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Abstract: In this paper we will introduce some properties of k- Riemann Liouville
fractional integral operator involving convolution property. The fractional deriva-
tive of k- Riemann Liouville fractional integral operator of integral transforms will
be obtained. Applications of this operator will be introduced. All results of nature
will be discussed as special cases.
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1. Introduction and Definitions
Various problems of physics and engineering are based on mathematical calcu-

lations. Some specific problems various fields based on theory of special functions
and fractional calculus operators. Many mathematicians (like see [1], [5], [7], [8],
[9]) have introduced various properties and applications of special functions and
fractional calculus operators. For main results of this paper, we are considering
following definitions.

In 2007, R. Diaz and E. Pariguan have introduced the following Pochhammer
k-symbol and k-Gamma function (see [2], [3])

(a)n,k = a. (a+ k) . (a+ 2k) . (a+ 3k) ....... (a+ (n− 1) k) ;n ≥ 1, k > 0 (1.1)
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(a)0,k = 1; n = 0 (1.2)

For k>0,z ∈ C and Re (z) > 0, the k-Gamma function is defined as

Γk (z) =

∫ ∞

0

xz−1e−
xk

k dx (1.3)

Equation (1.1) we can write as

Γk (z) = k
x
kΓ

(x
k

)
(1.4)

The k-Beta function Bk (m,n) for two variable m and n is defined by (see [2], [3])

Bk (m,n) =
1

k

∫ 1

0

x
m
k
−1 (1− x)

m
k
−1 dx;Re (m) > 0, Re (n) > 0 (1.5)

Equation (1.5) in term of k-Gamma function is given by

Bk (m,n) =
Γk (m) Γk (n)

Γk (m+ n)
;Re (m) > 0, Re (n) > 0 (1.6)

Recently, many researchers ([1], [3], [4], [6], [7]) have extended the research work
Riemann Liouville integral operator in term of k-fractional integral of Riemann
Liouville.

In 2012, Mubeen et. al. [6] have introduced k-fractional integral of Riemann
Liouville type

Iλk f (t) =
1

kΓk (λ)

∫ t

0

(t− ξ)
λ
k
−1 f (ξ) dξ, λ > 0, t > 0, k > 0 (1.7)

In particular if k → 1, then it is reduced to the classical Riemann Liouville frac-
tional integrals (Mathai et. al [8]).

Let λ be a real number such that 0 < λ < 1, k > 0 then k-Riemann-Liouville
fractional singular kernel is given by (Mubeen et. al [6])

jλ,kf (t) =
t
λ
k
−1

kΓk (λ)
; t > 0 (1.8)

Equation (1.7) is in term of (1.8) as

Iλk f (t) = jλ,k (t) ∗ f (t) (1.9)
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Let λ be a real number such that 0 < λ ≤ 1, k > 0 then k-Riemann-Liouville
fractional integral is given as

Dλ
kf (t) =

d

dt
I1−λ
k f (t) (1.10)

Let λ be a real number such that 0 < λ ≤ 1, k > 0 and f be sufficient well-
defined function then the Laplace transform of k-Riemann-Liouville fractional sin-
gular kernel as

L{jλ,k (t)} = L

{
t
λ
k
−1

kΓk (λ)

}
=

1

kk
λ
k
−1Γ

(
λ
k

) Γ (
λ
k

)
ω

λ
k

=
1

(ωk)
λ
k

(1.11)

By the help of equations (1.9) and (1.11)

L
{
Iλk f (t) ;ω

}
= L {jλ,k (t) ∗ f (t) ;ω} = L {jλ,k (t)}L {f (t)} =

L (f (t))

(ωk)
λ
k

(1.12)

2. Main Results

Theorem 2.1. Let λ be a real number such that 0 < λ ≤ 1, k > 0 and f be
sufficient well-defined function then

(1) L
{
Dλ

kf (v)
}
= ω (kω)−

1−λ
k L {f (v)} − I1−λ

k f (0) (2.1)

(2) L− Sgen [jk,λ (v) ;ω, s] = Γµ

(
λ
k
, ω, s

)
L− Sgen [f (v)] (2.2)

where L denotes Laplace transform operator, L−Sgen denotes Laplace-Generalized
Stieltjes Transform and Γω

(
λ
k
, p, s

)
denotes ultra Gamma function.

Proof. Using equation (1.10)

L{Dλ
kf (v)} = L

{
d

dv
I1−λ
k f (v)

}
∵ L

{
d

dv
f (v)

}
= sL {f (v)} − f (0)

= ωL
{
I1−λ
k f (v)

}
− I1−λ

k f (0)

= ω (ωk)−
1−λ
k L {f (v)} − I1−λ

k f (0)
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For v ∈ (0,∞) and f (v), then Laplace-Generalized Stieltjes Transform jλ,k (v)and
Iλk f (v) be as

L− Sgen [jk,λ (v) ;ω, s] =

∫ ∞

0

jk,λ (v)
e−sv

(v + ω)µ
dv

=

∫ ∞

0

v
λ
k
−1e−sv

(v + ω)µ
dv

= Γµ

(
λ
k
, ω, s

)
(2.3)

where = Γω

(
λ
k
, p, s

)
denotes ultra Gamma function. It has been introduced by

Banerji and Sinha (see [9])
Now using equation (1.9) and (2.3)

L− Sgen

{
Iλk f (v) ; s, ω, µ

}
= L− Sgen {jλ,k (v) ∗ f (v) ; s, ω, µ}
= L− Sgen [jk,λ (v)]L− Sgen [f (v)]

= L− Sgen [jk,λ (v)]L− Sgen [f (v)]

= Γµ

(
λ
k
, ω, s

)
L− Sgen [f (v)]

Theorem 2.2. Let λ be a real number such that 0 < λ ≤ 1, k > 0, v ≥ 0 and f be
sufficient well-defined function then

M
{
Dλ

kf (v) ;ω
}
= − (ω − 1)M

{
I1−λ
k f (v)

}
=

Bk (1− λ, λ− pk)

Γk (1− λ)
M

{
f (t) ; 1−λ

k
+ ω

}
(2.4)

where M denotes Millen transform operator.
Proof. Using equation (1.10)

M{Dλ
kf (v)} = M

{
d

dv
I1−λ
k f (v)

}
∵ M

{
d

dv
f (v)

}
= −(s− 1)M {f (v)}

= −(ω − 1)M
{
I1−λ
k f (v)

}
= −(ω − 1)M

{
I1−λ
k f (v)

}
(2.5)

∵ M
{
Iβk f (t) ; p

}
=

Bk (β, 1− β − pk)

Γk (β)
M

{
f (t) ; β

k
+ p

}
(2.6)

Using equation (2.6) in (2.5) theorem 2.2 will be proved.
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Theorem 2.3. Let λ be a real number such that 0 < λ ≤ 1, k > 0, v ≥ 0 and f be
sufficient well-defined function then

F
{
Dλ

kf (v) ;ω
}
= − (iω)

F [f (v)]

(iωk)
(2.7)

where F denotes Fourier transform operator.
Proof. Using equation (1.10)

F{Dλ
kf (v)} = F

{
d

dv
I1−λ
k f (v)

}
∵ F

{
d

dv
f (v)

}
= −(si)F {f (v)}

= −(ωi)F
{
I1−λ
k f (v)

}
= −(ωi)F

{
I1−λ
k f (v)

}
= −(ωi)F [j1−λ,k (v) ∗ f (v)] , v ≥ 0

= −(iω)
F [f (t)]

(−iωk)
λ
k

Theorem 2.4. For α, β > 0, k > 0, z ≥ 0 then following integral representation
holds true ∫ t

0

z
α
k
−1 (t− z)

β
k
−1 dz = Bk (α, β) (tk)

α+β
k

−1 (2.8)

Proof. ∫ t

0

z
α
k
−1 (t− z)

β
k
−1 dz =

Γk (β)

Γk (β)

∫ t

0

(t− z)
β
k
−1 z

u
k
−1dz

⇒
∫ t

0

t
α
k
−1 (t− z)

β
k
−1 dz = kΓk (β) I

β
k t

α
k
−1

Taking Laplace transform both side

L

{∫ t

0

z
α
k (t− z)

β
k
−1

}
= kΓk (β)

1

(pk)
β
k

Γ
(
α
k

)
(p)

α
k

=
k

α
k
−1Γ (α) Γk(β)

(p)
α+β
k

∵ Γk (α) = k
α
k
−1Γ (α)

L

{∫ t

0

z
α
k (t− z)

β
k
−1

}
=

Γk (α) Γk(β)

(p)
α+β
k
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Taking inverse of Laplace transform both side∫ t

0

t
α
k
−1 (t− z)

β
k
−1 dz =

Γk (α) Γk (β)

Γ
(
α+β
k

) t
α+β
k

−1

∵ Γk (α + β) = k
α+β
k

−1Γ

(
α + β

k

)
= k

α+β
k

−1Γk (α) Γk (β)

Γk (α + β)
t
α+β

t
−1 = Bk (α, β) (tk)

α+β
k

−1

Theorems 2.1 to 2.4 are become properties of Riemann-Liouville integral operator
if k = 1.

3. Applications
Theorem 2.1 of (2.1) can be written in term of Fox’s H-function (see [7], [9])

L− Sgen [jk,λ (v) ;ω, s]

= Γµ

(
λ

k
, ω, s

)
L− Sgen [f (v)] =

sµ−1

Γ (λ)
H1,2

1,1

 (
λ
k
, 1
)
, (λ, 1)(

λ
k
+ µ− 1

) ∣∣∣∣∣∣ 1
ωs


If apply properties of integral transform in theorems 2.1, 2.3 and 2.4, we can get
various type of multiple integrals, These integrals can be studied by researchers in
mathematical analysis of scientific problems.

4. Conclusion
We have got new results of k-fractional integral operator associated with Laplace

transform, Fourier transform and Millen transform and discussed about nature
of results at special cases. Main results of paper will be useful solving various
fractional differential and integral equations.
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