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1. Introduction

The author in [1], [2] and [3], see chapters 2-5, was the first to derive neural
network approximations to continuous functions with rates by very specifically
defined neural network operators of Cardaliaguet-Euvrard and ”Squashing”types
[25], by employing the modulus of continuity of the engaged function or its high
order derivative, and deriving very tight Jackson type inequalities. He treats there
both the univariate and multivariate cases. The defining these operators ”bell-
shaped”and ”squashing”function are assumed to be of compact support.

The author motivated by [26], continued his studies on neural networks ap-
proximation by introducing and using the proper quasi-interpolation operators of
sigmoidal and hyperbolic tangent type which resulted into [12] - [20], by treating
both the univariate and multivariate cases.

Continuation of the author’s works ([4] - [11], [22] and especially of [21], Ch.
21) is this article, where the multivariate fuzzy neural network approximation is
based on a general sigmoid activation function, which among others, may result
into higher rates of approximation. We involve the fuzzy partial derivatives of the
multivariate fuzzy function under approximation or itself, and we establish tight
multivariate fuzzy Jackson type inequalities. An extensive background is given on
fuzzy multivariate analysis and real neural network approximation, all needed to
present our results.

Our fuzzy multivariate feed-forward neural networks (FFNNs) are with one
hidden layer. For neural networks in general you may read [29], [32], [33]. For the
fractional aspect see [34].

2. Fuzzy Real Analysis background

See also [21], Ch. 21, pp. 466-473.

We need the following background

Definition 2.1. (see [36]) Let µ : R → [0, 1] with the following properties

(i) is normal, i.e., ∃ x0 ∈ R; µ (x0) = 1.

(ii) µ (λx+ (1− λ) y) ≥ min{µ (x) , µ (y)}, ∀ x, y ∈ R, ∀ λ ∈ [0, 1] (µ is called
a convex fuzzy subset).

(iii) µ is upper semicontinuous on R, i.e. ∀ x0 ∈ R and ∀ ε > 0, ∃ neighborhood
V (x0) : µ (x) ≤ µ (x0) + ε, ∀ x ∈ V (x0) .

(iv) The set sup p (µ) is compact in R, (where sup p (µ) := {x ∈ R : µ (x) > 0}).
We call µ a fuzzy real number. Denote the set of all µ with RF .

E.g. χ{x0} ∈ RF , for any x0 ∈ R, where χ{x0} is the characteristic function at
x0.
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For 0 < r ≤ 1 and µ ∈ RF define

[µ]r := {x ∈ R : µ (x) ≥ r} (2.1)

and
[µ]0 := {x ∈ R : µ (x) ≥ 0}.

Then it is well known that for each r ∈ [0, 1], [µ]r is a closed and bounded interval
on R ([28]).

For u, v ∈ RF and λ ∈ R, we define uniquely the sum u ⊕ v and the product
λ⊙ u by

[u⊕ v]r = [u]r + [v]r , [λ⊙ u]r = λ [u]r , ∀ r ∈ [0, 1] ,

where [u]r + [v]r means the usual addition of two intervals (as substes of R) and
λ [u]r means the usual product between a scalar and a subset of R (see, e.g. [36]).

Notice 1⊙ u = u and it holds

u⊕ v = v ⊕ u, λ⊙ u = u⊙ λ.

If 0 ≤ r1 ≤ r2 ≤ 1 then
[u]r2 ⊆ [u]r1 .

Actually [u]r =
[
u
(r)
− , u

(r)
+

]
, where u

(r)
− ≤ u

(r)
+ , u

(r)
− , u

(r)
+ ∈ R, ∀ r ∈ [0, 1].

For λ > 0 one has λu
(r)
± = (λ⊙ u)(r)± , respectively.

Define D : RF × RF → RF by

D (u, v) := sup
r∈[0,1]

max
{∣∣∣u(r)− − v

(r)
−

∣∣∣ , ∣∣∣u(r)+ − v
(r)
+

∣∣∣} , (2.2)

where
[v]r =

[
v
(r)
− , v

(r)
+

]
; u, v ∈ RF .

We have that D is a metric on RF .
Then (RF , D) is a complete metric space, see [36], [37].
Let f, g : W ⊆ Rm → RF . We define the distance

D∗ (f, g) = sup
x∈W

D (f (x) , g (x)) .

Remark 2.2. We determine and use

D∗ (f, õ) = sup
x∈W

D (f (x) , õ) =
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sup
x∈W

sup
r∈[0,1]

max
{∣∣∣f (r)

− (x)
∣∣∣ , ∣∣∣f (r)

+ (x)
∣∣∣} .

By the principle of iterated suprema we find that

D∗ (f, õ) = sup
r∈[0,1]

max
{∥∥∥f (r)

−

∥∥∥
∞
,
∥∥∥f (r)

+

∥∥∥
∞

}
, (2.3)

under the assumption D∗ (f, õ) <∞, that is f is a fuzzy bounded function.
Above ∥·∥∞ is the supremum norm of the function over W ⊆ Rm.

Here Σ∗ stands for fuzzy summation and 0̃ := χ{0} ∈ RF is the neutral element
with respect to ⊕, i.e.,

u⊕ 0̃ = 0̃⊕ u = u, ∀ u ∈ RF .

We need

Remark 2.3. ([5]) Here r ∈ [0, 1], x
(r)
i , y

(r)
i ∈ R, i = 1, ...,m ∈ N. Suppose that

sup
r∈[0,1]

max
(
x
(r)
i , y

(r)
i

)
∈ R, for i = 1, ...,m.

Then one sees easily that

sup
r∈[0,1]

max

(
m∑
i=1

x
(r)
i ,

m∑
i=1

y
(r)
i

)
≤

m∑
i=1

sup
r∈[0,1]

max
(
x
(r)
i , y

(r)
i

)
. (2.4)

Definition 2.4. Let f ∈ C (W ), W ⊆ Rm, m ∈ N, which is bounded or uniformly
continuous, we define (h > 0)

ω1 (f, h) := sup
x,y∈W , ∥x−y∥∞≤h

|f (x)− f (y)| , (2.5)

where x = (x1, ..., xm), y = (y1, ..., ym) .

Definition 2.5. Let f : W → RF , W ⊆ Rm, we define the fuzzy modulus of
continuity of f by

ω
(F)
1 (f, h) = sup

x,y∈W , ∥x−y∥∞≤h

D (f (x) , f (y)) , h > 0. (2.6)

where x = (x1, ..., xm), y = (y1, ..., ym) .
For f : W → RF , W ⊆ Rm, we use

[f ]r =
[
f
(r)
− , f

(r)
+

]
, (2.7)
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where f
(r)
± : W → R, ∀ r ∈ [0, 1] .

We need

Proposition 2.6. ([5]) Let f : W → RF . Assume that ωF
1 (f, δ), ω1

(
f
(r)
− , δ

)
,

ω1

(
f
(r)
+ , δ

)
are finite for any δ > 0, r ∈ [0, 1] .

Then
ω
(F)
1 (f, δ) = sup

r∈[0,1]
max

{
ω1

(
f
(r)
− , δ

)
, ω1

(
f
(r)
+ , δ

)}
. (2.8)

We denote by CU
F (W ) the space of fuzzy uniformly continuous functions from

W → RF , also CF (W ) is the space of fuzzy continuous functions on W ⊆ Rm, and
CB (W,RF) is the fuzzy continuous and bounded functions.

We mention

Proposition 2.7. ([7]) Let f ∈ CU
F (W ), where W ⊆ Rm is convex. Then

ω
(F)
1 (f, δ) <∞, for any δ > 0.

Proposition 2.8. ([7]) It holds

lim
δ→0

ω
(F)
1 (f, δ) = ω

(F)
1 (f, 0) = 0, (2.9)

iff f ∈ CU
F (W ), W ⊆ Rm, where W is convex and compact.

Proposition 2.9. ([7]) Let f ∈ CF (W ) , W ⊆ Rm open or compact. Then f
(r)
±

are equicontinuous with respect to r ∈ [0, 1] over W , respectively in ±.

Note 2.10. It is clear by Propositions 6, 8, that if f ∈ CU
F (W ), then f

(r)
± ∈ CU (W )

(uniformly continuous on W ). Also if f ∈ CB (W,RF), it implies by (2.3) that

f
(r)
± ∈ CB (W ) (continuous and bounded functions on W ).
We need

Definition 2.11. Let x, y ∈ RF . If there exists z ∈ RF : x = y ⊕ z, then we call z
the H-difference on x and y, denoted x− y.

Definition 2.12. ([36]) Let T := [x0, x0 + β] ⊂ R, with β > 0. A function
f : T → RF is H-difference at x ∈ T if there exists an f ′ (x) ∈ RF such that the
limits (with respect to D)

lim
h→0+

f (x+ h)− f (x)

h
, lim

h→0+

f (x)− f (x− h)

h
(2.10)

exist and are equal to f ′ (x) .
We call f ′ the H-derivative or fuzzy derivative of f at x.
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Above is assumed that the H-differences f (x+ h) − f (x), f (x) − f (x− h)
exists in RF in a neighborhood of x.

Definition 2.13. We denote by CN∗
F (W ), N∗ ∈ N, the space of all N∗-times fuzzy

continuously differentiable functions from W into RF , W ⊆ Rm open or compact
which is convex.

Here fuzzy partial derivatives are defined via Definition 2.12 in the obvious way
as in the ordinary real case.

We mention

Theorem 2.14. ([30]) Let f : [a, b] ⊆ R → RF be H-fuzzy differentiable. Let
t ∈ [a, b], 0 ≤ r ≤ 1. Clearly

[f (t)]r =
[
f (t)(r)− , f (t)(r)+

]
⊆ R.

Then (f (t))(r)± are differentiable and

[f ′ (t)]
r
=

[(
f (t)(r)−

)′
,
(
f (t)(r)+

)′]
.

I.e.

(f ′)
(r)
± =

(
f
(r)
±

)′
, ∀ r ∈ [0, 1] . (2.11)

Remark 2.15. (see also [6]) Let f ∈ CN∗
([a, b] ,RF), N

∗ ≥ 1. Then by Theorem

?? we obtain f
(r)
± ∈ CN∗

([a, b]) and

[
f (i) (t)

]r
=

[(
f (t)(r)−

)(i)
,
(
f (t)(r)+

)(i)]
,

for i = 0, 1, 2, ..., N∗, and in particular we have

(
f (i)
)(r)
± =

(
f
(r)
±

)(i)
, (2.12)

for any r ∈ [0, 1] .
Let f ∈ CN∗

F (W ), W ⊆ Rm, open or compact, which is convex, denote fα̃ :=
∂α̃f

∂xα̃ , where α̃ := (α̃1, ..., α̃m), α̃i ∈ Z+, i = 1, ...,m and

0 < |α̃| :=
m∑
i=1

α̃i ≤ N∗, N∗ > 1.
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Then by Theorem 2.14 we get that(
f
(r)
±

)
α̃
= (fα̃)

(r)
± , ∀ r ∈ [0, 1] , (2.13)

and any α̃ : |α̃| ≤ N∗. Here f
(r)
± ∈ CN∗

(W ) .

Notation 2.16. We denote(
2∑

i=1

D

(
∂

∂xi
, 0̃

))2

f (−→x ) := (2.14)

D

(
∂2f (x1, x2)

∂x21
, 0̃

)
+D

(
∂2f (x1, x2)

∂x22
, 0̃

)
+ 2D

(
∂2f (x1, x2)

∂x1∂x2
, 0̃

)
.

In general we denote (j = 1, ..., N∗)(
m∑
i=1

D

(
∂

∂xi
, 0̃

))j

f (−→x ) := (2.15)

∑
(j1,...,jm)∈Zm

+ :
∑m

i=1 ji=j

j!

j1!j2!...jm!
D

(
∂jf (x1, ..., xm)

∂xj11 ∂x
j2
2 ...∂x

jm
m

, 0̃

)
.

We mention also a particular case of the Fuzzy Henstock integral (δ (x) = δ
2
),

see [36].

Definition 2.17. ([27], p. 644) Let f : [a, b] → RF . We say that f is Fuzzy-
Riemann integrable to I ∈ RF if for any ε > 0, there exists δ > 0 such that for any
division P = {[u, v] ; ξ} of [a, b] with the norms ∆(P ) < δ, we have

D

(
∗∑
P

(v − u)⊙ f (ξ) , I

)
< ε.

We write

I := (FR)

∫ b

a

f (x) dx. (2.16)

We mention

Theorem 2.18. ([28]) Let f : [a, b] → RF be fuzzy continuous. Then

(FR)

∫ b

a

f (x) dx
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exists and belongs to RF , furthermore it holds[
(FR)

∫ b

a

f (x) dx

]r
=

[∫ b

a

(f)(r)− (x) dx,

∫ b

a

(f)(r)+ (x) dx

]
,

∀ r ∈ [0, 1] .
For the definition of general fuzzy integral we follow [31] next.

Definition 2.19. Let (Ω,Σ, µ) be a complete σ-finite measure space. We call
F : Ω → RF measurable iff ∀ closed B ⊆ R the function F−1 (B) : Ω → [0, 1]
defined by

F−1 (B) (w) := sup
x∈B

F (w) (x) , all w ∈ Ω

is measurable, see [31].

Theorem 2.20. ([31]) For F : Ω → RF ,

F (w) =
{(
F

(r)
− (w) , F

(r)
+ (w)

)
|0 ≤ r ≤ 1

}
,

the following are equivalent
(1) F is measurable,

(2) ∀ r ∈ [0, 1], F
(r)
− , F

(r)
+ are measurable.

Following [31], given that for each r ∈ [0, 1], F
(r)
− , F

(r)
+ are integrable we have

that the parametrized representation{(∫
A

F
(r)
− dµ,

∫
A

F
(r)
+ dµ

)
|0 ≤ r ≤ 1

}
(2.17)

is a fuzzy real number for each A ∈ Σ.
The last fact leads to

Definition 2.21. ([31]) A measurable function F : Ω → RF ,

F (w) =
{(
F

(r)
− (w) , F

(r)
+ (w)

)
|0 ≤ r ≤ 1

}
is integrable if for each r ∈ [0, 1], F

(r)
± are integrable, or equivalently, if F

(0)
± are

integrable.
In this case, the fuzzy integral of F over A ∈ Σ is defined by∫

A

Fdµ :=

{(∫
A

F
(r)
− dµ,

∫
A

F
(r)
+ dµ

)
|0 ≤ r ≤ 1

}
. (2.18)
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By [31], F is integrable iff w → ∥F (w)∥F is real-valued integrable.
Here denote

∥u∥F := D
(
u, 0̃
)
, ∀ u ∈ RF .

We need also

Theorem 2.22. ([31]) Let F,G : Ω → RF be integrable. Then
(1) Let a, b ∈ R, then aF + bG is integrable and for each A ∈ Σ,∫

A

(aF + bG) dµ = a

∫
A

Fdµ+ b

∫
A

Gdµ;

(2) D (F,G) is a real- valued integrable function and for each A ∈ Σ,

D

(∫
A

Fdµ,

∫
A

Gdµ

)
≤
∫
A

D (F,G) dµ.

In particular, ∥∥∥∥∫
A

Fdµ

∥∥∥∥
F
≤
∫
A

∥F∥F dµ.

Above µ could be the multivariate Lebesgue measure, which we use in this
article, with all the basic properties valid here too. Notice by [31], Fubini’s theorem
is valid for fuzzy integral (2.18).

Basically here we have that[∫
A

Fdµ

]r
=

[∫
A

F
(r)
− dµ,

∫
A

F
(r)
+ dµ

]
, (2.19)

i.e. (∫
A

Fdµ

)(r)

±
=

∫
A

F
(r)
± dµ, ∀ r ∈ [0, 1] . (2.20)

3. About Real Neural Networks Background
Here we follow [24].
Let h : R → [−1, 1] be a general sigmoid function, such that it is strictly

increasing, h (0) = 0, h (−x) = −h (x), h (+∞) = 1, h (−∞) = −1. Also h is
strictly convex over (−∞, 0] and strictly concave over [0,+∞), with h(2) ∈ C (R).

We consider the activation function

ψ (x) :=
1

4
(h (x+ 1)− h (x− 1)) , x ∈ R, (3.1)
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As in [23], p. 88, we get that ψ (−x) = ψ (x) , thus ψ is an even function. Since
x+ 1 > x− 1, then h (x+ 1) > h (x− 1), and ψ (x) > 0, all x ∈ R.

We see that

ψ (0) =
h (1)

2
. (3.2)

Let x > 1, we have that

ψ′ (x) =
1

4
(h′ (x+ 1)− h′ (x− 1)) < 0,

by h′ being strictly decreasing over [0,+∞).
Let now 0 < x < 1, then 1 − x > 0 and 0 < 1 − x < 1 + x. It holds

h′ (x− 1) = h′ (1− x) > h′ (x+ 1), so that again ψ′ (x) < 0. Consequently ψ is
stritly decreasing on (0,+∞) .

Clearly, ψ is strictly increasing on (−∞, 0), and ψ′ (0) = 0.
See that

lim
x→+∞

ψ (x) =
1

4
(h (+∞)− h (+∞)) = 0, (3.3)

and

lim
x→−∞

ψ (x) =
1

4
(h (−∞)− h (−∞)) = 0. (3.4)

That is the x-axis is the horizontal asymptote on ψ.
Conclusion, ψ is a bell symmetric function with maximum

ψ (0) =
h (1)

2
.

We need

Theorem 3.1. ([24]) We have that

∞∑
i=−∞

ψ (x− i) = 1, ∀ x ∈ R. (3.5)

Theorem 3.2. ([24]) It holds ∫ ∞

−∞
ψ (x) dx = 1. (3.6)

Thus ψ (x) is a density function on R.
We give
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Theorem 3.3. ([24]) Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞∑
 k = −∞

: |nx− k| ≥ n1−α

ψ (nx− k) <
(1− h (n1−α − 2))

2
. (3.7)

Notice that

lim
n→+∞

(1− h (n1−α − 2))

2
= 0.

Denote by ⌊·⌋ the integral part of the number and by ⌈·⌉ the ceiling of the
number.

We further give

Theorem 3.4. ([24]) Let x ∈ [a, b] ⊂ R and n ∈ N so that ⌈na⌉ ≤ ⌊nb⌋. It holds

1∑⌊nb⌋
k=⌈na⌉ ψ (nx− k)

<
1

ψ (1)
, ∀ x ∈ [a, b] . (3.8)

Remark 3.5. ([24]) i) We have that

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

ψ (nx− k) ̸= 1, (3.9)

for at least some x ∈ [a, b] .
ii) For large enough n ∈ N we always obtain ⌈na⌉ ≤ ⌊nb⌋. Also a ≤ k

n
≤ b, iff

⌈na⌉ ≤ k ≤ ⌊nb⌋.
In general, by Theorem 3.1, it holds

⌊nb⌋∑
k=⌈na⌉

ψ (nx− k) ≤ 1. (3.10)

We introduce

Z (x1, ..., xN) := Z (x) :=
N∏
i=1

ψ (xi) , x = (x1, ..., xN) ∈ RN , N ∈ N. (3.11)

It has the properties:
(i) Z (x) > 0, ∀ x ∈ RN ,



12 J. of Ramanujan Society of Mathematics and Mathematical Sciences

(ii)

∞∑
k=−∞

Z (x− k) :=
∞∑

k1=−∞

∞∑
k2=−∞

...
∞∑

kN=−∞

Z (x1 − k1, ..., xN − kN) = 1, (3.12)

where k := (k1, ..., kn) ∈ ZN , ∀ x ∈ RN ,
hence
(iii)

∞∑
k=−∞

Z (nx− k) = 1, (3.13)

∀ x ∈ RN ; n ∈ N,
and
(iv) ∫

RN

Z (x) dx = 1, (3.14)

that is Z is a multivariate density function.
Here denote ∥x∥∞ := max {|x1| , ..., |xN |}, x ∈ RN , also set ∞ := (∞, ...,∞),

−∞ := (−∞, ...,−∞) upon the multivariate context, and

⌈na⌉ := (⌈na1⌉ , ..., ⌈naN⌉) ,

⌊nb⌋ := (⌊nb1⌋ , ..., ⌊nbN⌋) ,
(3.15)

where a := (a1, ..., aN), b := (b1, ..., bN) .
We obviously see that

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) =

⌊nb⌋∑
k=⌈na⌉

(
N∏
i=1

ψ (nxi − ki)

)
=

⌊nb1⌋∑
k1=⌈na1⌉

...

⌊nbN ⌋∑
kN=⌈naN ⌉

(
N∏
i=1

ψ (nxi − ki)

)
=

N∏
i=1

 ⌊nbi⌋∑
ki=⌈nai⌉

ψ (nxi − ki)

 . (3.16)

For 0 < β < 1 and n ∈ N, a fixed x ∈ RN , we have that

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) =
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⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n
− x
∥∥
∞ ≤ 1

nβ

Z (nx− k) +

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n
− x
∥∥
∞ > 1

nβ

Z (nx− k) . (3.17)

In the last two sums the counting is over disjoint vector sets of k’s, because the
condition

∥∥ k
n
− x
∥∥
∞ > 1

nβ implies that there exists at least one
∣∣kr
n
− xr

∣∣ > 1
nβ ,

where r ∈ {1, ..., N} .
(v) As in [21], pp. 379-380, we derive that

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n
− x
∥∥
∞ > 1

nβ

Z (nx− k)
(??)
<

1− h
(
n1−β − 2

)
2

, 0 < β < 1, (3.18)

with n ∈ N : n1−β > 2, x ∈
∏N

i=1 [ai, bi] .
(vi) By Theorem 3.4 we get that

0 <
1∑⌊nb⌋

k=⌈na⌉ Z (nx− k)
<

1

(ψ (1))N
=: γ (N) , (3.19)

∀ x ∈
(∏N

i=1 [ai, bi]
)
, n ∈ N.

It is also clear that
(vii)

∞∑
 k = −∞∥∥ k

n
− x
∥∥
∞ > 1

nβ

Z (nx− k) <
1− h

(
n1−β − 2

)
2

=: c (β, n) , (3.20)

0 < β < 1, n ∈ N : n1−β > 2, x ∈ RN .
Furthermore it holds

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) ̸= 1, (3.21)

for at least some x ∈
(∏N

i=1 [ai, bi]
)
.

Let f ∈ C
(∏N

i=1 [ai, bi]
)
, and n ∈ N such that ⌈nai⌉ ≤ ⌊nbi⌋, i = 1, ..., N.
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We define the multivariate averaged positive linear neural network operators

(x := (x1, ..., xN) ∈
(∏N

i=1 [ai, bi]
)
):

An (f, x1, ..., xN) := An (f, x) :=

∑⌊nb⌋
k=⌈na⌉ f

(
k
n

)
Z (nx− k)∑⌊nb⌋

k=⌈na⌉ Z (nx− k)
= (3.22)

∑⌊nb1⌋
k1=⌈na1⌉

∑⌊nb2⌋
k2=⌈na2⌉ ...

∑⌊nbN ⌋
kN=⌈naN ⌉ f

(
k1
n
, ..., kN

n

) (∏N
i=1 ψ (nxi − ki)

)
∏N

i=1

(∑⌊nbi⌋
ki=⌈nai⌉ ψ (nxi − ki)

) .

For large enough n ∈ N we always obtain ⌈nai⌉ ≤ ⌊nbi⌋, i = 1, ..., N . Also
ai ≤ ki

n
≤ bi, iff ⌈nai⌉ ≤ ki ≤ ⌊nbi⌋, i = 1, ..., N .

When f ∈ CB

(
RN
)
we define

Bn (f, x) := Bn (f, x1, ..., xN) :=
∞∑

k=−∞

f

(
k

n

)
Z (nx− k) := (3.23)

∞∑
k1=−∞

∞∑
k2=−∞

...
∞∑

kN=−∞

f

(
k1
n
,
k2
n
, ...,

kN
n

)( N∏
i=1

ψ (nxi − ki)

)
,

n ∈ N, ∀ x ∈ RN , N ∈ N, the multivariate quasi-interpolation neural network
operators.

Also for f ∈ CB

(
RN
)
we define the multivariate Kantorovich type neural net-

work operators

Cn (f, x) := Cn (f, x1, ..., xN) :=
∞∑

k=−∞

(
nN

∫ k+1
n

k
n

f (t) dt

)
Z (nx− k) := (3.24)

∞∑
k1=−∞

∞∑
k2=−∞

...
∞∑

kN=−∞

(
nN

∫ k1+1
n

k1
n

∫ k2+1
n

k2
n

...

∫ kN+1

n

kN
n

f (t1, ..., tN) dt1...dtN

)

·

(
N∏
i=1

ψ (nxi − ki)

)
,

n ∈ N, ∀ x ∈ RN .
Again for f ∈ CB

(
RN
)
, N ∈ N, we define the multivariate neural network oper-

ators of quadrature type Dn (f, x), n ∈ N, as follows. Let θ = (θ1, ..., θN) ∈ NN , r =
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(r1, ..., rN) ∈ ZN
+ , wr = wr1,r2,...rN ≥ 0, such that

θ∑
r=0

wr =
θ1∑

r1=0

θ2∑
r2=0

...
θN∑

rN=0

wr1,r2,...rN =

1; k ∈ ZN and

δnk (f) := δn,k1,k2,...,kN (f) :=
θ∑

r=0

wrf

(
k

n
+

r

nθ

)
:=

θ1∑
r1=0

θ2∑
r2=0

...

θN∑
rN=0

wr1,r2,...rNf

(
k1
n

+
r1
nθ1

,
k2
n

+
r2
nθ2

, ...,
kN
n

+
rN
nθN

)
, (3.25)

where r
θ
:=
(

r1
θ1
, r2
θ2
, ..., rN

θN

)
.

We put

Dn (f, x) := Dn (f, x1, ..., xN) :=
∞∑

k=−∞

δnk (f)Z (nx− k) := (3.26)

∞∑
k1=−∞

∞∑
k2=−∞

...
∞∑

kN=−∞

δn,k1,k2,...,kN (f)

(
N∏
i=1

ψ (nxi − ki)

)
,

∀ x ∈ RN .
Let f ∈ Cm

(∏N
i=1 [ai, bi]

)
, m,N ∈ N. Here fα denotes a partial derivative

of f , α := (α1, ..., αN), αi ∈ Z+, i = 1, ..., N , and |α| :=
∑N

i=1 αi = l, where
l = 0, 1, ...,m. We write also fα := ∂αf

∂xα and we say it is of order l.
We denote

ωmax
1,m (fα, h) := max

α:|α|=m
ω1 (fα, h) .

Call also
∥fα∥max

∞,m := max
α:|α|=m

{∥fα∥∞} ,

where ∥·∥∞ is the supremum norm.
In [21], [23], we studied the basic approximation properties of An, Bn, Cn, Dn

neural network operators and as well of their iterates for Banach space valued
functions. That is, the quantitative pointwise and uniform convergence of these
operators to the unit operator I.

We need

Theorem 3.6. Let f ∈ C
(∏N

i=1 [ai, bi]
)
, 0 < β < 1, x ∈

(∏N
i=1 [ai, bi]

)
, N, n ∈ N

with n1−β > 2. Then
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1)

|An (f, x)− f (x)| ≤ γ (N)

[
ω1

(
f,

1

nβ

)
+ 2c (β, n) ∥f∥∞

]
=: λ1, (3.27)

and
2)

∥An (f)− f∥∞ ≤ λ1. (3.28)

We notice that lim
n→∞

An (f) = f , pointwise and uniformly.

Proof. Similar to [23], p. 118.
We need

Theorem 3.7. Let f ∈ CB

(
RN
)
, 0 < β < 1, x ∈ RN , N, n ∈ N with n1−β > 2.

Then
1)

|Bn (f, x)− f (x)| ≤ ω1

(
f,

1

nβ

)
+ 2c (β, n) ∥f∥∞ =: λ2, (3.29)

2)

∥Bn (f)− f∥∞ ≤ λ2. (3.30)

Given that f ∈
(
CU

(
RN
)
∩ CB

(
RN
))
, we obtain lim

n→∞
Bn (f) = f , uniformly.

Proof. Similar to [23], p. 128.
We also need

Theorem 3.8. Let f ∈ CB

(
RN
)
, 0 < β < 1, x ∈ RN , N, n ∈ N with n1−β > 2.

Then
1)

|Cn (f, x)− f (x)| ≤ ω1

(
f,

1

n
+

1

nβ

)
+ 2c (β, n) ∥f∥∞ =: λ3, (3.31)

2)

∥Cn (f)− f∥∞ ≤ λ3. (3.32)

Given that f ∈
(
CU

(
RN
)
∩ CB

(
RN
))
, we obtain lim

n→∞
Cn (f) = f , uniformly.

Proof. Similar to [23], p. 129.
We also need

Theorem 3.9. Let f ∈ CB

(
RN
)
, 0 < β < 1, x ∈ RN , N, n ∈ N with n1−β > 2.

Then
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1)

|Dn (f, x)− f (x)| ≤ ω1

(
f,

1

n
+

1

nβ

)
+ 2c (β, n) ∥f∥∞ = λ3, (3.33)

2)
∥Dn (f)− f∥∞ ≤ λ3. (3.34)

Given that f ∈
(
CU

(
RN
)
∩ CB

(
RN
))
, we obtain lim

n→∞
Dn (f) = f , uniformly.

Proof. Similar to [23], p. 131.
We finally mention (similar to [21], p. 481)

Theorem 3.10. Let f ∈ Cm
(∏N

i=1 [ai, bi]
)
, 0 < β < 1, n,m,N ∈ N, n1−β > 2,

x ∈
(∏N

i=1 [ai, bi]
)
. Then

i)∣∣∣∣∣∣An (f, x)− f (x)−
m∑

j∗=1

∑
|α|=j∗

(
fα (x)∏N
i=1 αi!

)
An

(
N∏
i=1

(· − xi)
αi , x

)∣∣∣∣∣∣ ≤ (3.35)

γ (N) ·

{
Nm

m!nmβ
ωmax
1,m

(
fα,

1

nβ

)
+

(
∥b− a∥m∞ ∥fα∥max

∞,mN
m

m!

)
2c (β, n)

}
,

ii)
|An (f, x)− f (x)| ≤ γ (N) · (3.36)

m∑
j∗=1

∑
|α|=j∗

(
|fα (x)|∏N

i=1 αi!

)[
1

nβj∗
+

(
N∏
i=1

(bi − ai)
αi

)
c (β, n)

]
+

Nm

m!nmβ
ωmax
1,m

(
fα,

1

nβ

)
+

(
∥b− a∥m∞ ∥fα∥max

∞,mN
m

m!

)
2c (β, n)

}
,

iii)
∥An (f)− f∥∞ ≤ γ (N) · (3.37)

m∑
j∗=1

∑
|α|=j∗

(
∥fα∥∞∏N
i=1 αi!

)[
1

nβj∗
+

(
N∏
i=1

(bi − ai)
αi

)
c (β, n)

]
+

Nm

m!nmβ
ωmax
1,m

(
fα,

1

nβ

)
+

(
∥b− a∥m∞ ∥fα∥max

∞,mN
m

m!

)
2c (β, n)

}
,
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iv) additionally assume fα (x0) = 0, for all α : |α| = 1, ...,m; x0 ∈
(∏N

i=1 [ai, bi]
)
,

then

|An (f, x0)− f (x0)| ≤ γ (N)

{
Nm

m!nmβ
ωmax
1,m

(
fα,

1

nβ

)
+ (3.38)(

∥b− a∥m∞ ∥fα∥max
∞,mN

m

m!

)
2c (β, n)

}
,

notice in the last the extremely high rate of convergence at n−β(m+1).

4. Main Results: Fuzzy multivariate Neural Network Approximation
based on a general sigmoid function

We define the following General Fuzzy multivariate Neural Network Operators
AF

n , B
F
n , C

F
n , D

F
n , based on a general sigmoid activation function. These are analogs

of the real An, Bn, Cn, Dn, see (3.22), (3.23), (3.24) and (3.26), respectively.

Let f ∈ CF

(
N∏
i=1

[ai, bi]

)
, N ∈ N, we set

AF
n (f, x1, ..., xN) := AF

n (f, x) :=

⌊nb⌋∗∑
k=⌈na⌉

f
(
k
n

)
⊙ Z (nx− k)

⌊nb⌋∑
k=⌈na⌉

Z (nx− k)

=

∑⌊nb1⌋∗
k1=⌈na1⌉ ...

∑⌊nbN ⌋∗
kN=⌈naN ⌉ f

(
k1
n
, ..., kN

n

)
⊙
(∏N

i=1 ψ (nxi − ki)
)

∏N
i=1

(∑⌊nbi⌋
ki=⌈nai⌉ ψ (nxi − ki)

) , (4.1)

x ∈
N∏
i=1

[ai, bi], n ∈ N.

Let f ∈ CB

(
RN ,RF

)
, we put

BF
n (f, x) := BF

n (f, x1, ..., xN) :=
∞∗∑

k=−∞

f

(
k

n

)
⊙ Z (nx− k)

:=
∞∗∑

k1=−∞

...

∞∗∑
kN=−∞

f

(
k1
n
, ...,

kN
n

)
⊙

(
N∏
i=1

ψ (nxi − ki)

)
, (4.2)

x ∈ RN , n ∈ N.
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Let f ∈ CB

(
RN ,RF

)
, we define the multivariate fuzzy Kantorovich type neural

network operator,

CF
n (f, x) := CF

n (f, x1, ..., xN) :=
∞∗∑

k=−∞

(
nN ⊙

∫ k+1
n

k
n

f (t) dt

)
⊙ Z (nx− k) :=

∞∗∑
k1=−∞

...

∞∗∑
kN=−∞

(
nN ⊙

∫ k1+1
n

k1
n

...

∫ kN+1

n

kN
n

f (t1, ..., tN) dt1...dtN

)

⊙

(
N∏
i=1

ψ (nxi − ki)

)
, (4.3)

x ∈ RN , n ∈ N.
Let f ∈ CB

(
RN ,RF

)
, we define the multivariate fuzzy quadrature type neural

network operator. Let here

δFnk (f) := δFn,k1,...,kN (f) :=
θ∗∑
r=0

wr ⊙ f

(
k

n
+

r

nθ

)
:= (4.4)

θ1∗∑
r1=0

...

θN∗∑
rN=0

wr1,...rN ⊙ f

(
k1
n

+
r1
nθ1

, ...,
kN
n

+
rN
nθN

)
.

We put

DF
n (f, x) := DF

n (f, x1, ..., xN) :=
∞∗∑

k=−∞

δFnk (f)⊙ Z (nx− k) :=

∞∗∑
k1=−∞

...
∞∗∑

kN=−∞

δFn,k1,...,kN (f)⊙

(
N∏
i=1

ψ (nxi − ki)

)
, (4.5)

x ∈ RN , n ∈ N.
We can put together all BF

n , C
F
n , D

F
n fuzzy operators as follows:

LF
n (f, x) :=

∞∗∑
k=−∞

lFnk (f)⊙ Z (nx− k) , (4.6)

where

lFnk (f) :=


f
(
k
n

)
, if LF

n = BF
n ,

nN ⊙
∫ k+1

n
k
n

f (t) dt, if LF
n = CF

n ,

δFnk (f) , if L
F
n = DF

n ,

(4.7)
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x ∈ RN , n ∈ N.
Similarly, we can put together all Bn, Cn, Dn real operators as

Ln (f, x) :=
∞∑

k=−∞

lnk (f)Z (nx− k) , (4.8)

where

lnk (f) :=


f
(
k
n

)
, if Ln = Bn,

nN
∫ k+1

n
k
n

f (t) dt, if Ln = Cn,

δnk (f) , if Ln = Dn,

(4.9)

x ∈ RN , n ∈ N.
Let r ∈ [0, 1], we observe that

[
AF

n (f, x)
]r

=

⌊nb⌋∑
k=⌈na⌉

[
f

(
k

n

)]r
 Z (nx− k)

⌊nb⌋∑
k=⌈na⌉

Z (nx− k)

 =

⌊nb⌋∑
k=⌈na⌉

[
f
(r)
−

(
k

n

)
, f

(r)
+

(
k

n

)] Z (nx− k)
⌊nb⌋∑

k=⌈na⌉
Z (nx− k)

 = (4.10)


⌊nb⌋∑

k=⌈na⌉

f
(r)
−

(
k

n

) Z (nx− k)
⌊nb⌋∑

k=⌈na⌉
Z (nx− k)

 ,

⌊nb⌋∑
k=⌈na⌉

f
(r)
+

(
k

n

) Z (nx− k)
⌊nb⌋∑

k=⌈na⌉
Z (nx− k)




=
[
An

(
f
(r)
− , x

)
, An

(
f
(r)
+ , x

)]
. (4.11)

We have proved that (
AF

n (f, x)
)(r)
± = An

(
f
(r)
± , x

)
, (4.12)

∀ r ∈ [0, 1], ∀ x ∈
(

N∏
i=1

[ai, bi]

)
.
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Similarly, as in [21], pp. 485-489, a lengthy proof (see Remark 21.31 and proof
of (21.76) there) it holds that(

LF
n (f, x)

)(r)
± = Ln

(
f
(r)
± , x

)
, (4.13)

∀ r ∈ [0, 1], ∀ x ∈ RN .
Based on (4.12) and (4.13) now one may write

D
(
AF

n (f, x) , f (x)
)
= (4.14)

sup
r∈[0,1]

max
{∣∣∣(An

(
f
(r)
− , x

))
− f

(r)
− (x)

∣∣∣ , ∣∣∣An

(
f
(r)
+ , x

)
− f

(r)
+ (x)

∣∣∣} ,
and

D
(
LF
n (f, x) , f (x)

)
=

sup
r∈[0,1]

max
{∣∣∣(Ln

(
f
(r)
− , x

))
− f

(r)
− (x)

∣∣∣ , ∣∣∣Ln

(
f
(r)
+ , x

)
− f

(r)
+ (x)

∣∣∣} . (4.15)

We present

Theorem 4.1. Let f ∈ CF

(
N∏
i=1

[ai, bi]

)
, 0 < β < 1, x ∈

(
N∏
i=1

[ai, bi]

)
, N, n ∈ N

with n1−β > 2. Then
1)

D
(
AF

n (f, x) , f (x)
)
≤

γ (N)

[
ω
(F)
1

(
f,

1

nβ

)
+ 2c (β, n)D∗ (f, õ)

]
=: ρ1, (4.16)

and
2)

D∗ (AF
n (f) , f

)
≤ ρ1. (4.17)

We notice that AF
n (f, x)

D→ f (x) , and AF
n (f)

D∗
→ f , as n → ∞,quantitatively with

rates.

Proof. Since f ∈ CF

(
N∏
i=1

[ai, bi]

)
we have that f

(r)
± ∈ C

(
N∏
i=1

[ai, bi]

)
, ∀ r ∈ [0, 1].

Hence by (3.27) we obtain∣∣∣An

(
f
(r)
± , x

)
− f

(r)
± (x)

∣∣∣ ≤ γ (N)

[
ω1

(
f
(r)
± ,

1

nβ

)
+ 2c (β, n)

∥∥∥f (r)
±

∥∥∥
∞

]
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(by (2.8), (2.3))

≤ γ (N)

[
ω
(F)
1

(
f,

1

nβ

)
+ 2c (β, n)D∗ (f, õ)

]
. (4.18)

By (4.14) now we are proving the claim.
We give

Theorem 4.2. Let f ∈ CB

(
RN ,RF

)
, 0 < β < 1, x ∈ RN , N, n ∈ N, with

n1−β > 2. Then
1)

D
(
BF

n (f, x) , f (x)
)
≤ (4.19)

ω
(F)
1

(
f,

1

nβ

)
+ 2c (β, n)D∗ (f, õ) =: ρ2,

and
2)

D∗ (BF
n (f) , f

)
≤ ρ2. (4.20)

Proof. Similar to Theorem 4.1. We use (3.29) and (4.15), along with (3) and (8).
We also present

Theorem 4.3. All as in Theorem 4.2. Then
1)

D
(
CF

n (f, x) , f (x)
)
≤

ω
(F)
1

(
f,

1

n
+

1

nβ

)
+ 2c (β, n)D∗ (f, õ) =: ρ3, (4.21)

and
2)

D∗ (CF
n (f) , f

)
≤ ρ3. (4.22)

Proof. Similar to Theorem 4.1. We use (3.31) and (4.15), along with (3) and (8).
We also give

Theorem 4.4. All as in Theorem 4.2. Then
1)

D
(
DF

n (f, x) , f (x)
)
≤

ω
(F)
1

(
f,

1

n
+

1

nβ

)
+ 2c (β, n)D∗ (f, õ) = ρ3, (4.23)

and
2)

D∗ (DF
n (f) , f

)
≤ ρ3. (4.24)
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Proof. Similar to Theorem 4.1. We use (3.33) and (4.15), along with (3) and (8).

Note 4.5. By Theorems 4.2, 4.3, 4.4 for f ∈
(
CB

(
RN ,RF

)
∩ CU

F
(
RN
))
, we

obtain lim
n→∞

D
(
LF
n (f, x) , f (x)

)
= 0, and lim

n→∞
D∗ (LF

n (f) , f
)
= 0, quantitatively

with rates, where LF
n is as in (4.6) and (4.7).

Notation 4.6. Let f ∈ Cm
F

(
N∏
i=1

[ai, bi]

)
, m,N ∈ N. Here fα denotes a fuzzy

partial derivative with all related notation similar to the real case, see also Remark
2.15 and Notation 2.16. We denote

ω
(F)max
1,m (fα, h) := max

α:|α|=m
ω
(F)
1 (fα, h) , h > 0. (4.25)

Call also
D∗max

m (fα, õ) := max
α:|α|=m

{D∗ (fα, õ)} . (4.26)

We finally present

Theorem 4.7. Let f ∈ Cm
F

(
N∏
i=1

[ai, bi]

)
, 0 < β < 1, n,m,N ∈ N with n1−β > 2,

and x ∈
(

N∏
i=1

[ai, bi]

)
. Then

1)
D
(
AF

n (f, x) , f (x)
)
≤ γ (N) ·

m∑
j∗=1

∑
|α|=j∗

D (fα (x) , õ)
N∏
i=1

αi!

[
1

nβj∗
+

(
N∏
i=1

(bi − ai)
αi

)
c (β, n)

]
+

Nm

m!nmβ
ω
(F)max
1,m

(
fα,

1

nβ

)
+

(
∥b− a∥m∞D∗max

m (fα, õ)N
m

m!

)
2c (β, n)

}
, (4.27)

2)
D∗ (AF

n (f) , f
)
≤ γ (N) ·

m∑
j∗=1

∑
|α|=j∗

D∗ (fα, õ)
N∏
i=1

αi!

[
1

nβj∗
+

(
N∏
i=1

(bi − ai)
αi

)
c (β, n)

]
+

Nm

m!nmβ
ω
(F)max
1,m

(
fα,

1

nβ

)
+

(
∥b− a∥m∞D∗max

m (fα, õ)N
m

m!

)
2c (β, n)

}
, (4.28)
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3) additionally assume that fα (x0) = õ, for all α : |α| = 1, ...,m; x0 ∈(
N∏
i=1

[ai, bi]

)
, then

D
(
AF

n (f, x0) , f (x0)
)
≤ γ (N)

{
Nm

m!nmβ
ω
(F)max
1,m

(
fα,

1

nβ

)
+

(
∥b− a∥m∞D∗max

m (fα, õ)N
m

m!

)
2c (β, n)

}
, (4.29)

notice in the last the extremely high rate of convergence at n−β(m+1).
Above we derive quantitatively with rates the high speed approximation of

D
(
AF

n (f, x) , f (x)
)
→ 0, as n→ ∞.

Also we establish with rates that D∗ (AF
n (f) , f

)
→ 0, as n→ ∞, involving the

fuzzy smoothness of f.

Proof. Here f
(r)
± ∈ Cm

(
N∏
i=1

[ai, bi]

)
. We observe that

∣∣∣An

(
f
(r)
± , x

)
− f

(r)
± (x)

∣∣∣ (??)≤ γ (N) ·
m∑

j∗=1

∑
|α|=j∗


∣∣∣(f (r)

±

)
α
(x)
∣∣∣

N∏
i=1

αi!


[

1

nβj∗
+

(
N∏
i=1

(bi − ai)
αi

)
c (β, n)

]
+

Nm

m!nmβ
ωmax
1,m

((
f
(r)
±

)
α
,
1

nβ

)
+∥b− a∥m∞

∥∥∥(f (r)
±

)
α

∥∥∥max

∞,m
Nm

m!

 2c (β, n)

 (??)
= (4.30)

γ (N)


m∑

j∗=1

∑
|α|=j∗


∣∣∣(fα)(r)± (x)

∣∣∣
N∏
i=1

αi!


[

1

nβj∗
+

(
N∏
i=1

(bi − ai)
αi

)
c (β, n)

]
+

Nm

m!nmβ
ωmax
1,m

(
(fα)

(r)
± ,

1

nβ

)
+
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∥∥∥(fα)(r)±

∥∥∥max

∞,m
Nm

m!

 2c (β, n)

 (by (??), (??))

≤ (4.31)

γ (N)


m∑

j∗=1

∑
|α|=j∗

D (fα (x) , õ)
N∏
i=1

αi!


[

1

nβj∗
+

(
N∏
i=1

(bi − ai)
αi

)
c (β, n)

]
+

Nm

m!nmβ
ω
(F)max
1,m

(
fα,

1

nβ

)
+(

∥b− a∥m∞D∗max
m (fα, õ)N

m

m!

)
2c (β, n)

}
=: T, (4.32)

respectively in ±.
We have proved that ∣∣∣An

(
f
(r)
± , x

)
− f

(r)
± (x)

∣∣∣ ≤ T, (4.33)

∀ r ∈ [0, 1], respectively in ±.
Using (4.14) we obtain

D
(
AF

n (f, x) , f (x)
)
≤ T, (4.34)

proving the theorem.
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