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1. Introduction
Wavelet analysis plays a vital role in Functional Analysis, Numerical Analy-

sis, Signal Processing, Engineering and Modern Technology. The roles of target
functions and approximating functions are often observed in modern analysis. The
fundamental approach applicable in the approximation theory is to resolve the tar-
get function into the suitable approximates. A certain function is expressed in the
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form of a Fourier series. Similarly, a target function may be represented in the form
of the wavelet series. In wavelet analysis, if the target function is approximated by
N th partial sums SN of the wavelet series then this approximation is known as the
N-terms approximation. If N is taken sufficiently large, then a better approxima-
tion is obtained. One of the main goals for an approximation is to replace Sn. If
the partial sum SN is replaced by another finite sum having fewer coefficients by
which the target function f is approximated then this estimator is considered as
non-linear approximation.

In 1979, the method of N-term approximation, the first time, has been utilized
for multivariate splines by Oskolkov [19]. The idea of non-linear approximation is
given by DeVore [5], Traub et al. [26] and Novak [18]. The wavelet approximation
has been studied by several researchers like Daubechies [3], Chui [2], Morlet et
al. [16], Meyer [15], Strang [24], Natanson [17], Lal et al. [7, 8, 9, 10, 11, 12,
13, 14], Keshavarz et al. [6], Walter [27, 28] and, so forth. The relationship
between irregular fractals and various phenomena such as Brownian trajectories,
fractional Brownian motion, typical Feynmann path, turbulent fluid motion and
complex Bernoulli spiral (see [21]) are established. These irregular fractals exhibit
a locally Lipschitz condition within specific finite intervals at each point. Rehman
& Siddiqi [20] and Shiri & Azadi’s [22] works provide the basis for the current study
by obtaining approximations of these fractals in different functional spaces using
different norms.

The purpose of this paper is to determine the linear wavelet approximation of
the function f belonging to Lipξ, Lip(ξ, p), 1 ≤ p ≤ ∞ and non-linear approxima-
tion of f ∈ L2(R) and Lipα class using Haar scaling function and wavelet series.
By the comparison of linear as well as non-linear wavelet approximation, it is found
that the non-linear wavelet approximation error decays more quickly than a linear
approximation.

2. Definitions and Preliminaries

2.1. Function of Lipα class and function of Lip(ξ, p) class
A function f ∈ Lipα if,

|f(x)− f(y)| = O(|x− y|α), for 0 < α ≤ 1, [25].

Let ξ be a monotonic increasing function of t. Then f ∈ Lip(ξ, p) if{
1

2π

∫ 2π

0

|f(x+ t)− f(x)|p dx
} 1

p

= O(ξ(t)), 1 ≤ p <∞, [23].
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2.2. Remarks

(i) It is important to note that Lip(ξ, p) class coincides with Lipα if

ξ(t) = tα, 0 < α ≤ 1 and p→ ∞.

(ii) Define
f(x) = |x| ∀ x ∈ [0, 1], Then f ∈ Lipα.

(iii) Define a function f : (0, 1] → R

f(x) =
1

x
∀ x ∈ (0, 1]. Then f is continuous but f /∈ Lipα.

(iv) If f ∈ Lipα α ≥ 0, then f is continuous, indeed uniformly continuous.

(v) Lipα class is a linear space over R or C

(vi) If f ∈ Lipα α > 1, then f is constant function.

2.3. Multiresolution Analysis and Haar Scaling Function
A multiresolution analysis of L2(R) is defined as a sequence of closed subspaces

Vj of L
2(R), j ∈ Z, with the following properties:

1. Vj ⊂ Vj+1,

2. f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1,

3. f(x) ∈ V0 ⇔ f(x+ 1) ∈ V0,

4.
∞⋃

j=−∞

Vj is dense in L2(R) and
∞⋂

j=−∞

Vj = {0} ,

5. there exists a function ϕ ∈ V0, such that the collection {ϕ(x− k); k ∈ Z} is a
Riesz basis of V0.

Let ψ ∈ L2(R), and ψj,k := 2
j
2ψ(2j − k) and

Wj := clos ⟨ψj,k : k ∈ Z⟩ .

Then this family of subspaces of L2(R) gives a direct sum decomposition of L2(R)
is the same that every f ∈ L2(R) has a unique decomposition

f(x) = · · ·+ g−2(x) + g−1(x) + g0(x) + g1(x) + g2(x) + · · ·
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where gj ∈ Wj for all j ∈ Z and we describe this by writing

L2(R) = Vj ⊕∞
i=j Wi

Where
Vj := ⊕j−1

k=−∞Wk.{
ψj,k; k ∈ Z where ψj, k = 2

j
2ψ(2jx− k)

}
, is a Riesz basis of Wj.

A function ϕ ∈ L2(R) is called a scaling function, if the subspace Vj, defined by

Vj := closL2R {ϕj,k : k ∈ Z} , j ∈ Z

satisfy the properties (1) to (5) stated above in this section. It is important to note
that the scaling function ϕ generates a Multiresolution analysis {Vj} of L2(R), [4].
Haar scaling function, denoted by ϕ, is defined by

ϕ(t) = χ[0,1) =

{
1, 0 ≤ x < 1;
0, otherwise.

The family of functions{
ϕj,k = 2

j
2ϕ(2j.− k) where j, k ∈ Z

}
,

is called the system of Haar scaling functions.
An orthogonal wavelet is the Haar function is denoted by ψH and defined by

ψH(t) :=


1 for 0 ≤ t < 1

2
;

−1 for 1
2
≤ t < 1;

0 otherwise, [1].

Consider f ∈ L2 ([0, 1), ) has an expansion in terms of Haar functions as follows.
For any integer n ≥ 0,

f(t) =
2j−1∑
k=0

⟨f, ϕn,k⟩ϕn,k(t) +
∞∑
j=n

2j−1∑
k=0

⟨f, ψn,k⟩ψn,k(t)

=
2j−1∑
k=0

cn,kϕn,k(t) +
∞∑
j=n

2j−1∑
k=0

dj,kψn,k(t)

which is known as Haar series and dj,k and cj,k are the Haar coefficients for wavelet
and Haar scaling coefficients, respectively.
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2.4. Linear Wavelet Approximation

Let f be a target function on Ω = [0, 1) . Let N be a positive integer and T =:
{0 = t0 < t1 < t2 < · · · < tk < tk+1 < · · · < tN = 1} be an ordered sets of points in
Ω. These points determine a partition T = {Ik}Nk=1 of Ω in to N, disjoint intervals
Ik = [tk−1, tk] , 1 ≤ k ≤ N. Let S

′
(T ) denote the space of piecewise constant

functions relative to the partition P (T ). The characteristic function {χI ; I ∈ P}
form a basis for S

′
(T ); each function s ∈ S

′
(T ) is uniquely represented by

s =
∑
I∈P

CIχI

Thus S
′
(T ) is a linear space of dimension N.

For, 0 < p <∞, the error in approximating a function f ∈ Lp [0, 1) by the elements
of S

′
(T ) is given by

E(f)p = inf
s∈S′ (T )

∥f − s∥Lp[0,1) = inf
s∈S′ (T )

{
1

2π

∫ 1

0

|f(t)− s(t)|p dt
} 1

p

For p = ∞,

E(f)∞ = sup
x∈Ik,1≤k≤N

|f(x)− s(x)| = ∥f − s∥L∞[0,1) = sup
0≤t<1

|f(t)− s(t)| .

3. Main Results Related to Linear Wavelet Approximation

In this section, three new theorems have been established in the following forms:

Theorem 3.1. A function f ∈ Lipξ class i.e.,

|f(x)− f(y)| = O (ξ (x− y)) ,

where ξ is a non negative monotonic increasing function of t such that ξ(t) → 0
as t→ 0+ iff

E(f)∞ = O

(
ξ

(
δ

2

))
, where δ = max

0≤k<N
|tk+1 − tk| .

Proof. We define the piecewise constant function s ∈ S
′
(T ) by

s(x) = f(xI), x ∈ I, I ∈ Pn
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with xI the mid point of I. Then |x− xI | ≤ δ
2

Now

|f(x)− s(x)| = |f(x)− f(xI)|
≤ M ξ(x− xI), where M is a suitable positive constant

≤ M ξ

(
δ

2

)
, |x− xI | ≤

δ

2
.

Then

E(f)∞ = sup
s∈S′ (T )

|f − s|

= ∥f − s∥L∞[0,1)

= O

(
ξ

(
δ

2

))
.

Conversely, let δ be the best approximation to f from S
′
(T ) in the L∞[0, 1) norm.

If x and y are two points from Ω = [0, 1) that are in the same interval I ∈ P (T ).
Then

|f(x)− f(y)| = |f(x)− ST (x) + ST (x)− ST (y) + ST (y)− f(y)|
≤ |f(x)− ST (x)|+ |ST (x)− ST (y)|+ |ST (y)− f(y)|
= |f(x)− ST (x)|+ |ST (y)− f(y)| ST is constant on I

≤ E(f)∞ + E(f)∞

= 2E(f)∞

= 2Mξ

(
δ

2

)
≤ 2Mξ (x− y) .

So f ∈ Lipξ class.
Thus, Theorem 3.1 is completely established.

Theorem 3.2. A function f ∈ Lip(ξ, p) class i.e.,

∥f(.+ h)− f(.)∥Lp[0,1) = O (ξ (h)) ; 0 < p ≤ ∞

iff

E(f)p ≤ ∥f − ST∥ ≤ Cp ∥f∥p ξ(δ) where Cp depends on p and δ = max
0≤k<N

|tk+1 − tk| .
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Proof. Let us define the piecewise constant function ST ∈ S
′
(T ) by

ST (x) = f(xI), xI & x ∈ I, I ∈ P.

Then |x− xI | ≤ δ, x ∈ I.
Thus

E(f)p = min
ST

{
1

2π

∫ 1

0

|f(x)− ST (x)|p dx
} 1

p

= min
ST

{
1

2π

∫ 1

0

|f(x)− f(xI)|p dx
} 1

p

= Mξ(x− xI) ≤Mξ(δ) = O (ξ (δ)) .

Conversely, let ST be the best approximation to f from S
′
(T ) in the space

Lip(ξ, p) and x + h & x be two points from Ω = [0, 1) in the same interval
I ∈ P (T ), we have

|f(x+ h)− f(x)| = |f(x+ h)− ST (x+ h) + ST (x+ h)− ST (x) + ST (x)− f(x)|
≤ |f(x+ h)− ST (x+ h)|+ |ST (x+ h)− ST (x)|+ |ST (x)− f(x)|
= |f(x+ h)− ST (x+ h)|+ |ST (x)− f(x)| , ST is constant on I.

So{
1

2π

∫ 1

0

|f(x+ h)− f(x)|p dx
} 1

p

≤
{

1

2π

∫ 1

0

|f(x+ h)− ST (x+ h)|p dx
} 1

p

+

{
1

2π

∫ 1

0

|ST (x)− f(x)|p dx
} 1

p

.

Hence

|f(.+ h)− f(.)|p ≤ ME(f)p +ME(f)p

= 2Mξ(δ)

= 2Mξ(h)

= O (ξ (h)) .

So f ∈ Lip(ξ, p).
Thus, Theorem 3.2 is completely established.

Theorem 3.3. If f ∈ Lip(ξ, p), 1 ≤ p ≤ ∞ and g(t) =
N∑
j=0

2j−1∑
k=0

dj,kψj,k is the Haar
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Wavelet series of f for some positive integer N, then the error of the approximation
in Lip(ξ, p) is given by

∥f − g∥Lip(ξ,p) = O

(
ξ

(
1

2N

))
Proof. By Theorem 3.2, f ∈ Lip(ξ, p), 1 ≤ p ≤ ∞, we have

En(f, SN)p = inf ∥f − g∥p ≤ Cp ∥f∥Lip(ξ,p) ξ(δ)
= O (ξ (δ)) where δ = max

0≤t≤N
|tk−1 − tk| .

So the error of the approximation in Lip(ξ, p) class is

∥f − g∥p =

∥∥∥∥∥∥f −
N−1∑
j=0

2j−1∑
k=0

dj,kψj,k

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∞∑

j=N

2j−1∑
k=0

dj,kψj,k

∥∥∥∥∥∥
p

≤ Cp ∥f∥Lip(ξ,p) ξ
(

1

2N

)
= O

(
ξ

(
1

2N

))
.

Thus, Theorem 3.3 is completely established.

4. Corollaries
In this section, two new corollaries related to Theorems 3.1 and 3.2 have been

established in the following forms:

Corollary 4.1. If a function f ∈ Lipα i.e.,

|f(x)− f(y)| = O (|x− y|α) , 0 < α ≤ 1,

then

En(f)∞ = O

(
1

2(n+1)α

)
The proof of this Corollary can be developed on the lines of Theorem 3.1 by taking

ξ(t) = tα, o < α ≤ 1, δ = max
0≤k<N

|tk+1 − tk| , N = 2n.

Corollary 4.2. If f ∈ Lip(α, p) class i.e.

∥f(.+ h)− f(.)∥Lp[0,1) = O (|h|α) , 0 < α ≤ 1, 1 ≤ p <∞

then

En(f)p =

(
1

nαp

)
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The proof of Corollary 4.2 can be obtained by the Theorem 3.2 and taking

ξ(t) = tα, δ =
1

2n
.

5. Non-linear Approximation by Haar Wavelet
At first, let us consider, a function

f(t) =

{
t, 0 ≤ t < 1;
0, otherwise,

and
ψj,k(t) = 2

j
2ψ(2jt− k).

ψj,k(t) = 2
j
2


1, 0 ≤ 2jt− k < 1

2
;

−1, 1
2
≤ 2jt− k < 1;

0, otherwise.

ψj,k(t) =


2

j
2 , k

2j
≤ t < 1

2j+1 +
k
2j
;

−2
j
2 , 1

2j+1 +
k
2j

≤ t < k+1
2j

;
0, otherwise.

Now, we calculate ⟨f, ψj, k⟩ for fixed j.
Since

⟨f, ψj,k⟩ =
∫ ∞

−∞
f(t)ψj,k(t),

therefore, for j = 0 we have

⟨f, ψ0,k⟩ =

∫ ∞

−∞
f(t)ψ0,k(t)dt =

∫ k+ 1
2

k

f(t)dt−
∫ k+1

k+ 1
2

f(t)dt.

Next,

⟨f, ψ0,0⟩ =

∫ 1
2

0

f(t)dt−
∫ 1

1
2

f(t)dt =

∫ 1
2

0

tdt−
∫ 1

1
2

tdt

= −1

4
,

and

⟨f, ψ0,k⟩ =

∫ k+ 1
2

k

f(t)dt−
∫ 1

k+ 1
2

f(t)dt =

∫ k+ 1
2

k

0dt−
∫ 1

k+ 1
2

0dt

= 0 for k ∈ (Z− {0}).
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So
2j−1∑
k=0

|⟨f, ψ0,k⟩| =
1

4
(1)

For j = 1 we have,

⟨f, ψ1,k⟩ =

∫ ∞

−∞
f(t)ψ1,k(t)dt = 2

1
2

(∫ k
2
+ 1

4

k
2

f(t)dt−
∫ k+1

2

k
2
+ 1

4

f(t)dt

)
.

Now, for k = 0 we have,

⟨f, ψ1,0⟩ =

∫ ∞

−∞
f(t)ψ1,0(t)dt = 2

1
2

(∫ 1
4

0

f(t)dt−
∫ 1

2

1
4

f(t)dt

)

= 2
1
2

(∫ 1
4

0

tdt−
∫ 1

2

1
4

tdt

)

=
1

2
1
2

(
−1

8

)
,

And, for k = 1

⟨f, ψ1,1⟩ = 2
1
2

(∫ 1
2
+ 1

4

1
2

f(t)dt−
∫ 1

1
2
+ 1

4

f(t)dt

)
= 2

1
2

(∫ 3
4

1
2

tdt−
∫ 1

3
4

tdt

)

=
1

2
1
2

(
−1

8

)
.

Also

⟨f, ψ1,k⟩ = 2
1
2

(∫ k
2
+ 1

4

k
2

f(t)dt−
∫ k+1

2

k
2
+ 1

4

f(t)dt

)
= 2

1
2

(∫ k
2
+ 1

4

k
2

0dt−
∫ k+1

2

k
2
+ 1

4

0dt

)
,

= 0 for k ∈ (Z− {0, 1}).

So

21−1∑
k=0

|f, ψ1,k| =

(
1

8
+

1

8

)(
1

2
1
2

)
=

1

4

(
1

2
1
2

)
.
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For, j = 2 we have,

⟨f, ψ2,k⟩ =

∫ ∞

−∞
f(t)ψ2,k(t)dt = 2

(∫ 1
23

+ k
22

k
22

f(t)dt−
∫ k+1

22

1
23

+ k
22

f(t)dt

)
.

Next,

⟨f, ψ2,0⟩ = 2

(∫ 1
8

0

f(t)dt−
∫ 1

4

1
8

f(t)dt

)
= 2

(∫ 1
8

0

tdt−
∫ 1

4

1
8

tdt

)

=
1

2

(
− 1

16

)
and

⟨f, ψ2,1⟩ = 2

(∫ 3
8

1
4

f(t)dt−
∫ 1

2

3
8

f(t)dt

)
= 2

(∫ 3
8

1
4

tdt−
∫ 1

2

3
8

tdt

)

=
1

2

(
− 1

16

)
⟨f, ψ2,2⟩ = 2

(∫ 5
8

1
2

f(t)dt−
∫ 3

4

5
8

f(t)dt

)
= 2

(∫ 5
8

1
2

tdt−
∫ 3

4

5
8

tdt

)

=
1

2

(
− 1

16

)
⟨f, ψ2,3⟩ = 2

(∫ 7
8

3
4

f(t)dt−
∫ 1

7
8

f(t)dt

)
= 2

(∫ 7
8

3
4

tdt−
∫ 1

7
8

tdt

)

=
1

2

(
− 1

16

)
.

Also

⟨f, ψ2,k⟩ =

∫ ∞

−∞
f(t)ψ2,k(t)dt = 2

(∫ 1
23

+ k
22

k
22

0dt−
∫ k+1

22

1
23

+ k
22

0dt

)
= 0 for k ∈ (Z− {0, 1, 2, 3}) .

So

22−1∑
k=0

|⟨f, ψ2,k⟩| =

(
1

16
+

1

16
+

1

16
+

1

16

)(
1

2

)
=

1

4

(
1

2

)
.
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⟨f, ψj,k⟩ ⟨f, ψj,0⟩ ⟨f, ψj,1⟩ ⟨f, ψj,2⟩ ⟨f, ψj,3⟩ ⟨f, ψj,4⟩
2j−1∑
k=0

| ⟨f, ψj,k⟩ |

j=0 −1
4

0 0 0 0 1
4

j=1 −1
8

1
21/2

−1
8

1
21/2

0 0 0 1
4

1
21/2

j=2 − 1
16

1
2

− 1
16

1
2

− 1
16

1
2

− 1
16

1
2

0 1
4

1
2

Table 1: ⟨f, ψj,k⟩ for different values of j = 0, 1, 2, and k = 0, 1, 2, · · · , 2j−1.

Similarly, for fixed j, we have
2j−1∑
k=0

|⟨f, ψj,k⟩| =M

(
1

2
j
2

)
and

2j−1∑
k=0

|⟨f, ψj,k⟩|2 = M2

(
1

2j

)
,

where M is suitable positive constant.
Previously, finite linear approximation by Haar wavelet has been studied. Here

non linear approximation via Haar wavelet is to be discussed.
For j ≥ 0, ⟨f, ψj,k⟩ are non zeros, for 0 ≤ k ≤ 2j − 1 and

2j−1∑
k=0

|⟨f, ψj,k⟩| = O

(
1

2
j
2

)
.

If we take 2n = N biggest Haar coefficient in that case, the approximation error is

σ2n(f)X = dis(f, SN)X = inf
g∈

∑
2n

∥f − g∥X

where
∑

2n and σ2n(f) denote the set of wavelets and approximation error respec-
tively, in the non-linear spaces.

6. Main Result Related to Non-linear Wavelet Approximation
In this section, a new theorem has been established in the following forms:

Theorem 6.1. If f ∈ L2(R) and the partial sum of the Haar wavelet series of f
is

g =
2n−1∑
j=0

2j−1∑
k=0

⟨f, ψj,k⟩ψj,k for n ∈ N,

then the error of the non-linear approximation σ2n(f) is given by

σ2n(f) = O

(
1

22n−1

)
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Proof. Consider∥∥∥∥∥∥f −
2n−1∑
j=0

2j−1∑
k=0

⟨f, ψj,k⟩ψj,k

∥∥∥∥∥∥
2

L2

=

∥∥∥∥∥∥
∞∑

j=2n

2j−1∑
k=0

⟨f, ψj,k⟩ψj,k

∥∥∥∥∥∥
2

L2

=

∫ ∞

−∞

∣∣∣∣∣∣
∞∑

j=2n

2j−1∑
k=0

⟨f, ψj,k⟩ψj,k(t)

∣∣∣∣∣∣
2

dt

=

∫ ∞

−∞

∞∑
j=2n

2j−1∑
k=0

⟨f, ψj,k⟩ψj,k(t)
∞∑

l=2n

2l−1∑
m=0

⟨f, ψl,m⟩ψl,m(t)dt

≤
∫ ∞

−∞

∞∑
j=2n

2j−1∑
k=0

|⟨f, ψj,k⟩|2 |ψj,k(t)|2 dt

=
∞∑

j=2n

2j−1∑
k=0

|⟨f, ψj,k⟩|2
∫ ∞

−∞
|ψj,k(t)|2 dt.

=
∞∑

j=2n

2j−1∑
k=0

|⟨f, ψj,k⟩|2
∫ k+1

2j

k

2j

2j
∣∣ψ(2jt− k)

∣∣2 dt. (1)

Next,

∫ k+1

2j

k

2j

2j
∣∣ψ(2jt− k)

∣∣2 dt = ∫ 1

0

|ψ(u)|2 du; put 2jt− k = u

=

∫ 1

0

du = 1 (2)

Now using equation (2) in equation (1) we have∥∥∥∥∥∥f −
2n−1∑
j=0

2j−1∑
k=0

⟨f, ψj,k⟩ψj,k

∥∥∥∥∥∥
2

L2

≤
∞∑

j=2n

2j−1∑
k=0

|⟨f, ψj,k⟩|2 =
∞∑

j=2n

(
M2

2j

)
=M2

∞∑
j=2n

1

2j

= 2M2 1

22n
.

So, ∥∥∥∥∥∥f −
2n−1∑
j=0

2j−1∑
k=0

⟨f, ψj,k⟩ψj,k

∥∥∥∥∥∥
L2

≤
(
2M2 1

22n

) 1
2

=
√
2M

1

22n−1

= O

(
1

22n−1

)
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Thus, Theorem 6.1 is completely established.

7. Conclusion

(i) It is observed that in case of non-linear approximation there is a significant
improvement in the order of approximation in comparison to the order of
linear approximation.

(ii) We have derived two corollaries, 4.1 and 4.2, from our Theorems 3.1 & 3.2
respectively.

(iii) Independent proofs of these corollaries can be developed for specific contri-
butions of these estimates in wavelet analysis.
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