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1. Introduction, Definitions and Preliminaries
Throughout this paper, we refer to [5, 6] for definitions and notations. We also

suppose that 0 < q < 1. For complex numbers a, the q-shifted factorials are defined
by

(a; q)0 := 1, (a; q)n =
n−1∏
k=0

(1− aqk) and (a; q)∞ :=
∞∏
k=0

(1− aqk), (1)

where (see, for example, [6] and [10])

(a; q)n =
(a; q)∞
(aqn; q)∞

.

Here, in our present investigation, we are mainly concerned with the homogeneous
version of the Cauchy identity or the following q-binomial theorem (see, for exam-
ple, [6], [10] and [12]):

∞∑
k=0

(a; q)k
(q; q)k

zk =
(az; q)∞
(z; q)∞

(|z| < 1). (2)

Upon further setting a = 0, the relation (2) becomes Euler’s identity (see, for
example, [6]):

∞∑
k=0

zk

(q; q)k
=

1

(z; q)∞
(|z| < 1) (3)

and its inverse relation given below [6]:

∞∑
k=0

(−1)kq(
k
2)

(q; q)k
zk = (z; q)∞. (4)

Based upon the q-binomial theorem (2) and Heine’s transformations, Srivastava et
al. [11] have considered the function (8) and established a set of two presumably
new theta-function identities (see, for details, [11]). Ramanujan (see [8] and [9])
defined the general theta function:

f(a, b) = 1 +
∞∑
n=1

(ab)
n(n−1)

2 (an + bn) |ab| < 1. (5)

He also rediscovered Jacobi’s famous triple-product identity which, in Ramanujan’s
notation, is given by (see [4, p.35, Entry 19]):

f(a, b) = (−a, ab)∞(−b; ab)∞(ab; ab)∞. (6)
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Equivalently, we have [7]:

∞∑
n=−∞

qn
2

zn = (q2; q2)∞(−zq; q2)∞
(
−q
z
; q2

)
∞
, (|q| < 1, z ̸= 0). (7)

Several q-series identities, which emerge naturally from Jacobi’s triple-product
identity (6), are worthy of note here (see, for details, [4, pp. 36–37, Entry 22]):

φ(q) :=
∞∑

n=−∞

qn
2

= (q2; q2)∞{(−q; q2)∞}2 = (−q; q2)∞(q2; q2)∞
(q; q2)∞(−q2; q2)∞

, (8)

and

ψ(q) := f(q, q3) =
∞∑
n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

. (9)

Upon setting q = −q in (8), we obtain, φ(−q) = (q;q)∞
(−q;q)∞

. In [1, Corollary 7.9,

p.113], Andrews proved that for |q| < 1.

G(q) =
∞∑
n=0

qn
2

(q; q)n
=

1

(q, q4; q5)∞
. (10)

In this paper, we will use one of the mock theta ϕ0 defined in [13]:

ϕ0(q) =
∞∑
n=0

qn
2

(−q; q2)n. (11)

Replacing q by −q2, we obtain:

ϕ0(−q2) =
∞∑
n=0

(−1)nq2n
2

(q2; q4)n.

Proposition 1. In [5, Theorem 1, Eq.(14)], if φ(q) and G(q) are defined as in (8)
and (10), then the following assertion holds true:

∞∑
n=0

qn
2

(−q; q)n
+ φ(−q)

∞∏
n=1

1

(1− q5n−1)(1− q5n−4)
= 2G(−q)φ(q). (12)

Later George E Andrews observed that when we extend the sum to include
negative values of n, the first infinite product vanishes, but the second one does
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not; and he further suggested that the error in the second product can correct by
taking into account the new terms when it extend the sum to-infinity. We present
the correct form of (12) in the following assertion (13) of Theorem 1. He also
pointed out that the formula (13) is precisely the one given by Watson [13, p. 285].

2. Main Theorems
In this section, we establish two Rogers–Ramanujan–Slater type theta function

identity.

Theorem 1. If φ(q) and ϕ0(q
2) are defined as in (8) and (11), then each of the

following assertion holds true:

∞∑
n=0

qn
2

(−q; q)n
+ φ(−q)

∞∏
n=1

1

(1− q5n−1)(1− q5n−4)
= 2ϕ0(−q2), (13)

and
∞∑
n=0

qn

(−q; q)n
+ φ(−q)

∞∑
n=0

qn

(q; q)n
= 2. (14)

Proof. We first prove the assertion (13). Let us assume that an empty product is
interpreted to be unity. Dividing by φ(−q) the left hand side of (13), we get:

(−q; q)∞
(q; q)∞

∞∑
n=0

qn
2

(−q; q)n
+

∞∏
n=1

1

(1− q5n−1)(1− q5n−4)
by(10)

=
(−q; q)∞
(q; q)∞

∞∑
n=0

qn
2

(−q; q)n
+

∞∑
n=0

qn
2

(1− q)(1− q2) · · · (1− qn)

= (−q; q)∞
∞∑
n=0

qn
2

{
1

(q; q)∞(−q; q)n
+

1

(−q; q)∞(q; q)n

}
. (15)

Upon using the fact that

(q; q)∞ = (q; q)n(q
1+n; q)∞, (−q; q)∞ = (−q; q)n(−q1+n; q)∞

and
(q,−q, q)n = (q2, q2)n,

the right hand side of (15) reads:

(−q; q)∞
∞∑
n=0

qn
2

(q2; q2)n

{
1

(q1+n; q)∞
+

1

(−q1+n; q)∞

}
. (16)
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Applying (3), equation (16) becomes:

(−q; q)∞
∞∑
n=0

∞∑
k=0

qn
2
(q1+n)k

(q2; q2)n(q; q)k
[1 + (−1)k].

Next, taking the upper signs, so that for k = 2k, we get:

(−q; q)∞
∞∑
n=0

∞∑
k=0

qn
2
q2k+2nk

(q2; q2)n(q; q)2k
= 2(−q; q)∞

∞∑
k=0

q2k

(q; q)2k

∞∑
n=0

qn
2−n

(q2; q2)n

(
q2k+1

)n
= 2(−q; q)∞

∞∑
k=0

q2k

(q; q)2k
(−q2k+1; q2)∞

= 2
(−q; q)∞
(q; q2)∞

∞∑
k=0

q2k

(q2; q2)k
(q2k+1,−q2k+1; q2)∞. (17)

where we have introduced

1 =
(q; q2)k(q

2k+1; q2)∞
(q; q2)∞

. (18)

Further, if we substitute

(−q2k+1, q2k+1; q2)∞ = (q4k+2; q4)∞

in the right hand side of (17), we obtain:

2
(−q; q)∞
(q; q2)∞

∞∑
k=0

q2k

(q2; q2)k
(q4k+2; q4)∞.

According to equation (4), the above relation becomes:

2
(−q; q)∞
(q; q2)∞

∞∑
k=0

∞∑
n=0

(−1)nq2n
2−2n+n(4k+2)+2k

(q4; q4)n(q2; q2)k

= 2
(−q; q)∞
(q; q2)∞

∞∑
n=0

(−1)nq2n
2

(q4; q4)n

∞∑
k=0

qk(4n+2)

(q2; q2)k

= 2
(−q; q)∞
(q; q2)∞

∞∑
n=0

(−1)nq2n
2

(q4; q4)n

1

(q4n+2; q2)∞
.
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Using the identity (q2; q2)∞ = (q2; q2)2n(q
4n+2; q2)∞, we obtain:

2
(−q; q)∞
(q; q2)∞

∞∑
n=0

(−1)nq2n
2

(q4; q4)n

1

(q4n+2; q2)∞

= 2
(−q; q)∞

(q; q2)∞(q2; q2)∞

∞∑
n=0

(−1)nq2n
2
(q2; q2)2n

(q4; q4)n

= 2
(−q; q)∞
(q; q)∞

∞∑
n=0

(−1)nq2n
2

(q2; q4)n = 2
ϕ0(−q2)
φ(−q)

.

After summarizing the above calculation, we obtain:

1

φ(−q)

∞∑
n=0

qn
2

(−q; q)n
+

∞∏
n=1

1

(1− q5n−1)(1− q5n−4)
= 2

ϕ0(−q2)
φ(−q)

.

Hence we achieves the proof of (13).
Next, we attempt to prove our second assertion (14). The left hand side of (14)
reads as;

(q; q)∞

{
∞∑
n=0

qn

(q; q)∞(−q; q)n
+

∞∑
n=0

qn

(−q; q)∞(q; q)n

}

= (q; q)∞

∞∑
n=0

qn

(q2; q2)n

(
1

(q1+n; q)∞
+

1

(−q1+n; q)∞

)

= (q; q)∞

∞∑
n,k=0

qn+k(1+n)

(q; q)k (q2; q2)n

(
1 + (−1)k

)
= 2(q; q)∞

∞∑
k=0

q2k

(q; q)2k

∞∑
n=0

qn(1+2k)

(q2; q2)n

= 2(q; q)∞

∞∑
k=0

q2k

(q; q)2k

1

(q1+2k; q2)∞
. (19)

Applying the identity (18), the right hand side of (19) gives:

2
(q; q)∞
(q; q2)∞

∞∑
k=0

q2k

(q; q)2k
(q; q2)k = 2

(q; q)∞
(q; q2)∞

∞∑
k=0

q2k

(q2; q2)k
= 2.
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which completes the proof of the assertion (2.2).
We thus have completed our proof of the above Theorem 1.

Remark 1. We note that if we simplify our result (14) of Theorem 1, then it
reduces as result (2.2) in [2, p.2, Eq.(2.2)] which can be deduced from a special case
of Heine’s transformation of q-hypergeometric series [1, p.19, Cor. 2.3]. Further,
(2.4) in [2] reveals that this identity is especially simple and can be proved by a
mathematical induction.

3. Concluding Remarks and Observations
Our article is motivated by the Rogers-Ramanujan-Slater type theta function

identities related to φ(q) and ϕ0(q). Here, we have investigated about two identities,
which were earlier investigated by two legendary mathematicians of their time. The
identity (13) of Theorem 1 was first proved by G.N.Watson in 1937 [13], and here
in this article we proposed another proof. The identity (2.2)[2, p.2, Eq.(2.2)] was
first proved by G. E. Andrews in 1997, which can be found after simplification of
our identity (14) of Theorem 1.
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