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1. Introduction, Notations and Definitions

The theory of generalized hypergeometric series is the most important topic in
the entire special function theory. In 1812, Gauss presented to the Royal Society
of Sciences at Gottingen his famous paper in which he considered the infinite series
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as a function of a, b, ¢, z where it is assumed that ¢ # 0, —1, —2, ..., so no zero factors
appear in the denominators of the terms of the series (1.1). It is now customary to
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where (a),, denotes the shifted factorial defined by
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(a)o=1, (a)y=ala+1)...(a+n—1)=

The series (1.2) converges for |z| < 1.
The generalization of Gauss series is the generalized hypergeometric series with
r numerator parameters ai,as,...,a, and s denominator parameters by, bo, ..., by

defined by
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where (a1, ag, ..., a, ), = (a1)n(a2)n---(ar)p.

The series in (1.3) converges for |z| < oo if r < s and for |z| < 1if r = s+ 1.
If » > s+ 1, it converges nowhere except z = 0. Transformation theory plays
a very important role in the development of this subject. Some of the identities,
transformations and summations formulas have been established and any can refers
Singh Satya Prakash and Yadav Vijay [2], Singh S. P., Singh S. N. and Yadav
Vijay [3], Singh Satya Prakash, Yadav Vijay and Singh Priyanka [4], Singh S. N.
and Singh Satya Prakash [5], Srivastava H. M., Singh S. N., Singh S. P. and Yadav
Vijay [7]. In 1879 Thomae [8] established following transformations for 3F, series.
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where s=d+e—a—b—c.
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“idem(b; c)” means that the preceding expression is repeated with b and ¢ inter-
changed.



On Certain Results Associated with the Transformations ... 39

In this present paper, certain transformation formulas have been established by
making use of following identity due to Verma [9].
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We shall also make use of following results in our analysis.
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3
S ltatn-n> | (1)), <1+ 9)
|3 L - 3/ m (1.11)
al_ a A+a)n(@D)m
272 2
where m is the greatest integer < % [Verma and Jain 10; (4.7) p. 1036]
3
2,1+2,1+a+n,—n;— (1)71(2) (1—1—2) (2—1—9)
3 2 4 | _ 2/n 3/ m 6/ m
4F3 i1l a - Gt (2s a 0 o (1.12)
e Fo (D), 00 )
22723 2/n 6/ m

where m is the greatest integer < % [Verma and Jain 10; (4.9) p. 1037]
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2. Main Results
In this section main results have been established.

(a) Taking B, = 1 and x = 1 in the identity (1.7) we get,
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Summing the inner o F} series by making use of (1.9) we get
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where Re(1+v—a— () > 0.
Simplifying (2.2) we have
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the inner series on the right hand side by makring use of (1.8) we find
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Taking A, = (az)§5>r and w = 1 in (2.3) and summing the left hand side o F} series
c

by making use of (1.9) and inner series on the right hand side by using [Slater 6;
Appendix III (III 4)] we get the summation formula,
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which is a known result [Slater 6; App III (II1.12)].
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Putt1ng’y:1+a,wzz, A, = <1+3g>r (14_2) in (2.3) we get,
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Now, summing the inner series on the right hand side of (2.6) by making use of
(1.10) we get,
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where m is the greatest integer <

Again, taking vy =1+a, w =
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Lastly, taking y =14a, w =
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Summing the inner series on the right hand side of (2.10) by making use of (1.12)
we get,
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where m is the greatest integer < —.
Similar other results can also be scored.
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