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Abstract: The present paper is strongly motivated by the brilliant work of Wazwaz
[9, Sections 4 and 5] computing analytical approximation in the form of a series
truncated at t8 and applying [4/4] Pade approximant to the series. In this paper,
we make an attempt to workout analytical approximations in the form of the series
truncated at t4 and apply suitable Pade approximations as well as asymptotic
approximations with the following features: i) The solution contains exact non
integral part. ii) The solution exhibits the population rapid rise along logistic
curve followed by decay to zero in the long run. iii) The solution is reasonably
comparable with that of Wazwaz [9] using the information from the series with
terms only upto t4.
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1. Introduction
Following Wazwaz [5, 7, 8, 9], the Volterra population model is

k
du

dt
= u(t)− u2(t)− u(t)

∫ t

0

u(x)dx u(0) = 0.1 (1.1)

The following are well described [5, 8, 9]:

i) u = u(t) stands for scaled population of identical individuals at time t.

ii) k
du

dt
= u(t) − u2(t) is well known as logistic equation where k = c

ab
is a non

dimensionalized parameter in which a > 0 is birth rate coefficient, b > 0 is the
crowding coefficient and c > 0 is toxicity coefficient.

iii) The integral term
∫ t

0
u(x)dx actually characterizes the accumulated toxicity

produced since time zero.

In the present paper, we multiply a parameter ϵ > 0 to integral part of (1.1) to
obtain the following method.

k
du

dt
= u(t)− u2(t)− ϵ u(t)

∫ t

0

u(x)dx u(0) = 0.1 (1.2)

When ϵ = 0, the exact solution of (1.2) is

u(t) =
1

1 + 9e(
−t
k
)

(1.3)

And when ϵ = 1, we set back the model (1.1), we call the solution (1.3) as exact
non integral part of the solution of (1.1). Following section 4 of [9].
Put y(t) =

∫ t

0
u(x)dx =⇒ y

′
(t) = u(t).

Then (1.3) transforms into the following second order nonlinear ODE:

y
′′
(t) =

1

k
[y

′
(t)− (y

′
(t))2 − ϵy(t)y

′
(t)]

y(0) = 0, y
′
(0) = u(0) = 0.1 (1.4)

Further, integration twice on both side of (1.4), we obtain [6]

y(t) = (0.1)t+
1

k

∫ t

0

(t− x)[y
′
(t)− (y

′
(t))2 − ϵy(t)y

′
(t)]dt (1.5)
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In the next section, we apply the Adomian decomposition method to solve (1.5)
approximately keeping only first few terms. In the ensuring we make an attempt
to apply not only Pade approximation technique but an assymptotic technique to
construct an approximats solution with the following features:

i) The solution contains exact nonintegral part given by (1.3).

ii) The solution exhibits the population rapid rise along logistic curve followed by
decay to zero in the long run.

iii) The solution is reasonably comparable with that of Wazwaz [9].

2. The Decomposition Method
Following [1, 2, 6, 9, 10], let us represent the solution of (1.5) by

y(t) =
∞∑
n=0

yn(t) = y0 + y1 + y2 + y3 + · · · (2.1)

Then,

y
′
(t) =

∞∑
n=0

An(t),

where

An(t) =y
′

n(t) (2.2)

(y
′
(t))2 =

(
∞∑
n=0

An(t)

)2

=
∞∑
n=0

Bn(t),

where

Bn(t) =
n∑

k=0

Ak(t)An−k(t) (2.3)

y(t)y
′
(t) =

[
∞∑
n=0

yn(t)

][
∞∑
n=0

An(t)

]
=

∞∑
n=0

Cn(t),

where

Cn(t) =
n∑

k=0

yk(t)An−k(t) (2.4)
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Substituting (2.1)− (2.4) in (1.5) we get

y0(t) + y1(t) + y2(t) + · · · = (0.1) t +
1

k

∫ t

0

(t− x)[A0(x)−B0(x)− ϵC0(x)]dx

+
1

k

∫ t

0

(t− x)[A1(x)−B1(x)− ϵC1(x)]dx

+ · · ·

As a result, one can equate,

y0(t) = (0.1)t

y1(t) =
1

k

∫ t

0

(t− x)[A0(x)−B0(x)− ϵC0(x)]dx

y2(t) =
1

k

∫ t

0

(t− x)[A1(x)−B1(x)− ϵC1(x)]dx

... =
...

The first iteration:

y1(t) =
1

k

∫ t

o

(t− x)
[
y

′

0(x)− {y0(x)}2 − ϵy0(x)y
′

0(x)
]
dx

=

(
9

200k

)
t2 −

( ϵ

600k

)
t3

Second iteration:

y2(t) =
1

k

∫ t

o

(t− x)
[
y

′

1(x)− {2y′

0(x)y
′

1(x)} − ϵ{y0(x)y
′

1(x) + y1(x)y
′

0(x)}
]
dx

=

(
3

250k2

)
t3 −

(
7ϵ

4800k2

)
t4 +

(
ϵ2

30000k2

)
t5

Third iteration:

y3(t) =
1

k

∫ t

o

(t− x)
[
y

′

2(x)− (2y
′

0(x)y
′

2(x) + {y′

1(x)}2)

− ϵ{y0(x)y
′

2(x) + y1(x)y
′

1(x) + y2(x)y
′

0(x)}
]
dx

=

(
69

40000k3

)
t4 −

(
226ϵ+ 531

1200000k3

)
t5 +

(
26ϵ2 + 265ϵ

7200000k3

)
t6 −

(
17ϵ2

25200000k3

)
t7
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Fourth iteration:

y4(t) =
1

k

∫ t

o

(t− x)
[
y

′

3(x)− (2y
′

0(x)y
′

3(x) + (2y
′

1(x)y
′

2(x))

− ϵ{y0(x)y
′

3(x) + y1(x)y
′

2(x) + y2(x)y
′

1(x) + y3(x)y
′

0(x)}
]
dx

=

(
−3

62500k4

)
t5 +

(
788ϵ− 6399

36000000k4

)
t6 +

(
208ϵ2 + 7346ϵ+ 4421

504000000k4

)
t7

+

(
480ϵ3 − 8652ϵ2 − 7420ϵ− 1088

16128000000k4

)
t8 +

(
112ϵ3 + 136

18144000000k4

)
t9

For the particular cases ϵ = 1, k = 0.1 (given by [9])

y1(x) =
9

20
t2 − 1

60
t3 = 0.45t2 − 1

60
t3

y2(t) =
6

5
t3 − 7

48
t4 +

1

300
t5

y3(t) =
69

40
t4 − 757

1200
t5 − 97

2400
t6 − 17

25200
t6

y4(t) =
−300

625
t5 − 5611

3600
t6 − 11975

504000
t7 − 16680

16128000
t8 +O(t9)

y(t) = y0(t) + y1(t) + y2(t) + y3(t) + y4(t) + · · ·

= (0.1)t+

[
9

200k
t2 − ϵ

600k
t3
]

+

[
3

250k2
t3 − 7ϵ

4800k2
t4 +

ϵ2

30000k2
t5
]

+

[
69

40000k3
t4 − (226ϵ+ 531)

1200000k3
t5 +

(26ϵ2 + 265ϵ)

7200000k3
t6 − 17ϵ2

25200000k3
t7
]

= (0.1)t+

[
9

200k
t2 − ϵ

600k
t3
]

+

[
3

250k2
t3 − 7ϵ

4800k2
t4 +

ϵ2

30000k2
t5
]

+

[
69

40000k3
t4 − (226ϵ+ 531)

1200000k3
t5
]
+

[
−3

62500k4
t5
]
+O(t6)

= (0.1)t+
9

200k
t2 +

[
−ϵ

600k
+

3

250k2

]
t3 +

[
− 7ϵ

4800k2
+

69

40000k3

]
t4
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+

[
ϵ2

30000k2
− (226ϵ+ 531)

1200000k3
− 3

62500k4

]
t5 +O(t6)

u(t) = y
′
(t) =

[
(0.1) +

9

100k
t+

9

250k2
t2

69

10000k3
t3 −

(
531

2400000k3
+

3

12500k4

)
t4
]

−ϵ

[
1

200k
t2 +

7

1200k2
t3 +

226

240000k3
t4
]
+ ϵ2

[
1

6000k2
t4
]
+O(t5)

3. Analysis of the Method
u(t) ≈ uA(t) = b0(t)− a1(t)ϵ+ a2(t)ϵ

2, where

b0(t) =

[
(0.1) +

9

100k
t+

9

250k2
t2

69

10000k3
t3 −

(
531

2400000k3
+

3

12500k4

)
t4
]

a1(t) =

[
1

200k
t2 +

7

1200k2
t3 +

226

240000k3
t4
]

a2(t) =

[
1

6000k2
t4
]

Let us write

b0(t) =

[
1

10
+

9

100

(
t

k

)
+

9

250

(
t

k

)2
]
+O(t3)

[0/2] Pade approximant [3] to b0(t) is

[0/2]b0(t) =
1/10

1− 9

10

(
t

k

)
+

9

10

[
1

2

(
t

k

)2
] =

1

1 + 9
[
1−

(
t
k

)
+ 1

2

(
t
k

)2]
Let us apply the following asymptotic approximation [4]

1−
(
t

k

)
+

1

2

(
t

k

)2

∼ e
−t
k as

t

k
→ 0.

Hence

b0(t) ≈ 1

1 + 9e
−t
k

= a0(t, k)

and

uA(t) ≈ 1

(1 + 9e
−t
k )

− ϵ

[
1

200k
t2 +

7

1200k2
t3 +

226

240000k3
t4
]
+ ϵ2

[
1

6000k2
t4
]

= a0(t, k)− a1(t, k)ϵ+ a2(t, k)ϵ
2 = uB(t, k, ϵ).
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Let us apply [0/1] Pade approximation and an asymptotic approximation as t → 0.

uB(t, k, ϵ) ∼ a0(t, k)

1 +
a1(t, k)

a0(t, k)
ϵ

+ a2(t, k)ϵ
2e−t, t → 0.

Hence the desired approximation is given by

u1(t) =

1

1 + 9e
−t
k

1 + ϵ

[
1

200k
t2 +

7

1200k2
t3 +

226

240000k3
t4
]
(1 + 9e

−t
k )

+ ϵ2
[

1

6000k2
t4
]
e−t

(3.1)

For the purpose of comparison, we mention the following approximation given in
[9]:

u(t) ≈ u2(t)

=
0.1 + 0.4687931695 t+ 0.9249573236 t2 + 0.9231293234 t3 + 0.4004233108 t4

1− 4.312068305 t+ 12.55818798 t2 − 13.88064046 t3 + 10.86830522 t4

(3.2)

Figure 1: Approximate solution of (1.1) for u(0) = 1, obtained by solving (1.5)
with values k = 0.1, 0.2, 0.5, 1, 10.
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t u1(t) u2(t)
0 0.100000000000000 0.100000000000000

0.5 0.818333070656960 0.761078065585266
1.0 0.394225231596236 0.451941057102017
1.5 0.146239846466385 0.259259406173715
2.0 0.083860107770043 0.175705102389915
2.5 0.083860107770043 0.134308516684525
3.0 0.077910589902910 0.110756712739661
3.5 0.081479713514703 0.095904327346303
4.0 0.081715605297143 0.085808937664095
4.5 0.078189024232110 0.078553522581046
5.0 ‘ 0.071693633825905 0.073112177807395

Table 1: Comparison of u1(t) and u2(t)

The analysis given by expression for u1(t), numerical results in the Figure 1
and numerical results in the Table 1 clearly convey the following conclusions:

i) The solution contains exact non integral part.

ii) The solution exhibits the population rapid rise along logistic curve followed by
decay to zero in the long run.

iii) The solution is reasonably comparable with that of Wazwaz [9] using the in-
formation from the series with terms only upto t4.
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