
South East Asian J. of Mathematics and Mathematical Sciences
Vol. 19, No. 1 (2023), pp. 399-412

DOI: 10.56827/SEAJMMS.2023.1901.31 ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

THE GEODETIC FAULT TOLERANT DOMINATION
NUMBER OF A GRAPH

D. Stalin and J. John*

Department of Mathematics,
St. Alphonsa College of Arts and Science,
Karungal - 629159, Tamil Nadu, INDIA

E-mail : stalindd@gmail.com

*Department of Mathematics,
Government College of Engineering, Tirunelveli, INDIA

E-mail : john@gcetly.ac.in

(Received: Oct. 14, 2021 Accepted: Apr. 17, 2023 Published: Apr. 30, 2023)

Abstract: For a connected graph G = (V,E), a set F ⊆ V of vertices in G is
called dominating set if every vertex not in F has at least one neighbor in F . A
dominating set F ⊆ V is called fault tolerant dominating set if F − {v} is domi-
nating set for every v ∈ F . A fault tolerant dominating set is said to be geodetic
fault tolerant dominating set if I[F ] = V . The minimum cardinality of a geodetic
fault tolerant dominating set is called geodetic fault tolerant domination number
and is denoted by γgft(G). The minimum geodetic fault tolerant dominating set
is denoted by γgft-set. The geodetic fault tolerant domination number of certain
classes of graphs are determined. Some general properties satisfied by this concept
are studied. It is shown that for every positive integer 2 < a ≤ b there is a con-
nected graph G such that γ(G) = a, γg(G) = b and γgft(G) = a + b − 2, where
γ(G) and γg(G) are the domination number and geodetic domination number of G
respectively.
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1. Introduction

By a graph G = (V,E), we mean a finite undirected graph without loops or
multiple edges. The order and size of G are denoted by p and q respectively. For
basic graph theoretic terminology we refer to Harary [6]. If e = {u, v} is an edge
of a graph G with d(u) = 1 and d(v) > 1, then we call e a pendent edge, u a leaf
and v a support vertex. Let L be the set of all leaves of a graph G. The vertex
of degree p − 1 is called an universal vertex. We denote by Pp, Cp and Km,n, the
path on p vertices, the cycle on p vertices and complete bipartite graph in which
one partite set has m vertices and the other partite set has n vertices. For any set
M of vertices of G, the induced subgraph ⟨M⟩ is the maximal subgraph of G with
vertex set M . N(v) = {u ∈ V (G) : uv ∈ E(G)} is called the neighbourhood of the
vertex v in G. A vertex v in a connected graph G is said to be a semi simplicial
vertex of G if ∆(< N(v) >) = |N(v)| − 1. A vertex v is a simplicial vertex of a
graph G if < N(v) > is complete.

A set D ⊆ V of vertices in G is called a dominating set if every vertex not in
D has at least one neighbour in D. A vertex in a graph G dominates itself and
its neighbors. The domination number γ(G) of G is the minimum cardinality of a
dominating set of G. A dominating set F is said to be a fault tolerant dominating
set if F −{v} is also a dominating for all v ∈ F . The minimum cardinality of F is
called fault tolerant domination number and is denoted by γft(G). It is observed
that γft(G) ≥ 1+ γ(G). For references on domination parameters in graphs see [1,
5, 7, 9-14, 16, 17-20].

The distance d(u, v) between two vertices u and v in a connected graph G is the
length of a shortest u-v path in G. The eccentricity e(v) of a vertex v in G is the
maximum distance from v and a vertex of G. The minimum eccentricity among
the vertices of G is the radius, rad G or r(G) and the maximum eccentricity is
its diameter, diam(G) of G. A vertex v of G is said to be peripheral vertex if
e(v) = diamG. A vertex x is said to lie on a u − v geodesic P if x is a vertex of
P including the vertices u and v. For S ⊆ V , I[S] = ∪u,v∈SI[u, v]. A set S ⊆ V
is called an geodetic set of G if I[S] = V . The geodetic number g(G) of G is
the minimum order of its geodetic sets and any geodetic set of order g(G) is an
geodetic basis of G or g-set of G. A set of vertices S in G is called a geodetic
dominating set of G if S is both geodetic set and a dominating set. The minimum
cardinality of geodetic dominating set of G is its geodetic domination number and
is denoted by γg(G). A geodetic dominating set of size γg(G) is said to be a γg-
set. Geodetic number was introduced in [8] and further studied in [2, 3, 4, 6,
15, 12]. Moreover recently geodetic number was studied in [3, 7, 10]. Consider
a client-server architecture based network in which any client must be able to
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communicate to one of the servers. If anyone of the server is fault or busy the
system will not affect. A smallest group of servers with these properties is a fault
tolerant dominating set for the graph representing the computer network.

Theorem 1.1. Every extreme vertex of a connected graph G belongs to every
minimum geodetic set of G. In particular every end vertex of a connected graph G
belongs to every minimum geodetic set of G.

Theorem 1.2. For every connected graph G, g(G) = 2 if and only if G has
peripheral vertices u and v such that every vertex of G lies on the diametral path
of G.

2. The Geodetic Fault Tolerant Domination Number of a Graph

Definition 2.1. A Dominating set F ⊆ V is said to be geodetic fault tolerant
dominating set if F is both geodetic and fault tolerant dominating set of G. The
minimum cardinality of a geodetic fault tolerant dominating set is called geodetic
Fault tolerant domination number and is denoted by γgft(G). The minimum Fault
tolerant dominating set is denoted by γgft-set.
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v7v4

v2

G

Figure 2.1

Example 2.2. For the graph G given in Figure 2.1, F = {v1, v2, v5, v6, v7} is a
minimum dominating set of G so that γgft(G) ≤ 5. It is easily verified that G
has no geodetic fault tolerant dominating set of cardinality less than 5. Hence
γgft(G) = 5.

Remark 2.3. For the graph G given in Figure 2.1, D = {v1, v5} is a γ- set of G so
that γ(G) = 2. Also F1 = {v1, v2, v5, v6} is a minimum fault tolerant dominating
set, S = {v1, v5, v6, v7} is a geodetic dominating set and F = {v1, v2, v5, v6, v7}
is a minimum fault tolerant geodetic dominating set of G. Thus dominating set,
fault tolerant dominating set, geodetic dominating set and geodetic fault tolerant
dominating set of G are different.
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Remark 2.4. There can be more than one fault tolerant dominating set for a graph.
For the graph G given in Figure 2.1, F1 = {v1, v2, v5, v6, v7} , F2 = {v1, v3, v5, v6, v7}
and F3 = {v1, v4, v5, v6, v7} are the three γgft- sets of G.

Observation 2.5. (i) Let G be a connected graph with cut-vertices F be a geodetic
fault tolerant dominating set of G. If v is a cut vertex of G, then F contains at
least one vertex of every component of G− v.
(ii) Every extreme vertex of a connected graph G belongs to every geodetic fault
tolerant dominating set of G.
(iii)For any connected graph G, 2 ≤ max{γ(G), g(G)} ≤ γg(G) ≤ γgft(G) ≤ p.

Theorem 2.6. Let v be an end vertex and u be its adjacent vertex of a connected
graph G. Then {u, v} is a subset of every geodetic fault tolerant dominating set of
G.
Proof. Let v be an end vertex and u be its adjacent vertex of a connected graph
G, S is a geodetic fault tolerant dominating set of G. If {u, v} is not a subset
of S, then S is not a dominating set of G, which is a contradiction. Moreover if
u ∈ S and v /∈ S, then by Observation 2.5(ii), S is not a geodetic fault tolerant
dominating set of G, which is a contradiction. Suppose that u /∈ S. Then S − {v}
is not a dominating set of G and so S is not a geodetic fault tolerant dominating
set of G, which is a contradiction.

Corollary 2.7. Let G be a connected graph with ℓ end vertices. Then γgft(G) ≥
ℓ+ 1.
Proof. The proof follows from Theorem 2.6.

Theorem 2.8. Let G be a connected graph of order p ≥ 3 with at least one cut-
vertex. Then γgft(G) ≥ 3.
Proof. Let u be a cut vertex of G and S be a geodetic fault tolerant dominating
set of G. Let G1, G2, ..., Gn(n ≥ 2) be the components of G − {u}. Then by
Observation 2.5(i), S contains at least two vertices v and w (say) of G. Since v
and w are not adjacent, S −{v} and S −{w} are not a dominating set of G. This
implies that γgft(G) ≥ 3.

Theorem 2.9. Let G be a connected graph. Then γgft(G) = 3 if there exists a γ−
set D = {x, y} such that N(x) = N(y).
Proof. Let D = {x, y} be a γ− set of G and N(x) = N(y) = {v1, v2, ..., vn}. Then
dim(G) = 2. Moreover x and y are peripheral vertices of G, and so every vertex
of G lies on the diametral path of x and y. Since D − {x} and D − {y} are not
a dominating set of G, γgft(G) ≥ 3. Let F = D ∪ {vi}(1 ≤ i ≤ n). Then F is a
γgft-set of G so that γgft(G) = 3.
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In the following we determine the geodetic fault tolerant domination number of
some standard graphs.
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v1

v2

v3

v4

v5

G

Figure 2.2

Theorem 2.10. For the complete graph Kp(p ≥ 3) ,γgft(Kp) = p.
Proof. Since every vertex of complete graph is extreme vertex, the result follows
from Observation 2.5(ii).

Theorem 2.11. For the complete bipartite graph G = Km,n,

γgft(Km,n) =


p, if m = 1
3, if m = 2
4 if m,n ≥ 3.

Proof. Let U = {u1, u2, ..., um} and W = {w1, w2....wn} be the bipartite sets of
G. (i) If m = 1,then the proof follows from Theorem 2.6.
(ii)If m = 2, then the proof follows from Theorem 2.9.
(iii)Let m ≥ 3. Clearly F = {ui, wj}(1 ≤ i ≤ m), (1 ≤ j ≤ n) is a minimum
dominating set of G. However F is not a geodetic set of G. Let F1 = F ∪
{us, wk},(1 ≤ i ̸= s ≤ m), (1 ≤ j ̸= k ≤ n). Then F1 is a geodetic fault tolerant
dominating set of G and so γft(G) ≤ 4. Suppose γgft(G) = 3. Let F ′ be a fault
tolerant dominating set of G such that |F ′| = 3. If F ′ ⊆ U , then F ′ − {ui}, where
ui ∈ F ′, is not a dominating(as well as geodetic) set of G. This implies that F ′

is not a geodetic fault tolerant dominating set of G, which is a contradiction. If
F ′ ⊆ W , then F ′ − {wi} is not a dominating(as well as geodetic) set of G. Hence
F ′ is not a geodetic fault tolerant dominating set of G, where wi ∈ F ′, which is
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a contradiction. Therefore F ′ & U ∪ W . Let F ′ = {us, wj, wk},(j ̸= k). Then
F ′−{us} is not a dominating set of G and hence F ′ is not a geodetic fault tolerant
dominating set of G, which is a contradiction.Therefore γgft(G) = 4.

Theorem 2.12. For the wheel graph G = W1,p−1 γgft(G) = ⌈p−1
2
⌉+ 1.

Proof. Let V = {x, v1, v2, ..., vp−1} be the vertex set of G, where x is the central
vertex of G. Since the diameter of G is two and |V −{x}| vertices form a cycle, every
vertex of G lies in the vi − vj geodesic of ⌈p−1

2
⌉ vertices of V − {x}. Moreover {x}

dominates G. Clearly {x} and ⌈p−1
2
⌉ vertices (alternative vertex of < V −{x} >) of

V − {x} form a γgft-set. Hence γgft(G) ≤ ⌈p
2
⌉+ 1. Suppose that γgft(G) ≤ ⌈p−1

2
⌉.

Let F ′ be a geodetic fault tolerant dominating set of G such that |F ′| < |F |. Then
there exist a vertex vi ∈ F such that vi /∈ F ′. This implies that there exist a
shortest vi−1, vi+1(vi−1, vi+1 ∈ F ′) path including x such that vi not lies on any
geodesic path of vertices of F ′. Thus F ′ is not a geodetic fault tolerant dominating
set of G, which is a contradiction. Therefore γgft(G) = ⌈p

2
⌉+ 1.

Theorem 2.13. For any cycle G = Cp, γft(Cp)(p ≥ 3) = 2k+ r(0 ≤ r ≤ 2) where
p = 3k + r.
Proof. Let v1, v2, ..., vp be the vertices of G. Since G is 2-regular, every vertex of
G dominates exactly three vertices of G, γ = ⌈p

3
⌉. Then by Observation 2.5(iii),

γgft(G) > ⌈p
3
⌉. Let p = 3k + r, (0 ≤ r ≤ 2).

Case i. Let r = 0. Then p=3k. Let F = {v2, v3, v5, v6......, v3k−1, v3k}. Then
F is both geodetic and dominating set of G. Thus F is a geodetic fault tolerant
dominating set of G and so γgft ≤ 2k. Suppose that γgft(G) < 2k. Then there
exists a geodetic fault tolerant dominating set F ′ such that |F ′| < |F |. Therefore
there exists a vertex vi ∈ F such that vi /∈ F ′. Since vi ∈ F either vi−1 or vi+1

belongs to F ′. Suppose vi−1 ∈ F ′ then F ′ − {vi−1} is not a dominating set of G,
which is a contradiction. Similarly if vi+1 ∈ F ′, then F ′ is not a geodetic fault
tolerant dominating set of G, which is a contradiction. Therefore γft(G) = 2k.
Case ii. Let r = 1. Then p = 3k + 1. Let V = {v1, v2, ..., v3k+1} be the set of
vertices of G. From the case(i), F is a geodetic fault tolerant dominating set of
⟨V −{v3k+1}⟩. Since only one neighbor v3k of v3k+1 belongs to F , F −{v3k} is not
a geodetic fault tolerant dominating set of G. Therefore either F1 = F ∪ {v3k+1}
or F1 = F ∪ {v1} is a γgft-set of G. Thus γgft(G) = 2k + 1.
Case iii. Let r=2. Let V = {v1, v2, ..., v3k, v3k+1, v3k+2} be the set of vertices of G.
From case(ii), F2 = F1∪{v3k+1} or F1∪{v1} is a geodetic fault tolerant dominating
set of ⟨V −v3k+2⟩. Moreover F2−{v3k+1} is not a dominating set of G. This implies
that F2 is not a geodetic fault tolerant dominating set of G, so that |F | > 2k + 1.
Then F2 ∪ {v3k+2} or F2 ∪ {v1} is a γgft-set of Cp and so that γgft(Cp) = 2k + 2.
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Theorem 2.14. For the path G = Pp,

γgft(Pp) =


p, if p ≤ 4

4 + ⌊2(p−4)
3

⌋, if (p− 4)mod 3 ≤ 1

5 + ⌊2(p−4)
3

⌋, otherwise.

Proof. Case (i). Let p ≤ 4.Then the proof follows from Theorem 2.6
Suppose p ≥ 5. Let {u, v, v1, v2, v3, v4, ..., vp−3, vp−4, y, z} be the set of vertices of
Pp, where {u, v} is the set of end vertices and {y, z} is the set of its adjacent ver-
tices in G. Take H = {u, v, y, z}. By Theorem 2.6, H contained in every γgft-set
of G. Let H1 = V −H = {v1, v2, ..., vp−4} be the set of p− 4 vertices of G. Let us
assume that p− 4 = 3k + r, (0 ≤ r ≤ 2).
Case (ii). Let (p− 4)mod 3 ≤ 1 . Then r = 0 or r = 1
Subcase (i). Let r = 0. Then p−4 = 3k and H1 = V −H = {v1, v2, ..., v3k−1, v3k}
Let F = H∪{v2, v3, v5, v6, ..., v3k−1, v3k}(from every path P3 two vertices belongs to
F except {u,v,y,z}). Since for every vertex v ∈ F , F −{v} is a dominating set of G
and every vertex of G lies in the diametral path of u and v so that F is a geodetic
fault tolerant dominating set of G. Hence |γgft| ≤ 2k+4. Suppose |γgft| < 4+ 2k,
then there exists a geodetic fault tolerant dominating set F ′ such that |F ′| < |F |.
Hence there exists a vertex ui ∈ F such that ui /∈ F ′. Since ui ∈ F , either ui−1 or
ui+1 belongs to F ′. Suppose that ui−1 ∈ F ′ then F ′ − {ui−1} is not a dominating
set of G, which is a contradiction. Also the same if ui+1 ∈ F ′. Hence F is a γgft-set

of G and so that |γgft| = 4 + 2k, where k is the integer part of (p−4)
3

.
Subcase (ii). Suppose r=1. Then p− 4 = 3k + 1. Let {u, v, u1, u2, ..., u3k+1, y, z}
be the set of vertices of Pp and H1 = V − H = {u1, u2, ..., u3k, u3k+1}. Let
F = H ∪ {u2, u3, u5, u6, ..., u3k−1, u3k}. By subcase(i), geodetic fault tolerant dom-
inating set of ⟨V − {u3k+1⟩} is F . Moreover u3k+1 is dominated by u3k, v3. Hence
F is a γgft-set of G and so that |γgft| = 4 + 2k.
Case (iii). Let r = 2. Then p−4 = 3k+2. Let {v1, v2, u1, u2, ..., u3k+1, u3k+2, v3, v4}
be the set of vertices of Pp. Then H1 = V −H = {u1, u2, ..., u3k+1, u3k+2}. From the
subcase(ii) V−{u3k+2} is dominated by F = H∪{u2, u3, u5, u6, ..., u3k−1, u3k}. Since
N(v3k+2) = {v3k+1, v3} and v3 ∈ F , either F ∪{v3k+1} or F ∪{v3k+2} is a γgft-set of
G. Otherwise F ′−{v3} is not a dominating set of G and then |γgft| = 5+2k,where

k is the integer part of (p−4)
3

. Hence the result.

3. Some Results on Geodetic Fault Tolerant Domination Number of a
Graph

Theorem 3.1. For any connected graph G, γft(G) ≥ 1 + γ(G). Moreover
γft(G) = 1 + γ(G) if and only if D is a geodetic set and there exists a vertex
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v ∈ V −D such that u ∈ N(v) for all u ∈ D, where D is a γ-set of G.
Proof. Let S be a γgft-set of G and D be a γ- set of G. Then it is clear that
D−{v} for all v ∈ D is not a dominating set of G so that γft(G) > γ(G). Assume
that γft(G) = 1+ γ(G). Then S = D∪{x} , x ∈ V −D. To prove u ∈ N(x) for all
u ∈ D. Assume the contrary that there exists at least one vertex v ∈ D such that
v /∈ N(x). Then S − {x} is not a dominating set of G, which is a contradiction.
Conversely suppose that D is a geodetic set and there exists a vertex v ∈ V −D
such that u ∈ N(v) for all u ∈ D. Then S = D ∪ {x} , x ∈ V − D. Since every
vertex in D is adjacent with x, S − {u}, for all u ∈ S is a dominating set and S is
geodetic set of G. This implies that S is a geodetic fault tolerant dominating set
of G and so γft(G) = 1 + γ(G). Hence γft(G) ≥ 1 + γ(G).

Theorem 3.2. For any connected graph G, 2 ≤ max{1 + γ(G), g(G)} ≤ γg(G) ≤
γgft(G) ≤ p.
Proof. By Observation 2.5(iii), γg(G) ≥ g(G) and from the definition every
g−set is a subset of every geodetic fault tolerant dominating set of G. Then
by Theorem 3.1, max{1 + γ(G), g(G)} ≤ γgft(G). Moreover a geodetic dominat-
ing set is a subset of geodetic fault tolerant dominating set of G. This implies
that γg(G) ≤ γgft(G). Also by Theorem 2.6, γft(K2) = 2. This conclude that
2 ≤ max{1 + γ(G), g(G)} ≤ γg(G) ≤ γgft(G) ≤ p.

Theorem 3.3. Let S be a minimum geodetic set of G. Then γgft(G) ≥ γg(G) and
γgft(G) = γg(G) if and only if S − {v}, for all v ∈ S is a dominating set of G.
Proof. Let S be a geodetic fault tolerant dominating set of G. Since every geodetic
fault tolerant dominating set of G contains a geodetic set of G, γgft(G) ≥ γg(G).
Since S is a minimum geodetic set of G and S −{v}, for all v ∈ S is a dominating
set of G, S is a γgft- set of G. This implies that γgft(G) = γg(G).

Theorem 3.4. For any tree T , ℓ + 1 ≤ γgft(T ) ≤ p. Moreover γgft(T ) = ℓ + 1 if
and only if G is a star and γgft(T ) = p if and only if V = L ∪ S, where L is the
set of end vertices and S is the set of support vertices of T .
Proof. Let T be a tree having ℓ end vertices. Then by Corollary 2.7, ℓ + 1 ≥
γgft(T ). Suppose that γgft(T ) = ℓ + 1 to prove T is a star. Assume the contrary
that T is not a star. Then diam(T ) ≥ 3 and T has more than one support vertex.
Then by Theorem 2.6, γgft(T ) ̸= ℓ + 1 and which is a contradiction. Conversely
suppose that T is a star. Then by Theorem 2.6, γgft(T ) = ℓ + 1. In addition
suppose that γgft(T ) = p. To prove V = L ∪ S. Assume the contrary that T has
at least one vertex u (say), which is neither a support vertex nor an end vertex. If
u ∈ N(v) ∩ N(w) where v, w ∈ S, then γgft(T ) = p − 1, which is a contradiction.
Moreover if more than one vertex of T is neither a support vertex nor an end ver-



The Geodetic Fault Tolerant Domination Number of a Graph 407

tex, then by Theorem 2.14, γgft(T ) ≤ p − 1, which is a contradiction. Therefore
γgft(T ) = p. Conversely suppose that V = L∪S, where L is the set of end vertices
and S is the set of support vertices of T . Then the result follows from Theorem
2.6. This implies that ℓ+ 1 ≤ γgft(T ) ≤ p.

Theorem 3.5. For the caterpillar T , △(T ) ≤ γgft(G) ≤ ℓ+ d− 1, where ℓ is the
number of end vertices of T and d is the diameter of T .
Proof. Let △(T ) = n and u be a maximum degree vertex of T . Since T is a
caterpillar, at least n − 2 neighbors of u are end vertices. Then by Observation
2.5(ii), △(T ) − 1 ≤ γgft(G). Moreover if diam(T ) > 2, T has T has at least two
end vertices other than the neighbors of u and so △(T ) < γgft(G). In addition, if
diam(T ) = 2, T is a star and by Observation 2.5(ii), △(T ) < γgft(G). On other
hand for any caterpillar of order p, p = ℓ + d − 1. If V = L ∪ S, by Observation
2.5(ii), γgft(G) = p, where S is the set support vertices and L is the set of end
vertices. This implies that γgft(G) ≤ ℓ+ d− 1.

Theorem 3.6. Let G ̸= Cp be a unicyclic graph. and S be the set of all v ∈ V
such that v is neither end vertex nor support vertex of G. Then γgft(G) = p− 1 if
and only if ⟨S⟩ is either K1 or K2 or P3.
Proof. Let G be a unicyclic graph and S be the set of adjacent vertices which are
not support vertices of G. Let ⟨S1⟩ is either K1 or K2 or P3. Then 1 ≤| S |≤ 3. By
given condition each vertex ui ∈ V − S of degree more than one is adjacent with
at least one pendent vertex.
Case (i). Let ⟨S⟩ = K1. Then G has exactly one vertex v which is not adjacent
with any end vertex of G and by Theorem 2.10, V −{v} is subset of every geodetic
fault tolerant dominating set of G. Since v is dominated by at least two vertices of
V − {v}, V − {v} is a γgft− set of G so that γgft(G) = p− 1.
Case (ii). Let ⟨S⟩ = K2. Then G has exactly two adjacent vertices S = {u, v}
which are not adjacent with any end vertex of G and by Theorem 2.6, V − {u, v}
is subset of every geodetic fault tolerant dominating set of G. It is easily verified
that V − {u} or V − {v} is a γgft− set of G so that γgft(G) = p− 1.
Case (iii). Let ⟨S⟩ = P3. Then G has exactly three vertices S = {u, v, w} which
are not adjacent with any end vertex of G and exactly one vertex v (say) of S has
degree 2. As in the previous cases F ′ = V −{u,w} is subset of every geodetic fault
tolerant dominating set of G. Moreover F ′ − {v} is not a dominating set of G.
Hence F ′ ∪ {u} or F ′ ∪ {w} is a geodetic fault tolerant dominating set of G. Thus
γgft(G) = p− 1.
Conversely suppose that G ̸= Cp be a unicyclic and γgft(G) = p− 1. To prove ⟨S⟩
is either K1 or K2 or P3. Let us assume the contrary.
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Case (i). Let |S| = 0. Then by Theorem 2.6, γgft(G) ̸= p− 1.
Case (ii). Let G has at least two non adjacent vertices {x, y} which are not adja-
cent with any end vertex of G. Then x, y are adjacent with more than one vertices
of V − {x, y} so that V − {x, y} is a geodetic fault tolerant dominating set of G.
Hence γgft(G) ≤ p− 2, which is a contradiction.
Case (iii). Let | S |≥ 4 and S = {u1, u2, ....um}(m ≥ 4). Since G is unicyclic
< S > is a path Pm(m ≥ 4). Without loss of generality assume that u1, um are
the end vertices of the path. Hence u1, um are adjacent with at least one vertex of
V − S. This implies that γgft(< S >) ≤ m− 2 and also by Theorem 2.6, V − S is
a subset of every γgft− set of G. Thus γgft(G) ≤ p− 2, which is a contradiction.

Theorem A. No cut vertex of a connected graph G belongs to any minimum geode-
tic set of G.

v1

v2 v3

v4
v5

v6

v7

v8 v9

v10

v11

v12

G

Figure 3.1

In Figure 3.1, S = {v1, v2, v3, v4} is the set of cut vertices of G and V − S is the
unique geodetic fault tolerant dominating set of G
We can now present a characterization of exclusion of cut vertices.

Theorem 3.7. Let G be connected graph of order p and G has n(≥ 1) cut vertices.
Then γgft(G) = p − n if and only if δ(G) ≥ 2 and each components of V − S are
Kr for some r ≥ 2, where S is the set of cut vertices of G.
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Proof. Assume that γgft(G) = p − n. To prove δ(G) ≥ 2 and each components
of V − S are Kr for some r ≥ 2. Let us assume the contrary. If δ(G) = 1, by
Theorem 2.6, γgft(G) > p−n, which is a contradiction. On the other hand assume
that at least one component Gr (say) of V − S is non complete. Let |V (Gr)| = pr.
Then Gr has at least one vertex which is neither extreme or support vertex. This
implies that γgft(Gr) ≤ pr − 2 and so γgft(G) ≤ p−n− 1, which is a contradiction.
Conversely suppose that δ(G) ≥ 2 and each components of V − S are Kr for some
r ≥ 2, where S is the set of cut vertices of G. Then V − S is the set of extreme
vertices of G. Moreover by Observation 2.5(ii), V − S is a subset of every γgft−
set of G. In addition, by Theorem A, S is not a subset of any geodetic set of G.
This implies that I[V − S] = V . Moreover every v ∈ N [vi] ∩ N [vj] for all v ∈ S,
where vi, vj ∈ V − S. Hence V − S is a γft− set of G and so γft(G) = p− n.

In view of Theorems,we have the following realization results.

Theorem 3.8. For each positive integers 2 < a ≤ b ≤ a + b − 2, there exist a
connected graph G such that γ(G) = a, γg(G) = b and γgft(G) = a+ b− 2.

u v

u1 v1

w1
u2 v2

w2

ua−1 va−1

wa−1

G

Figure 3.2

Proof. Case (i). a = b. Let P : u, v be a path on two vertices and let Pi :
ui, vi(1 ≤ i ≤ a−2) be copy of path on two vertices. Add new vertices wi(1 ≤ i ≤ a)
and introducing new edges uiwi(1 ≤ i ≤ a−2) and viwi(1 ≤ i ≤ a−2). The graph
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G can be obtained by introducing new edges uui(1 ≤ i ≤ a) and vvi(1 ≤ i ≤
a − 2). The graph G is given figure 3.2. First we show that γ(G) = γg(G). Let
Z = {w1, w2, ..., wa−2}. Since {u, v} dominates ui(1 ≤ i ≤ a) and vi(1 ≤ i ≤ a),
{u, v} is a subset of every dominating set of G. Let D = {u, v}∪{w1, w2, ..., wa−2}.
Then it is easily verified thatD is a minimum dominating set of G so that γ(G) = a.
By Theorem 1.1, Z is a subset of every geodetic dominating set of G. Moreover
I[D] = V . Hence D is a geodetic dominating set of G so that γ(G) = γg(G). Let
F = D ∪ {u1, u2, ..., ua−2}. Moreover F − {v} for all v ∈ F is geodetic dominating
set of G so that γgft(G) = 2a− 2

x
u1 v1 w1

z

z4

y

z1
z2

z3

zb−a

u2

u3

ua−2

v2

v3

va−2

w2

w3

wa−2

G

Figure 3.3

Case (ii). a < b. Let Pi : ui, viwi(1 ≤ i ≤ a − 2) be copy of path on three
vertices. Let H be the graph obtained from Pi by adding new vertices x and y.
Introducing the new edges xui and viy(1 ≤ i ≤ a−2). The graph G can be obtained
from H by adding new vertices z1, z2...zb−a and introducing new edges yzi(1 ≤ i ≤
b − a). The graph G is given figure 3.3. First we prove that γ(G) = a. Let
D1 = {v1, v2, ...., va−2}. Then D is not a dominating set of G. Let D = D1 ∪{x, y}
Then it is clear that D is a minimum dominating set of G so that γ(G) = a. Next
to prove that γg(G) = b. Let Z = {z1, z2...zb−a} be the set of end vertices of G.
Then by Theorem 1.1, Z is a subset of every γg- set of G so that |γg(G)| ≥ b− a.
Let S = D ∪ Z. Then it is clear that S is a minimum geodetic domination set of
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G so that γg(G) = b. Next to prove that γgft(G) = a+ b− 2. By Theorem 1.1 and
Theorem 2.6, S is a subset of every geodetic fault tolerant dominating set of G.
Let F = S ∪ {u1, u2, ...., ua−2}. Then it is easily verified that F is a geodetic fault
tolerant dominating set of G so that γgft(G) = a+ b− 2.

4. Conclusion
We have discussed geodetic fault tolerant dominating set and geodetic fault

tolerant domination number of graphs, which has applications in location theory
and networking. This concept is extending to monophonic and edge geodetic.
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