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1. Introduction and Definitions

Three months before his death in early 1920 Ramanujan sent a letter to Hardy
of 17 functions, which he called mock theta functions, his functions being separated
into three groups, four of order three, ten of order five and three of order seven.
These mock theta functions are g-series which converge of |¢| < 1 and have certain
properties as the theta functions when g tends to a root of unity.

Throughout this paper, we denote by N, Z, and C the set of positive integers,
the set of integers and the set of complex numbers respectively. We also let

No:=NuU{0} ={0,1,2,---}.
The g-shifted factorial (a;q),, is defined (for |¢| < 1) by

1 (n=0)
(a;q)n = n—1
[1(1~ aq") (n €N),

k=0
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where a,q € C and it is assumed that a # ¢~™ (m € Ny). We also write

(@;0)o0 = [JA = ag™) = (1 —ag"™")  (a,0€C; |g| <1). (c)

It should be noted that, when a # 0 and |¢| = 1, the infinite product in the
equation (c) diverges. So, whenever (a;q)s is involved in a given formula, the
constraint |¢| < 1 will be tacitly assumed to be satisfied. The following notations
are also frequently used in our investigation:

(ah ag, as . .. ag, Q)n = (Cll; Q)n(a2; Q)n(as; Q)n cee (@k; Q)n

and
(a1,a2,a3...ax; @)oo = (015 @)oo(@2; @)oo (435 @)oo - - - (A& @)oo

Ramanujan (see [5, pp. 13] and [6]) defined the general theta function f(a,b) as
follows:

fla,b)=1+>(

where a and b are two complex numbers.
Andrews et al. [1] introduces the general family R(s,t,1,u,v,w) as follows

Can ey = Y a" T = f(bea), (lab] < 1),

n=—oo

R(s,t,l,u,v,w) : Zq )ty (l,u,v,w : n), (1)
where o '
u . qw(;)+(w—uz)j
r(l,u,v,w:n):=Y» (—=1) : (2)
]Z% (4 @n—us (4" 4*);

In 2020, for the general family R(s,t,l,u,v,w), Srivastava et al. [9] gave the
following notations:

Proposition 1.1. We have

Ra(Q) = R(27171717272> = (_Q;q2)007 (3)
RB(Q) R(2,2,1,1,2,2) = (- q23 q2)oo (4)
and
(¢®™; ¢*™)

R, = R(m,m,1,1,1,2) = = (m € N*). (5)

(@™ ¢*)
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2. Continued fractions

We begin by recalling some results on continued fractions.
A continued fraction is an expression of the form

b1 bg bg bl
ag+ ——— ... = a9+
a1+ as+ as+ bg
a; +
bs

as +
2 a3+...

With a finite or infinite number of steps, as an example, we have

V2=1+
2+
2 +

1
2+...

Remark: We have the following equivalence [7, pp. 33, eq (2.53.14)]

by by b3 r1by 7Toriby 7‘37“2b3
r1a1+ roao+ r3a3+

ag + ———— ...~ ag
a1+ as+ as+

3. Preliminary Theorems

Lemma 3.1. [8] Let a, b, ¢ and q be complex numbers with |q| < 1. We have

2

=0 (¢ @)% Qnia

123

1 2(1-0) 2(1 —q)(b—c) zq(1 = bg)(1 — ) 2¢*(1 — ¢*) (b — cq)

1—
2q?

(
(

l—c)= (1—-cq)- (1—cq?)— (1—cq)—
1—bg*)(1 = cq) 2¢*(1 — ¢*) (b — c¢®) 2¢*(1 = bg®) (1 — cg?)

(1 —cq")— (1 —cq®)— (1 —cq%)—

2¢°(1 = ¢°) (b — c¢’)
(1—cq")...

(8)
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Theorem 3.2. [7]

1
= . (9)
1—
1 —
- q( ;1)
L q
2 2
(1 —q
1+ ( 5>
- q
31_ 3
L =g
1—
Blg): - (@)@ d")e _ 1 q ¢ & ¢ ¢ &
‘ (%) (@)oo I+ 14+ 14+ 14 14 14 147
1
= (10)
q
1+ pe
1+ .
q
1+ -
q
I+ ————
14—
14+ -4
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(0% 0°)oo(2®; 0°)oe

C P =14+—-—-
@ (45 6°)o (4% ¢°) oo 1+ 14+ 14+ 1+ 1+ 1+
— 14 qq2 . (11)
1+ -
q
1+ ;
q
1+ -
q
1+ .
q
1+
1+:
X(q) _ 1/4 <Q7q5;q6)oo
(4%, 4% ¢%)
1/4 1— g2
- 71 1;]2) 7/2 (12)
(1-¢")(1 —¢"*?)
¢ =) (1+¢%) +
@21 = ¢*?)(1+¢%) +:
11 12
Yig) = (q;q 7,qm)oo
(¢, 47 ¢*?)
1 —
_ q?)( Q)2 . (13)
1—q¢*+ Q(l—Q)gl—QZ 10
1—¢%)(1—
(- @)1+ ) + ¢’(1-¢")(1 —¢")
(1=¢*)(1+4¢") +:
2.3 b2 3. 4
Flabq) = CTPCd)x
(a2q,0%¢; ¢*) oo
1
= (14)

(a —bq)(b— aq)
(a—bg*)(b— aq®)
(1 —ab)(1+q™) +:

1—ab+

(1 —ab)(1+¢?) +
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Proposition 3.3. Let m € N we have,

m m m 1
F(q »q 7q2):Rim: m 3m)\2
) (g™ —¢"™)
1—qg™+
(qm_q7m)2
(L=¢>)(1+¢*") + :
(1= q2)(1+gm) +

(15)
Proof. To show identity (15) it suffise to take a = b = ¢™ and replace ¢ by ¢* in
(14) we have

F(qm qm q2 )_ (q2mq6m’q2mq6m q )Oo _ <q8m;q8m)2 _ R2 ‘
) ’ (q2mq2m’ q2mq2m, q8m)oo (q4m7 qu)go am
4. Third Order Mock Theta Functions
Third order mock theta functions are defined as (see [2]):
o0 qn2
fslg) =) —5. (16)
o qn2
xs(q) =1+ 7 17
0 ;Hml(l_qm‘i”qu) 1"
. x 2nt) 18)
w3(q) = 18
= (40774
and
2n(n+1)
) 19
Z Hm l 1+q2m+1 +q4m+2) ( )

5. Eighth Order Mock Theta Functions

i ¢ . (20)

n=0
(n+1) 2
=0 n+tl
0 (ny1)2( .
V) =S¢ (=4 ¢*)n (22)

~ (G
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6. Interrelationships Between Mock Theta Functions and gq-Continued
Fractions
Following identities are recorded in [7]:

p3(@) +ps(=q) + 3 (ws(g) +ws(=q)

(4% ¢*)o0 (4% 4"*) (%)
(5 Pnlala) + gen(e) = ST (24)

. B 0o (_1)nqn(n+1)/4
B(qu) - Z 1—|—zq(”+1)/2)

(6%, @)oo (4% 24, 27145 ¢%) oo (25)
(—2q'/2, —21/2¢1/2)

oo (_1)nq4n(n+l)

A= 0% =) e (26)
2. 8\ _ (qg’qz;)go
A(=q59") @ (27)
4.4 X (__1\n,4n(n+1)
Vila) = Vil-) =2 e 5 CUCEE 25)
Uo(q) + 2U1(q) = (—=¢; )2 (0% 6*) oo (0% ¢*) - (29)
(4, 4%) o0
Ub(=a) +20(~) = 2, 30 (30)

7. Main Theorems

Theorem 7.1.

pa(@) + pa(—q) + = (walg) + ws(—1))

2
- (@ 4" (6 ) oo (— 0" ¢*) o
(A g a5, d5, B a0, M B 18, 00, 022, 2, 2 P e
1
X (@ — )2 : (31)
Lt ¢ —q
! (¢ — ¢*)?

(1—=¢%)(1+4¢") + :
(1—=¢%)(1+¢*) +:
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1 3
ps(a) + 5ws(a) = 5 (¢ @) (32)
—_ __1 — -
1 1
X X
3
1= - 1= 3q 3
- q(1—q) 14 ¢ (1—¢q’)
3 9
q q
1- 201 — 2 1= 6(1 _ 40
P g) Ly 2 1615)
q q
1- 3(1 _ 3 1- 91— o9
1+M 1+M
L 1—: L 1—4 ]
2q
Vilg) = Vi(—q) = 33
1) = Wi=g) (42,45 % %) (33)
« 1
(¢—¢*)?

1—q¢*+
(¢—4q")

(1—¢*)(1+¢%) +:

(1—¢)(1+q*) +
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Uo(q) +2U1(q) = (4% 4" ) (34)
- 193 - q -2
1 1
X X
1- 1 1- @
— 2 2
1+ at ? 1+ < l )
1- 2q 2 1- 4q 1
1-— 1—
L o fé ) Ly 1 1qo)
1-— d 1 q
3 _ .3 6 _ .6
A i) RS
L 1-— J L 1-— i
- 1 -1
1
Uo(—q) +2Ui(—q) = 2 (35)
1— q
q(l —q
1+ ( 3)
1— q
2 1— 2
L z )
D S
3 1 — 3
'
I 1=t ]

Proof. First of all we have to list some g-product identities, which are required to
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prove our findings in this theorem, see for details in [3]:

(0% ¢ = [J(1 =)
. n=0 .
— H(l _q2(12n)+2) > H( 12n+1)+2 ) x H
n=0 n=0
. 0o ( 2(12n+4 +2 >< 12n+5)+2 ><
1 I Ml
% ﬁ( 2(12n+8 +2 x H 12n+9)+2 « H

n=0 n=0
(@®.q* % % q" "% ¢, ¢ ¢, ¢®°, ¢*, ¢** ¢ )ooa
6. 12 _ 6 12 18 24 .
(@50 ) = (070,01 q
and
12, 24 12. 24

s3]
2(12n+2)+2) ~ H (1

q2(12n+6)+2) % H(l

q2(12n+10)+2)

_ q2(12n+3)+2)
n=0

_ q2(12n+7)+2)
n=0

xﬁ(l

-~ q2(12n+11)+2)

24)007

= (q24§ q48)oo

To prove identity (31), using identity (23) and further applying ¢g-product identities,

we have:

(4% 6%)oo(d5, 42, 4", **; ¢**) oo
_ 3(q12;q12) ( % "% (q24 0o

(¢% q* q% ¢, q*°, q12,q 0%, ¢, q%, ¢? 7q ,q Hoo(@®, "%, %8, ¢*%; %) o
_ 3(¢* 4" ) ( ¢ ¢ ) ( )% (@™ ¢*)5%

(4% q* q% q% q'%, ¢, ql6 7%, 4%, q%,¢*; q ) (4% q"%, ¢*; ¢**) o (€25 ¢*H)%
_ 3(q q ) ( q q ) ( 24) F(q3 q3.q6>

(2, q* 45, ¢, q*°, q14 q's, q 0%, 0%, % ) oo (45, 4%, * P )oe T
_ (2% ") oo (¢ ¢*H)ox ( 2,6124)0o

(4% q% a% % ¢, ¢, "%, 4%, ¢®, 62, ¢**, ¢**; ¢**)

1
: i (¢° = ¢°)?
(¢* — ¢*')?

(1=¢°)(1+¢") +

(1= )1 +g") +
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Which completes our demonstration of the second assertion (31).
Next, we prove our second identity (32), using identity (24) and further applying
g-product identities, we have:

1 _ 3. Al
PS(Q)+§W3(Q) = 5(*%(1)00714((])
3
= 5(—q,q)oo><
- - -1 - -
1 1
X
1-— 4 1-— q3
1— 31_ 3
14 q( g) 14 7( g)
1-— a 1-— a4
21_ 2 61_ 6
14 q-( (é) L+ q°( 1(15)
l—q— 1_q—
31_ 3 91_ 9
1+M 1+M
L 1—: L 1—:

Which completes our demonstration of the second assertion (32).
Then we show the third identity (33), we have

(g—q")?

(1= )1+ )+

(1—=¢)(1+q*) +
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Which completes our demonstration of the third assertion (33).
Further, we prove our fourth identity (34), we have

Uo(q) +2U1(q) = (—¢; *)3. (0% ¢*) o (4% 4"
e q2\3 (2. ,2)\3
- q’?l;f¢%éq)“Wq%q%aJQ%qﬁ«J
(—4;0)2. (0% ¢%)?00(¢%; ) oo (0% 4" ) o
(—4%6%)%.(¢% ¢4
(3. (% %) A3q)
(—q% ¢2)%00(g%; ¢4)2 — A%(q?)

= (¢4 qH
- 13 r 12
1 1
1- 1 1— ¢
1-— 2(1 — ¢?
1+ q( ;I) L+ q*( Z)
1— q 1— a
21_2 41_4
14 q-( g) 1+ q*( 1qo)
1.7 I S
31_3 61_6
1+q( q°) 1+Q( q°)
i 1—: ] L 1—:

Which completes our demonstration of the fourth assertion (34).
Similarly, we can prove our fifth identity (35), and left for the readers as an exercise.
Hence, finally we complete the proof of our Theorem 7.1.

8. Conclusion

The result of Theorem 7.1 gives us an idea to write relationships between each
mock theta function and ¢g-Continued Fractions. So we can always see mock theta
functions as g-products and continuous g-fractions.
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