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Abstract: In this paper, we investigate the fractional-order arms race model. The
model has emerged as an important tool for the investigation of international con-
flict and arms races. The variational iteration method, the homotopy perturbation
method, and the adomian decomposition method are used to solve the mathemati-
cal model with Caputo’s fractional derivative. Several numerical computations have
been provided to establish the validity and accuracy of the acquired results. It is
shown that the fractional-order model can be solved easily using semi-analytical
methods. The results obtained by all methods are compared.
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1. Introduction

Fractional calculus is the study of derivatives and integrals of arbitrary real
or complex orders. It has attracted a lot of attention in recent decades and has
evolved into a potent tool for better modelling of real-world phenomena, such as in
mathematical biology, electric circuits, astronomy, and others [1, 3, 4, 5, 6, 12, 14].
Several systems with physical phenomena in diverse disciplines are mathematically
modelled, resulting in many different differential equations. An efficient approach
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is required to analyze these mathematical models and provide solutions that are
consistent with physical reality. Several powerful mathematical methods, includ-
ing the adomian decomposition method, the homotopy perturbation method, the
variational iterative method, the Laplace decomposition method, and the modified
Laplace decomposition method, are employed to obtain both exact and approxi-
mate analytical solutions [1, 2, 6, 7, 9, 11, 13, 15]. In this study, we employ the
variational iteration method [2], the homotopy perturbation method [9], and the
adomian decomposition method [12] to solve the arms race model [8] of fractional
order. The solutions obtained by all these methods are compared.

2. Preliminaries
In this section, we see the definitions of fractional operators and the arms race
model of fractional order.

Definition 2.1. The generalization of factorial functions known as the Gamma
function [10] is defined as follows:

['(z) = /000 e 7 ldt, R(z) > 0. (1)

Definition 2.2. The Riemann-Liouville (R-L) fractional integral of order a(ov > 0)
[10] is defined as follows:

RL 7a 1 ' f(7) n— o <n
b f(t)_F(a)/a (=) dr, 1< <n. (2)

Definition 2.3. The Caputo fractional derivative of a function f(t) of order «
[10] is defined as follows:

CDef(t) = ! )/at( () dr, n—1<a<n. (3)

I'n—a« t —7)v—ntl
Next, we will discuss the arms race model of fractional order.
Arms Race Model of Fractional Order

Let x(t) and y(t) be the armaments of nations X and Y at time t, respectively. The
rate of change of the armaments on one side depends on the number of armaments
on the opposing side, as if one nation increases its armaments, the other will follow
suit. Considering the derivatives in the Caputo sense, the arms race model [8] of
fractional order can be developed by the following system of differential equations:

{Dmx(t) = ky(t)

Dry(t) = la(t) @
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where k and [ are proportionality constants, 0 < m < 1,0 < n < 1. The initial
conditions are considered as x(0) = z¢ and y(0) = yo. From the view point of the
model, xy and yo are assumed to be positive.

3. Methodologies
3.1. Variational Iteration Method (VIM)

VIM iterations rapidly converge on the exact solution. This approach does not need
linearization, differentiation, or the computation of Adomian polynomials etcetera.
After selecting an initial guess, the solution of the system (4) can be obtained
through iterations of VIM [13].

Tn1 = Tp + JTND™2(t) — ky(t))] (5)

Yni1 = Yo + J D" y(t) — l2(t))] (6)

where J™, J" and xg, yo are fractional integration and initial guesses, respectively.
Furthermore, Lagrange’s multiplier can be chosen as A = —1 for simplicity. We
finally get the approximate solution in iterative form by using initial approxima-
tions, xg, Yo.

3.2. Homotopy Perturbation Method(HPM)

This method eliminates the need for transformation, linearization, and discretiza-
tion [7]. Following the HPM, we construct the homotopy structure of system (4)
as follows:

D™x(t) = plky] (7)

D"y(t) = p[lx] (8)

where 0 < m,n <1 and p € [0, 1] is the homotopy parameter.
Thus, the solution of the system can be written as a power series of p :

(t) =Y p"aa(t) = xo(t) + pai (1) + pPaa(t) + paa(t) - (9)

y() =D 0" yalt) = o(t) + pya(t) + P va(t) + pys(t) - - (10)
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Substituting the values of Eq.(9) and Eq.(10) in Eq.(7) and Eq.(8) and equating
the powers of p from both sides, we get

pO : Dmxo(t) = Xy,
D™yo(t) = yo

P D™xy(t) = kyo,
Dnyl (t) = ll’o

p? D™ xy(t) = ks,
Dny2<t) = ll’l

and so on.
Taking p — 1, we obtain approximate solution of the system (4) as

x(t) =z + 21 (t) + 22(t) + - -+ .

y(t) =yo +y(t) + ya(t) + - -
3.3. Adomian Decomposition Method(ADM)

This method does not need transformation, linearization, or discretization [9]. One
of its key characteristics is its quick convergence towards the solution. This ap-
proach considers the solutions for x(t) and y(t) of the system (4) as the following

series:
I(t) = ana y(t) = Zyn
n=0 n=0

Let L = D™ and L™! be the inverse operator of L, then the system (4) in operator
form is given by

L(x(t)) = ky(t)
L(y(t)) = U(x(1))

Applying the inverse operator L~! on both the sides of the above equations, we get

w(t) = xo + L™ (ky(t))
y(t) = yo + L™ (lz(1))
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Furthermore, we get

r1 = L Y kyo(t)),

y1 = L7 (Lo ()

vy = L7 (ki (1)),
L=

and so on.

Solution for Arms Race model
The exact solution for the system (4) is given by

x(t) = \/? (Aet\/H - Be‘tm)

(1) = 1/ (A — Be V)

On applying the initial conditions x(0) = x¢ and y(0) = o, we get

1 [

A= §yo + \/;xo (11)
1 l

p= g 12

We now use VIM, HPM, and ADM to solve the arms race model.
On applying the VIM with a = —1 to solve system (4) for the initial conditions,
we obtain the approximate solutions as

Tngr = T+ J[(=D"x(t) + ky(1))],
Ynt1 = yn + (=D y(t) + l(t))]

Likewise, we have the following desired number of iterations for the solution

l'o(t) = T,

Yo(t) = %o
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z1(t) = J" (kyo)

1
=)
y(t) = J"(lzo)
= lxo;t”
I'(n+1)
o(t) = J™ (kys)
I'(mn+1 .
- kleF(n + 1)(F(nm —i—)m +1) o
ya(t) = J"(ly)
— Uy, ['(mn+1) i
Cim+ 1)I(nm+m+1)
w3(t) = J™ (kys)
L'(mn + 1) (nm? + nm + 1 2 Lt 1

= kQZyO

Y

Fin+ )I'(nm +m+ 1)I'(nm? +nm +m + 1)
— ZQkI’O F(mn + 1)F(mn2 + nm + 1) tmn2+nm+n+1
Cim+ D' (nm+n+ 1)I'(nm? +nm+n+ 1)

Thus, the solution obtained by VIM is
y(t) = yo(t) + y1(t) +y2(t) +ys(t) + -+
Next, we obtain the solution of the system (4) by employing HPM
D™[wo + pa1 + p*wa + pPrg..] = plk(yo + pyr + pPyz + p’ys...)]
D"[yo + py1 + p*ys + P°ys...] = pll(yo + py1 + °ya + P’ys...)]
Equating the powers of p from both the sides, we obtain the following
pO DmlC()(t) =0
Dnyo(t) =0

pl 3Dm$1(t) = kyo
Dnyl (t) = lml
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p? :D™ay(t) = ki
Dny2<t) = ll’l

P :D™y(t) = kys
Dny3(t) = ll‘g
and so on.

Applying the inverse operators J™ and J" of the Caputo derivative D™ and D"
respectively we have,

l‘o(t) = Xy,
Yo(t) = o
ZL‘1<t> = Jm<k5y0>
1 m

yi(t) = J"(lxo)

=1 ! t"

T 1 1)
o (t) = J" (kyr)

_ kl.’L’o F(TTLTZ + 1) nm—i—m,

F(n+DC(nm+m+1)
Ya(t) = J"(lan)

F<mn + 1) mn+n
= lkyo
LC(m+ )(nm+m+1)
z3(t) = J" (kys)
— Py, I'(mn+ 1T (nm? +nm + 1 g tamtm

F(n+ D (nm+m+ 1)I'(nm? +nm +m + 1)
_ l2/<::r0 ['(mn + 1)F(mn2 +nm+ 1 gmn?nmtntl

Fim+ DI'(nm+n+ 1)T'(nm? +nm+n+1)

and so on.
The solution is obtained as

y(t) = yo(t) + y1(t) + y2(t) + ys(t) + ya(?)
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Next, the solution for the system (4) by ADM, is given by
w(t) = wo + L™ (ky(t)),
y(t) = yo + L7 (lx(t))
Consider the series form of z and y as,
T =T+ T+ T2+ T3
Y=Yty +Y2+ys---

Substituting the value of x and y in above equations, we get

To+ 1+ 79+ 23 =20+ KL (Yo +y1 +y2 F s ),
Yo+ +ye+ys..=vyo+IL (zo+ a1 +a2t+as---)

On comparing the like terms, we have

w1 = L7 (kyo),
y1 = L™ (Ixo)
wy = L7 (k)
y2 = L7 (lz1)
xy = L~ (kys),
ys = L™ (lxy)

and so on.

Applying the inverse operators J™ and J" of the Caputo derivatives D™ and D"
respectively, we have

$0(t) = Xy,
yo(t) =%
ZL‘l(t) = Jm(k?yo)
]' m

)
yi(t) = J"(lxo)

) ! "

T+ 1)
zo(t) = J" (ky1)

o klwo F<mn + 1) nm-+m

L(n+ D(nm+m+1) ’
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ya(t) = J"(lz1)

['(mn+1)
L(m+ 1T (nm+m+1)
w3(t) = J" (kya)

mn-+n

= lkyo

I'(mn + 1T (nm? +nm + 1
C(n+ )T (nm +m+ 1)T(nm? +nm +m + 1)
ys(t) = J"(lz2)

= ZQkZEO

7San—l-nm—l-m—&—l

= k2ly0

)

L(mn + 1)C'(mn® +nm + 1
Fim+ Dl(nm+n+ D)I(nm?2 +nm+n+1)

tmn2 +nm+n+1

Thus, the solution obtained is
y(t) = yo(t) + y1(t) + y2(t) + ys(t) + ya(t)

Hence, the solution by ADM and HPM is exactly same.
We compare the solution of system (4) by different methods with the exact solution
in Table 1 for k =1=0.9,29 =20,y =0,A=10,B=—-10,n=m =1

Table 1: Solutions of Arms Race Model

z(t) y() | z@viv | yOvinm | 2B mpy | Yy mapym | () apy | y(t)apy
20 0 20 0 20 0 20 0
28.66 20.43 28.1 20.43 28.127 20.43 28.127 20.43
62.1493 | 58.8435 52.4 74.88 52.836 55.44 52.836 55.44
148.672 | 147.328 92.9 250.833 129.11 119.61 129.11 119.61

One may take different values of the parameter to compare the differences between
the solutions obtained by these methods.

4. More Realistic Model
D™x(t)
D"y(t)

where z(t) and y(t) denote the armaments of nation X and Y respectively. k and
[ is the efficiency of increasing the armaments of X and Y respectively. g and h

y(t) —axr +g

=k
=lz(t) — By +h (13)
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are the ambitions of the grievances. Here, we solve the system (13) by above three
discussed methods.

Variational Iterative Method
Consider the given system (13)

D™a(t) = ky(t) — ax(t) + g
D"y(t) = lz(t) — By(t) + h

The iterations by VIM of system (13) are given by

Tpa1 = T + S [(D" 20 (t) = kya(t) + azn(t) — g)],
Yn+1 = Yn + ‘]n[a(Dnyn(t> - kxn(t) + Byn<t) - h)]

Taking a = —1, we get
Tn1 = Ty + J"[(=D"wn () + kyn(t) — aza(t) + 9)],
Ynt+1 = Yn + Jn[(_Dnyn(t) + kxn@) - Byn<t> + h))]

z1(t) = J"[(kyo(t) — axo(t) + 9)]

= (kyo — axo(t) + g)mtma
yi(t) = J"[(lwo — Byo(t) + h)]

= (lzo — Byo(t) + h)ﬁt"
wa(t) = J"[(kyr — az () + 9)]

= k(lxo — Byo(t) + h)F(n n f)(lir(LZn:—il—)m 1) -

— a((kyo(t) — axo(t) + g)F(m +I1‘>(Iﬂ‘zm—i2— —1{—)m n 1)tm2+m + 9F<m_1+ 1)tm
ya(t) = J"(lxy — Bys(t) + h)

B B L(mn+1) mn+n

= U(kyo — amo(t) + g) C(m+ DT(nm +n+1)

— Bt - unft) + W) P gL

x3(t) = J"[(ky2 — axa(t) + g)
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L'(mn+ 1) (nm?* + nm + 1 g1
C(nm+n+ DI (nm? +nm+m + 1)
['(n?+ 1)I'(n*m + 1)
I'n?2+n+0DCN*m+m+1)

= kl(kyo — azo(t) + g))

tan +m? +

— kB(lwo — Byo + h)

L(nm + 1)
Cn+ Hl(nm+m+1)

nm-+m

C(mn + 1)T(nm? +m? + 1)
I'(n+ DI (nm+m+ 1)I'(nm? +m?2 +m + 1)
L'(m?+ 1DT(m3 +m? + 1) 43 +m? m
Fm+DI'(m2+m+1)I'(m?> +m2+m+1)
L'(m?+1)
Cim+ 1)I'(m2+m+1)

nm? +m2+m

— ak(lzg — Byo + h)

+ o?(kyo — azo + g)

m2+m

ys(t) = J"[(lws = Bya + h)])
L'(mn + 1) (mn® + nm + 1
= lk(zo — h
(w0 = Byo + 1) + C(n+ 1)T(nm +m + 1)T(mn2 +nm+n + 1)
F(m2 + 1)F(nm2 +mn+1 tm2n+n2+n
Fm+1DI(m2+m+ DHI'(m?>n+mn+n+1)
I'(mn+1)
Cim+ DI (mn+n+1)
['(mn+ 1)I'(mn? +n? 4+ 1) g
Fmn+n+DC(mn?2+n?2+n+1)
F(n2 + 1)F(n3 +n?+ 1) 34,2
2 l o h tn +n“4+n
5 (o = Byo + )F(n2+n+1)f‘(n3+n2—l—n+1)
[(n?+1)
Fn+ 1)I'(n2+n+1)
Thus, the solution obtained is
y(t) = yo(t) + y1(t) + y2(t) + ys(t) + ..
Homotopy Perturbation Method
Consider the homotopy structure of the above system (13) as follows:

mn? +nm-+n

— al(kyy — axg + g)

mn—+n

+ gl

— Bl(kyo — oo + g)

— Bh

D" x(t) = plky(t) — ax + g] (14)
D y(t) = plla(t) — By + h] (15)
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By writing the series form of x and y, we have
T = xg+ px1 +p2x2 +p3x3...

Y =Y+ Dy + Y2 + D°Ys-..
Substituting the value of x and y in Eq.(14) and Eq.(15), get

plk(yo + pyr + P2 + p’ys...)
a(zo + pry + pPay + pas..) + ]
p[l(xo + pry + pPag + pirs..)
— Byo + pyr + p°ya + P’ys...) + 1]
Equating the powers of p from both the sides, we obtain
P’ :D™xo(t) =0
D™yo(t) =0
p' D™z (t) = kyo — axg + g
D"yi(t) = lzog — Byo + h
p* :D™ay(t) = ky, — axy
D"yy(t) = lx1 — By
p* :D™as(t) = kyy — axy
D"y3(t) = lza — Bys

D" wo + pry + pPas + pPas.] =

D"yo + py1 + P*y2 + Pys...]

and so on.
By applying the inverse operators J™ and J" of the Caputo derivative D™ and D"
respectively, we get

1(t) = J™(kyo — azo + g)

1
et k‘ —_ ____  4m
( Yo ax0+g)r(m+1)
yl(t) = Jn(ll'o — Byo —+ h)
1 n
= (lzo — Pyo + h)mt
wo(t) = J" (kyr — awy)
L(nm + 1)
= (] . h nm-+m
(2o = Byo + )F(n + DI'(nm +m+ 1)
F(m2 + 1) m2+m

— (ko —
(kyo = a0 + ) m iz 3 m 1)



On Solutions to the Arms Race Model ... 57

y2(t) = J"(lzy — Bu)

(kg — a0 + 9) ['(nm+1)
— HE T+ )T (m +n+ 1)
F(n2 + 1) n24n

— B(lxg — Byo + h)
x3(t) = J"(kys — awy)

Fn+1)(n?+n+1)

C(nm + 1)T'(m?*n +mn + 1)

_ k;l k _ nm2+nm+m
(ko = 0 & ) R Y om + - DT (a2 4 m + 1)
(T(n* + n)T'(mn? + mn + 1) >
B k l _ h men+nm—+m
L(nm + 1)(m?n +m? + 1) nm2+m?+m

— ak(lxg — Byo + h)

C(n+ )T (nm+m+ DT (m2n+m2+m+ 1)
L(m? + 1)T(m3 +m? + 1) g4
Fm+1DI'(m2+m+ 1)I'(m3+m?2+m+1)

+ o (kyo — axg + g)
y3(t) = J"(lzy — By)

= lk(lxg — Pyo + h)

Y

['(nm+ 1)'(n*m +mn+1)
I(n+ D (nm+n+ DI'(mn? +nm+m+ 1)

mn?+nm+n

(C(m? + D)T(nm? +mn + 1) >
—lalk - " m+nm-+n
alkyo = a0+ 9) s DT m + DT (2 £+ 1 1)
C(nm + 1)(n?m +n?+1) 22
— Bl(k _ tmn +n“+n
Bllkyo — axo + g)F(m + D'(nm+n+ DI'(n?m +n2+n+1)

L(n?+ DI'(n® +n* +1 >

+ B*(lzo — Byo + h) n JHw +n ) gt

Fn+ D2+ n+ I3 +n2+n+1)
Thus, the solution of the system is
r=x9+x1+ T2+ 23+ ...

Y=Y +y1+y2+ys+..

Adomian Decomposition Method
Consider the given system

D"x(t) = ky(t) — ax(t) + ¢
D y(t) = lz(t) — By(t) + h

Let L = D™ and L~! be the inverse operator of L. Then the above system in
operator form can be written as
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L(x(t)) = ky(t) — ax(t) + g,
L(y(t)) = lx(t) — By(t) + h
On applying the inverse operator both the sides, we get
w(t) = o + L (ky(1)),
y(t) = yo + L~ (Lz(t))
Consider the series form of z and y as,
rT=2o+x +x2+ 23"

Y=Y+t ty2+ys--
By substituting the value of x and y in above equations, we get

To+r1+aa+ag =20+ LYo+ +y2+yse)
—a(x0+x1+x2+x3+---)+g,
Yoty +ytys - =yo+ L U(wo+az+aotzs)

—Byo+yi+y2tys+--)+h

On comparing the like terms, we get

21 = L™ (kyo — oo + 9),
y1 = L (lzg — B+ h)

w9 = L7 kyy — axy),

ya = L~ (lzy — Byn)

x3 = L™ (kyy — axs),

ys = L™ (lzy — Bya)
and so on. Applying the inverse operators J™ and J" of the Caputo derivative D™
and D" respectively, we have

Zlfo(t) = Xy,
Yo(t) = o
w1(t) = J"(kyo — axo + g)
1
= (kyo — axo + g)m,

yl(t) = Jn(ll'() — Byo + ]’L)
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xo(t) = J™(kyy — axy)
[(mn+1)
= k(lxg — h nmem
(o = Byo + ) L(n+ DT(nm+m+1)
F(m + 1) 2
— kun — m<+m
alkyo = B0+ 9) S e £ m 1 1) ’
ya(t) = J"(lzr — Byn)
I'(mn+1)
= l(kuy — mn+n
(kyo — azo + g)F(m + DHl(nm+m+1)
7”L2 +1 n2+4n

_ﬁ<lx0_ﬁy°+h>r(n+1)r(n2+n+1)

Thus, the solution obtained is
y(t) = yo(t) + y1(t) + ya(t) +ys(t) +---

One can calculate more terms in each method to get better approximation of the
solution for both the models of fractional order.

We compare the solution of system (13) obtained by different methods with the
exact solution in Table 2 for k = 0.6, = 0.9, 29 = 100,y = 80, = f =0.2,n =
m=1,9g=0,h=0

Table 2: Solutions of Arms Race Model
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t] () y(t) ) viv | yOviv | 2(Oapm | yBupm | 2(H)apm | y(H)abu

0 100 80 100 80 100 80 100 80

1 145 152.717 | 143.6266 | 152.8534 | 144.906 152.8534 144.906 | 152.8534

2 | 229.373 259 223.04 234.027 225.648 259.627 225.648 259.627
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