fuzzy pre β -irresolute function.

6. Fuzzy pre β -Regular Space

In this section fuzzy pre β -regular space is introduced in which space fuzzy closed set and fuzzy pre β -closed set coincide. Also some applications of fuzzy pre β -continuous and fuzzy pre β -irresolute functions are shown here.

Definition 6.1. An fts (X, τ) is said to be fuzzy pre β -regular space if for each fuzzy pre β -closed set F in X and each fuzzy point x_{α} in X with $x_{\alpha} \notin F$, there exist a fuzzy open set U in X and a fuzzy pre β -open set V in X such that $x_{\alpha}qU$, $F \leq V$ and $U \notin V$.

Theorem 6.2. For an fts (X, τ) , the following statements are equivalent:

(a) X is fuzzy pre β -regular,

(b) for each fuzzy point x_{α} in X and each fuzzy pre β -open set U in X with $x_{\alpha}qU$, there exists a fuzzy open set V in X such that $x_{\alpha}qV \leq p\beta clV \leq U$,

(c) for each fuzzy pre β -closed set F in X, $\bigwedge \{clV : F \leq V, V \in FP\beta O(X)\} = F$, (d) for each fuzzy set G in X and each fuzzy pre β -open set U in X such that GqU, there exists a fuzzy open set V in X such that GqV and $p\beta clV \leq U$.

Proof. (a) \Rightarrow (b). Let x_{α} be a fuzzy point in X and U, a fuzzy pre β -open set in X with $x_{\alpha}qU$. Then $x_{\alpha} \notin 1_X \setminus U \in FP\beta C(X)$. By (a), there exist a fuzzy open set V and a fuzzy pre β -open set W in X such that $x_{\alpha}qV$, $1_X \setminus U \leq W$, $V \not qW$. Then $x_{\alpha}qV \leq 1_X \setminus W \leq U \Rightarrow x_{\alpha}qV \leq p\beta clV \leq p\beta cl(1_X \setminus W) = 1_X \setminus W \leq U$.

(b) \Rightarrow (a). Let F be a fuzzy pre β -closed set in X and x_{α} be a fuzzy point in X with $x_{\alpha} \notin F$. Then $x_{\alpha}q(1_X \setminus F) \in FP\beta O(X)$. By (b), there exists a fuzzy open set V in X such that $x_{\alpha}qV \leq p\beta clV \leq 1_X \setminus F$. Put $U = 1_X \setminus p\beta clV$. Then $U \in FP\beta O(X)$ and $x_{\alpha}qV$, $F \leq U$ and $U \not qV$.

(b) \Rightarrow (c). Let F be fuzzy pre β -closed set in X. Then $F \leq \bigwedge \{ clV : F \leq V, V \in FP\beta O(X) \}.$

Conversely, let $x_{\alpha} \notin F \in FP\beta C(X)$. Then $F(x) < \alpha \Rightarrow x_{\alpha}q(1_X \setminus F)$ where $1_X \setminus F \in FP\beta O(X)$. By (b), there exists a fuzzy open set U in X such that $x_{\alpha}qU \leq p\beta clU \leq 1_X \setminus F$. Put $V = 1_X \setminus p\beta clU$. Then $F \leq V$ and $U \not qV \Rightarrow x_{\alpha} \notin clV \Rightarrow \bigwedge \{clV : F \leq V, V \in FP\beta O(X)\} \leq F$.

(c) \Rightarrow (b). Let V be any fuzzy pre β -open set in X and x_{α} be any fuzzy point in X with $x_{\alpha}qV$. Then $V(x) + \alpha > 1 \Rightarrow x_{\alpha} \notin (1_X \setminus V)$ where $1_X \setminus V \in FP\beta C(X)$. By (c), there exists $G \in FP\beta O(X)$ such that $1_X \setminus V \leq G$ and $x_{\alpha} \notin clG$. Then there exists a fuzzy open set U in X with $x_{\alpha}qU$, $U / qG \Rightarrow U \leq 1_X \setminus G \leq V$ $\Rightarrow x_{\alpha}qU \leq p\beta clU \leq p\beta cl(1_X \setminus G) = 1_X \setminus G \leq V$.

(c) \Rightarrow (d). Let G be any fuzzy set in X and U be any fuzzy pre β -open set in X

with GqU. Then there exists $x \in X$ such that G(x) + U(x) > 1. Let $G(x) = \alpha$. Then $x_{\alpha}qU \Rightarrow x_{\alpha} \notin 1_X \setminus U$ where $1_X \setminus U \in FP\beta C(X)$. By (c), there exists $W \in FP\beta O(X)$ such that $1_X \setminus U \leq W$ and $x_{\alpha} \notin clW \Rightarrow (clW)(x) < \alpha \Rightarrow x_{\alpha}q(1_X \setminus clW)$. Let $V = 1_X \setminus clW$. Then V is fuzzy open set in X and $V(x) + \alpha > 1 \Rightarrow V(x) + G(x) > 1 \Rightarrow VqG$ and $p\beta clV = p\beta cl(1_X \setminus clW) \leq p\beta cl(1_X \setminus W) = 1_X \setminus W \leq U$. (d) \Rightarrow (b). Obvious.

Note 6.3. It is clear from Theorem 6.2 that in a fuzzy pre β -regular space, every fuzzy pre β -closed set is fuzzy closed and hence every fuzzy pre β -open set is fuzzy open. As a result, in a fuzzy pre β -regular space, the collection of all fuzzy closed (resp., fuzzy open) sets and fuzzy pre β -closed (resp., fuzzy pre β -open) sets coincide.

Theorem 6.4. If $f : X \to Y$ is fuzzy pre β -continuous function and Y is fuzzy pre β -regular space, then f is fuzzy pre β -irresolute function.

Proof. Let x_{α} be a fuzzy point in X and V be any fuzzy pre β -open q-nbd of $f(x_{\alpha})$ in Y where Y is fuzzy pre β -regular space. By Theorem 6.2 (a) \Rightarrow (b), there exists a fuzzy open set W in Y such that $f(x_{\alpha})qW \leq p\beta clW \leq V$. Since f is fuzzy pre β -continuous function, by Theorem 4.5, there exists $U \in FP\beta O(X)$ with $x_{\alpha}qU$ and $f(U) \leq W \leq V$. By Theorem 5.3, f is fuzzy pre β -irresolute function. Let us now recall following definitions from [4, 5] for ready references.

Definition 6.5. [4]. A collection \mathcal{U} of fuzzy sets in an fts X is said to be a fuzzy cover of X if $\bigcup \mathcal{U} = 1_X$. If, in addition, every member of \mathcal{U} is fuzzy open, then \mathcal{U} is called a fuzzy open cover of X.

Definition 6.6. [4]. A fuzzy cover \mathcal{U} of an fts X is said to have a finite subcover \mathcal{U}_0 if \mathcal{U}_0 is a finite subcollection of \mathcal{U} such that $\bigcup \mathcal{U}_0 = 1_X$.

Definition 6.7. [5]. An fts (X, τ) is said to be fuzzy almost compact if every fuzzy open cover \mathcal{U} of X has a finite proximate subcover, i.e., there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\{clU : U \in \mathcal{U}_0\}$ is again a fuzzy cover of X.

Theorem 6.8. If $f : X \to Y$ is a fuzzy pre β -continuous, surjective function and X is fuzzy pre β -regular and almost compact space, then Y is fuzzy almost compact space.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be a fuzzy open cover of Y. Then as f is fuzzy pre β -continuous function, $\mathcal{V} = \{f^{-1}(U_{\alpha}) : \alpha \in \Lambda\}$ is a fuzzy pre β -open and hence fuzzy open cover of X as X is fuzzy pre β -regular space (by Note 6.3). Since X is fuzzy almost compact, there are finitely many members $U_1, U_2, ..., U_n$

of \mathcal{U} such that $\bigcup_{i=1}^{n} cl(f^{-1}(U_i)) = 1_X$. Since X is fuzzy pre β -regular space, by Note 6.3, $clA = p\beta clA$ for all $A \in I^X$ and so $1_X = \bigcup_{i=1}^n p\beta cl(f^{-1}(U_i)) \Rightarrow 1_Y = f(\bigcup_{i=1}^n p\beta cl(f^{-1}(U_i))) = \bigcup_{i=1}^n f(p\beta cl(f^{-1}(U_i))) \le \bigcup_{i=1}^n cl(f(f^{-1}(U_i)))$ (by Theorem 4.4 (a) \Rightarrow (f)) $\le \bigcup_{i=1}^n cl(U_i) \Rightarrow \bigcup_{i=1}^n cl(U_i) = 1_Y \Rightarrow Y$ is fuzzy almost compact space.

Since every fuzzy open set is fuzzy pre β -open, we can easily state the following theorem the proof of which is similar to that of Theorem 6.8.

Theorem 6.9. If a bijective function $f: X \to Y$ is fuzzy pre β -irresolute where X is fuzzy pre β -regular, almost compact space, then Y is fuzzy almost compact.

References

- [1] Azad, K. K., On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1981), 14-32.
- |2| Bhattacharyya, Anjana, On fuzzy δ -almost continuous and δ^* -almost continuous functions, J. Tripura Math. Soc., 2 (2000), 45-57.
- [3] Bhattacharyya, Anjana, Fuzzy β -irresolute mapping, International Research Journal of Mathematics, Engineering and IT, 1 (7) (2014), 30-37.
- [4] Chang, C. L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [5] DiConcillio, A. and Gerla, G., Almost compactness in fuzzy topological spaces, Fuzzy Sets and Systems, 13 (1984), 187-192.
- [6] Fath Alla, M. A., On fuzzy topological spaces, Ph. D. Thesis, Assiut Univ., Sohag, Egypt, 1984.
- [7] Nanda S., Strongly compact fuzzy topological spaces, Fuzzy Sets and Systems, 42 (1991), 259-262.
- [8] Pu, Pao Ming and Liu, Ying Ming, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith Convergence, J. Math Anal. Appl., 76 (1980), 571-599.
- [9] Zadeh, L. A., Fuzzy Sets, Inform. Control, 8 (1965), 338-353.

198