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1. Introduction, Notations and Definitions
The subject of continued fractions (CF) is an old subject although many people

are not aware of it. Actually, continued fractions have so many applications in
algebra and in various fields such as mathematics, physics, and chemistry. The
easiest way of forming a continued fraction is by writing a certain amount in the
form of a numerator and a denominator, and each denominator is composed of a
numerator and a denominator and so on. Usually, the successive numerators are
equal to one.

Continued fractions have a long history; they were known since the appearance
of Euclidean algorithm for finding the greatest common divisor (GCD) of two
numbers. That was around the year 300 B.C.. Research works and papers continue
then to be performed and a huge accumulation of applications arise; this is due
to their simplicity to deal with and the smooth way of the calculations involved.
We should add that the subject of continued fractions is still very fruitful and
interesting for researchers [4, 5, 6, 9, 10] all over the globe.
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One of the most celebrated continued fractions of Ramanujan is,

(−a; q)∞(b; q)∞ − (a; q)∞(−b; q)∞
(−a; q)∞(b; q)∞ + (a; q)∞(−b; q)∞

=
(a− b)

(1− q)+

(a− bq)(aq − b)

(1− q3)+

q(a− bq2)(aq2 − b)

(1− q5)+

q2(a− bq3)(aq3 − b)

(1− q7) + ...
, (1.1)

[Ramanujan S. 8; Entry 11, p. 195]

where q−rising factorial is defined as,

(a; q)n = (1− a)(1− aq)(1− aq2)...(1− aqn−1), n ∈ 1, 2, 3, ...,

for k− complex number,

(a; q)k =
(a; q)∞
(aqk; q)∞

, (a; q)0 = 1

and

(a; q)∞ =
∞∏
r=0

(1− aqr) = lim
n→∞

(a; q)n. (1.2)

The q−binomial theorem is defined as,

(a; q)∞
(b; q)∞

=
∞∑
r=0

(a/b; q)r
(q; q)r

br. (1.3)

In this paper, we give proof of (1.1) and also deduce certain more results on con-
tinued fractions from (1.1).

Proof of (1.1).
In order to prove (1.1) we start by taking left hand side of (1.1). Dividing

numerator and denominator of the left hand side of (1.1) by (a; q)∞(−a; q)∞ we
have,

(−a; q)∞(b; q)∞ − (a; q)∞(−b; q)∞
(−a; q)∞(b; q)∞ + (a; q)∞(−b; q)∞

=

(b; q)∞
(a; q)∞

− (−b; q)∞
(−a; q)∞

(b; q)∞
(a; q)∞

+
(−b; q)∞
(−a; q)∞

. (1.4)

Now, applying (1.3) we get

=

∞∑
n=0

(
b
a
; q
)
n
an

(q; q)n
−

∞∑
n=0

(
b
a
; q
)
n
(−a)n

(q; q)n
∞∑
n=0

(
b
a
; q
)
n
an

(q; q)n
+

∞∑
n=0

(
b
a
; q
)
n
(−a)n

(q; q)n

=

∞∑
n=0

(
b
a
; q
)
n
an

(q; q)n
{1− (−1)n}

∞∑
n=0

(
b
a
; q
)
n
an

(q; q)n
{1 + (−1)n}

,
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taking n odd in numerator and even in denominator we have

=

∞∑
n=0

(
b
a
; q
)
2n+1

a2n+1

(q; q)2n+1

∞∑
n=0

(
b
a
; q
)
2n
a2n

(q; q)2n

=

(a− b)

(1− q)

∞∑
n=0

(
bq
a
; q
)
2n
a2n

(q2; q)2n
∞∑
n=0

(
b
a
; q
)
2n
a2n

(q; q)2n

. (1.5)

=

(a− b)

(1− q)

∞∑
n=0

(
bq
a
; q2

)
n

(
bq2

a
; q2

)
n
a2n

(q2; q2)n(q3; q2)n
∞∑
n=0

(
b
a
; q2

)
n

(
bq
a
; q2

)
n
a2n

(q; q2)n(q2; q2)n

.

=

(a− b)

(1− q)

1 +

∞∑
n=0

(
bq
a
; q2

)
n
a2n

(q2; q2)n

{(
b
a
; q2

)
n

(q; q2)n
− (bq2; q2)n

(q3; q2)n

}
∞∑
n=0

(
bq
a
; q2

)
n

(
bq2

a
; q2

)
n
a2n

(q2; q2)n(q3; q2)n

,

which on simplification gives,

=

(a− b)

(1− q)

1 +

(aq − b)(a− bq)

(1− q)(1− q3)

∞∑
n=0

(
bq
a
; q2

)
n

(
bq2

a
; q2

)
n
a2n

(q2; q2)n(q3; q2)n

∞∑
n=0

(
bq2

a
; q2

)
n

(
bq3

a
; q2

)
n
a2n

(q2; q2)n(q5; q2)n



. (1.6)
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=

(a− b)

(1− q)

1 +

(aq − b)(a− bq)

(1− q)(1− q3)

1 +

∞∑
n=0

(
bq2

a
; q2

)
n
a2n

(q2; q2)n


(
bq
a
; q2

)
n

(q3; q2)n
−

(
bq3

a
; q2

)
n

(q5; q2)n


∞∑
n=0

(
bq2

a
; q2

)
n

(
bq3

a
; q2

)
n
a2n

(q2; q2)n(q5; q2)n

, (1.7)

which on simplification gives,

=

(a− b)

(1− q)

1 +

(aq − b)(a− bq)

(1− q)(1− q3)

1 +

q(aq2 − b)(a− bq2)

(1− q3)(1− q5)

∞∑
n=0

(
bq2

a
; q2

)
n

(
bq3

a
; q2

)
n
a2n

(q2; q2)n(q5; q2)n

∞∑
n=0

(
bq3

a
; q2

)
n

(
bq4

a
; q2

)
n
a2n

(q2; q2)n(q7; q2)n



. (1.8)

Iterating the process and applying [Jones W.B. and Thron W. J. 3; (2.3.14), p. 33]
we get (1.1). Taking b = 0 in (1.1) we have

(−a; q)∞ − (a; q)∞
(−a; q)n + (a; q)n

=
a

(1− q)+

a2q

(1− q3)+

a2q3

(1− q5)+

a2q5

(1− q7) + ...
. (1.9)

2. Another Results on Continued Fraction

Now, making use of componendo and dividendo rule, viz.,

If
A

B
=

C

D
then

A+B

A−B
=

C +D

C −D
on (1.1) we obtain,
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(−a; q)∞(b; q)∞
(a; q)∞(−b; q)∞

= 1 +
2(a− b)

(1− q − a+ b)+

(a− bq)(aq − b)

(1− q3)+

q(a− bq2)(aq2 − b)

(1− q5)+

q2(a− bq3)(aq3 − b)

(1− q7) + ...
. (2.1)

Taking b = −a in (2.1) we have,

(−a; q)2∞
(a; q)2∞

= 1 +
2a2

(1− q − 2a)+

a2(1 + q)2

(1− q3)+

a2q(1 + q2)2

(1− q5)+

a2q2(1 + q3)2

(1− q7) + ...
. (2.2)

For a = −q, (2.2) yields

(q; q)2∞(q; q2)2∞ = 1 +
2q2

(1 + q)+

q2(1 + q)2

(1− q3)+

q3(1 + q2)2

(1− q5)+

q4(1 + q3)2

(1− q7) + ...
. (2.3)

Taking b = 0 in (2.1) we have,

(−a; q)∞
(a; q)∞

= 1 +
2a

(1− q − a)+

a2q

(1− q3)+

a2q3

(1− q5)+

a2q5

(1− q7) + ...
. (2.4)

Comparing (2.2) and (2.4) we find,(
1 +

2a

(1− q − a)+

a2q

(1− q3)+

a2q3

(1− q5)+

a2q5

(1− q7) + ...

)2

= 1 +
2a2

(1− q − 2a)+

a2(1 + q)2

(1− q3)+

a2q(1 + q2)2

(1− q5)+

a2q2(1 + q3)2

(1− q7) + ...
(2.5)

Putting q2 for q in (2.1) we get,

(−a; q2)∞(b; q2)∞
(a; q2)∞(−b; q2)∞

= 1 +
2(a− b)

(1− q2 − a+ b)+

(a− bq2)(aq2 − b)

(1− q6)+

q2(a− bq4)(aq4 − b)

(1− q10)+

q4(a− bq6)(aq6 − b)

(1− q14) + ...
. (2.6)

Taking a = q and b = q2 in (2.6) and comparing with [Andrews G.E. and Berndt
B.C. 1; (15.2.2), p. 328] we get,

Φ(q) =
(−q; q2)∞(q2; q2)∞
(q; q2)∞(−q2; q2)∞

= 1 +
2q(1− q)

(1− q)+

q3(1− q3)(q − 1)

(1− q6)+

q5(1− q5)(q3 − 1)

(1− q10)+

q7(1− q7)(q5 − 1)

(1− q14) + ...
, (2.7)
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where Φ(q) is Ramanujan’s theta function defined as,

Φ(q) = f(q, q) =
∞∑

n=−∞

qn
2

.

Putting a = −q in (2.4) we get

θ4(q) =
∞∑

n=−∞

(−1)nqn
2

=
(q; q)∞
(−q; q)∞

= 1− 2q

1+

q3

(1− q3)+

q5

(1− q5)+

q7

(1− q7) + ...
,

(2.8)

where θ4(q) is Jacobi’s fourth theta function [Rainville E.D. 7; chapetr 20].
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