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1. Introduction

The concept of fuzzy set was introduced by Zadeh [21] in 1965. Then Chang
[4] introduced the concept of fuzzy topological space in 1968. After that, it was
developed into the concept of intuitionistic fuzzy set by Atanassov [2] in 1983 ,
which gives a degree of membership and a non-membership functions. Coker [6]
in 1997 relied on intuitionistic fuzzy set to introduce the concept of intuitionistic
fuzzy topological space. Molodtsov [13] initiated the soft set theory as a new math-
ematical tool in 1999. He successfully applied several directions for the applications
of soft set theory in different fields. Shabir and Naz [18] presented soft topological
spaces and defined some concepts of soft sets on this space and separation axioms.

The concepts of neutrosophy and neutrosophic set were introduced by Smaran-
dache [16, 19] in 2005. In 2012, Salama and Alblowi [17] defined neutrosophic
topological space. Neutrosophic soft sets were first defined by Maji [12] and after
this concept was modified by Deli and Broumi [7]. Later neutrosophic soft topolog-
ical spaces were presented by Bera [3]. Gundaz et al. [5] introduced neutrosophic
soft continuity in neutrosophic soft topological spaces. The notion of M-open sets
in topological spaces were introduced by El-Maghrabi and Al-Juhani [8] in 2011,
kalaiyarasan et al. [11] introduced in fuzzy nano topological spaces and Vadivel et
al. [20] investigated in neutrosophic nano topological spaces. Some types of con-
tinuous functions and open functions were introduced by Revathi et al. [14, 15] in
neutrosophic soft topological spaces and Jeeva et al. [10] introduced neutrosophic
soft M-open sets in neutrosophic topological spaces and developed the concepts of
neutrosophic soft M-Continuity and M-Irresolute maps.

2. Preliminaries

Definition 2.1. [7] Let Y be an initial universe, Q be a set of parameters. Let
P(Y) denotes the set of all neutrosophic sets of Y. Then a neutrosophic soft set
(H,Q) overY (briefly, NSs) is defined by a sel valued function H representing
a mapping H : Q — P(Y), where H s called the approzimate function of the
neutrosophic soft set (H, Q).

In other words, the neutrosophic soft set is a parametrized family of some ele-
ments of the set P(Y') and hence it can be written as a set of ordered pairs: (H, Q) =
{(a, (v, Mﬁ(q)(y), O-H(q)(y)7 Vi(q) (y) :y €Y):q€ Q}, where NH(q)(y)7 O fi(q) (v),
Vi (y) € [0,1] are respectively called the degree of membership function, the de-
gree of indeterminacy function and the degree of non-membership function of H (q).
Since the supremum of each y,o,v is 1, the inequality 0 < iz, (y) + 0, (y) +
Vi (y) < 3 is obvious.
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Definition 2.2. [3, 12] Let Y be an initial universe & the N.Ss’s (H, Q) (G, Q)
ate in the form (H’ Q) — {(Q7 <yaMH(q)(y)70H(q)(y)vVH(q)(y)> NS Y) Q} &
(G, Q) = {(a: W ke (), 06 (W) Va W)ty €Y) : g € Q}, then

(i) Ovo) = {(¢,(%,0,0,1) :y € Y) : g € Q} and 1vg) = {(¢,(y,0,0,1) : y €
Y):qe€Q}

(i) (H,Q) C (G,Q) iff L (¥) < tagW) » 0ag) < oagW) & v (y) =
VapW) 1y €Y 1q€Q.

(iii) (H,Q) = (G,Q) iff (H,Q) € (G,Q) and (G,Q) C (H,Q) .

(iv) (H,Q)* = {(a: (¥ Vi) ): 1 = 0y () iz W) sy €Y) s g € Q).

(v) (H,Q) U (G, Q) = {(g. {y, max(psiy) (v): 1) () max(o (1), 05y ().

(vt (1) vy ) -9 € V) 4 E QY

(vi) (H,Q) N (G, Q) = {(q, (y, min(uzz(v); e (), min(o ) (), 06 (¥)),
max(Vi o (¥), V() 1y €Y) 1 q € Q}.

Definition 2.3. [3] A neutrosophic soft topology (briefly, NSt) on an initial uni-
verse Y is a family T of neutrosophic soft subsets (H,Q) of Y where @Q is a set of

parameters, satisfying

(1) Oy Live) €7
(it) [(H,Q)N (G, Q)] € 7 for any (H,Q),(G,Q) € T
(i) U (H,Q), e,V (H,Q),:pc ACT.
pEA

Then (Y, 7,Q) is called a neutrosophic soft topological space (briefly, NSts) in'Y.
The T elements are called neutrosophic soft open sets (briefly, NSos) inY. A NSs
(H,Q) is called a neutrosophic soft closed set (briefly, NScs) if its complement

(H,Q) is NSos.
Definition 2.4. [1, 3] Let (Y, 7,Q) be NSts on'Y and (H,Q) be an NSs on'Y,
then the neutrosophic soft

(i) interior of (1? Q) (briefly, NSmt(H Q)) is defined by NSint((H,Q)) =
U{(F,Q): (F,Q) C (H,Q) and (G,Q) is a NSos in Y}.
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(i) closure of (H,Q Q) (briefly, NNScl(]jI, Q)) is defined by NScl((H,Q)) = N{(F,
Q): (F, Q)2 (H,Q) and (G, Q) is a NScs in Y'}.

(i1i) & interior of (]:I, Q) (briefly, NS(Smt(]:I, Q)) is defined by NS(Sint(ﬁ,Q) =
U{(F,Q): (F,Q) C (H,Q) & (F,Q) is a NSros in Y}.

(w) 6 closure of (H,Q) (briefly, NS&CZ(H Q)) is defined by NSOcl(H,Q) =
ﬂ{(ﬁaQ) : (H,Q) C(F,Q) & (F Q) is a NSrcs in Y}.

Definition 2.5. [3, 9] Let (Y,7,Q) be NSts on Y and (H,Q) be a NSs on
Y. Then (H,Q) is said to be a neutrosophic soft reqular (resp. pre, semi, o
& ) open set (briefly, NSros (resp. NSPos, NSSos, NSaos & NSpPos)) if
(H,Q) = NSmt(NScl(H Q)) (resp. (H,Q) C NSint(NScl(H,Q)), (H,Q) C
NSc(NSint(H,Q)), (H,Q) C NSint(NScl (NSint(H,Q))) & (H,Q) C NScl(
NSint(NScl(H,Q)))).

The complement of a NSPos (resp. NSSos, NSaos, NSros & NSpos) is
called a neutrosophic soft pre (resp. semi, «, regular & ) closed set (briefly,
NSPes (resp. NSScs, NSacs, NSrcs & NSfPes)) in Y.

Definition 2.6. [14] Let (Y,7,Q) be NSts onY and (H,Q) be a NSs onY. Then
(H,Q) is said to be a neutrosophic soft

(i) -open set (1] (briefly, NSdos) if (H,Q) = NSdint(H,Q).
(ii) &-pre open set (briefly, NS6Pos) if (H,Q) C NSint(NSscl(H,Q)).
(iii) 5-semi open set (briefly, NS6Sos) if (H,Q) C NScl(NSint(H,Q)).
(iv) e-open set (briefly, NSeos) if (H,Q) C NScl(NSdint(H,Q)) U NSint(N S
cl(H,Q)).

The complement of a NSe-open set (resp. NSdos, NS6Pos & NSISos) is
called a neutrosophic soft e- (resp. 4, d-pre & d-semi) closed set (briefly, NSecs
(resp. NSécs NSoPces & NSiScs)) in Y.

Definition 2.7. [10] Let (Y, 7, Q) be NSts onY and (H,Q) be a NSs onY. Then
(H,Q) is said to be a neutrosophic soft

(i) 0 interior of (H, Q) (briefly, NS@mt( ,Q)) is defined by NSOint(H,Q) =
U{NSint(G,Q) : (G,Q) C (H,Q) & (G,Q) is a NScs in Y'}.

(i1) 0 closure of( , Q) (briefly, NS@C[(I:I, Q)) is defined by NSOcl(H,Q) =
M{NS(G,Q): (H,Q) C (G,Q) & (G,Q) is a NSos in Y},
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(iii) B-open set (briefly, NSOos) if (H,Q) = NSOint(H,Q)).
() B-semi open set (briefly, NSOSos) if (H,Q) C NS¢l (NSQint(ﬁ[,Q)).

(v) M-open set (briefly, NSMos) if (H,Q) C NScl(NSGint(PN[, Q))UNSint(NS
dcl(H,Q)).
The complement of a NSMos (resp. NS8os & NSOSos ) is called a neutro-

sophic soft M- (resp. 6 & 6-semi) closed set (briefly, NSMecs (resp. NSOcs &
NSOScs)) inY.

Definition 2.8. [10] Let (Y,7,Q) be NSts onY" and (H,Q) be a NSs onY. Then
(H,Q) is said to be a neutrosophic soft

(1) M interior of (ﬁ Q) (bm'eﬂy, NSMint(ﬁ[,Q)) is defined by NSMint(ﬁ[,Q)
= U{(G Q) : (é Q) C(H,Q) & (é, Q) is a NSMos inY}.
,Q)

(i) M closure of( (briefly, NSMCZ(H Q)) is defined by NSMcl(H,Q) =
M(G.Q): (H,Q) € (G,Q) & (H.Q) is a NSMes in Y}

Definition 2.9. [10, 14, 15] Let (Y1,7,Q) and (Ys,0,Q) be any two NSts’s. A
map h: (Y1,7,Q) — (Ya,0,Q) is said to be neutrosophic soft

(1) continuous (resp. M -continuous) (briefly, NSCts (resp. NSMCts)) if the
inverse image of every NSos in (Yz,0,Q) is a NSos (resp. NSMos) in

1,7, Q).

(i4) M-irresolute (briefly, NSMIrr) map if hY(G,Q) is a NSMos in (Y1,7,Q)
for every NSMos (G,Q) of (Ya,0,Q).

(111) e-open (resp. open, d-semi open & §-pre open) (briefly, NSeO (resp. NSO,
NSSSO & NSOPO)) if the image of every neutrosophic soft open set of
(Y1,7,Q) is NSeo (resp.NSo, NS6So & NS§Po) set in (Ya,0,Q).

(iv) homeomorphism (briefly NSHom) if h and h™' are NSCts mappings.

3. Neutrosophic Soft M-open Mapping

Definition 3.1. A mapping h : (Y1, 7,Q) — (Y2,0,Q) is neutrosophic soft 6-open
(resp. 0S-open & M-open) (briefly, NSOO (resp. NSOSO & NSMO)) mapping
if the image of every NSos in (Y1, 7,Q) is a NSOos (resp. NSOSos & NSMos)

in (Y2,0,Q).

Theorem 3.1. The statements are hold but the converse does not true. Every
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(i) Every NSOO mapping is a NSO mapping.
(i1) Every NSOO mapping is a NSOSO mapping.
(i1i) Every NSOSO mapping is a NSMO mapping.
(iv) Every NSO mapping is a NSSSO mapping.
(v) Every NSO mapping is a NSSPO mapping.
(vi) Every NSSSO mapping is a NSeO mapping.
(vii) Every NSOPO mapping is a NSMO mapping.
(viti) Every NSMO mapping is a NSeO mapping.
Proof. Only (~Vii) is proven; the others are similar. )
(vii) Let (H,Q) be a NSos in Y. Since h is NS0PO mapping, h(H,Q) is a

NS§Pos in Ys. Since every NS6Pos is a NSMos [10], h(H, Q) is a NSMos in Y.
Hence h is a NSMO mapping.

Example 3.1. Let U = {uy,up,u3},V = {v1,v2,v3},Q = {q1,q} and NSs’s
(F1,Q) in U and (G4, Q) & (Go,Q) in V are defined as

(Fy,q1) = {{ur, (0.20,0.5,0.80)), {us, (0.30,0.5,0.70)), (us, (0.40,0.5,0.60))}
(Fr,g2) = {(ur, (0.21,0.5,0.79)), (us, (0.31,0.5,0.69)), (us, (0.41,0.5,0.59))}
(G, q1) = { {1, (0.20,0.5,0.80)), (s, (0.30,0.5,0.70)), (vs, (0.40, 0.5, 0.60))}
(G, q2) = {(v1,(0.21,0.5,0.79)), (vs, (0.31,0.5,0.69)), (v3, (0.41,0.5,0.59))}
(Gay 1) = {(v1, (0.10,0.5,0.90)), (vz, (0.10,0.5,0.90)), (v3, (0.40,0.5,0.60)) }
(Gay go) = { {1, (0.11,0.5,0.89)), (vs, (0.11,0.5,0.89)), (vs, (0.41,0.5, 0.59))}
Then we have 7 = {0w,0), L, (F1,Q)} and o = {00, 1 (Gl, Q),(G2,Q)}.

Let h: (U, 1,Q) — (V,0,Q) be an identity mapping. Then h 1s NSO mapping in
U but not NSOO mapping in V.

Example 3.2. Let U = {uj,us,u3z},V = {v1,v9,0v3},Q = {q1,¢2} and NSs’s
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(F1,Q) in U and (G4, Q), (G2, Q) & (G5, Q) in V are defined as

(Fy, 1) = {{uy, (0.90,0.5,0.10)), (us, (0.80, 0.5,0.20)), (us, (0.70, 0.5, 0.30
(F1, q2) = {(u1, (0.91,0.5,0.09)), (ug, (0.81,0.5,0.19)), (us, (0.71,0.5,0.29
(G1,q1) = {(v1,(0.20,0.5,0.80)), (vs, (0.30,0.5,0.70)), (v, (0.40,0.5,0.60
(G, q2) = {(v1,(0.21,0.5,0.79)), (vs, (0.31,0.5,0.69)), (vs, (0.41,0.5,0.59
(Ga,q1) = {(v1,(0.10,0.5,0.90)), (vs, (0.10, 0.5,0.90)), (vs, (0.40,0.5,0.60
(Ga, q2) = {(v1, (0.11,0.5,0.89)), (vs, (0.11,0.5,0.89)), (v, (0.41,0.5,0.59
(Gs,q1) = {(v1,(0.90,0.5,0.10)), (vs, (0.80, 0.5,0.20)), (vs, (0.70,0.5,0.30
(G, q2) = {(v1,(0.91,0.5,0.09)), (vs, (0.81,0.5,0.19)), (vs, (0.71,0.5,0.29
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Then we have 7 = {O(U,Q)y 1(U,Q)7 (Fl, Q)} and o = {O(V,Q)y 1(V,Q)7 (él, Q), (éz, Q)}
Let h: (U, 7,Q) — (V,0,Q) be an identity mapping. Then h is NSOSO mapping

in U but not NSO mapping in V.

Example 3.3. Let U = {uy,up,u3},V = {v1,02,03},Q = {q1,q2} and NSs’s

(F1,Q) in U and (G1,Q), (G2, Q) & (Gs,Q) in V are defined as

(F1, q1) = {{us, (0.20,0.5,0.80)), (us, (0.20, 0.5, 0.80)), (us, (0.30,0.5,0.70
(F1, ¢2) = {{us, (0.21,0.5,0.79)), (us, (0.21,0.5,0.79)), (us, (0.31,0.5,0.69
(G1,q¢1) = {{v1,(0.20,0.5,0.80)), (vs, (0.30,0.5,0.70)), (vs, (0.40, 0.5, 0.60
(G1,q2) = {{v1,(0.21,0.5,0.79)), (vs, (0.31,0.5,0.69)), (vs, (0.41,0.5,0.59
(Ga, 1) = {{v1, (0.10,0.5,0.90)), (13, (0.10,0.5,0.90)), (vs, (0.40,0.5,0.60
(G, q2) = {{v1, (0.11,0.5,0.89)), (vs, (0.11,0.5,0.89)), (v5, (0.41,0.5,0.59
(Gs,q1) = {{v1,(0.20,0.5,0.80)), (vs, (0.20, 0.5, 0.80)), (v3, (0.30,0.5,0.70
(G5, q2) = {{v1, (0.21,0.5,0.79)), (13, (0.21,0.5,0.79)), (v3, (0.31,0.5,0.69

~— O N N N N~ N~
~_— ~— ~— ~— ~ ~— ~— ~—
— N o e e e

Then we have T = {O(U,Q)7 1(U,Q)7 (Fl, Q)} and g = {O(V’Q), 1(V,Q)7 (él, Q), (GQ, Q)}
Let h: (U,7,Q) — (V,0,Q) be an identity mapping. Then h is NSMO mapping

in U but not NSOSO mapping in V.

Example 3.4. Let U = {uj,us,uz}, V = {v1,v9,03},Q = {q1,¢} and NSs’s
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(FI,Q) in U and (G’l,Q), (ég, Q) & (Gg, Q) in V are defined as
(Fy, q1) = {(uy, (0.20,0.5,0.80)), (us, (0.40,0.5,0.60)), (us, (0.40,0.5,0.60))}
(F1, q2) = {(uy, (0.21,0.5,0.79)), (ug, (0.41,0.5,0.59)), (us, (0.41,0.5,0.59))}
(G1,q1) = {(v1,(0.20,0.5,0.80)), (vs, (0.30,0.5,0.70)), (vs, (0.40,0.5,0.60)) }
(G1,q2) = {(v1,(0.21,0.5,0.79)), (vs, (0.31,0.5,0.69)), (vs, (0.41,0.5,0.59))}
(Ga, @) = {{v1,(0.10,0.5,0.90)), (va, (0.10,0.5,0.90)), (v3, (0.40, 0.5, 0.60)) }
(G2, ¢2) = {{v1,(0.11,0.5,0.89)), (v, (0.11,0.5,0.89)), (v3, (0.41,0.5,0.59))}
(Gs,q1) = {(v1,(0.20,0.5,0.80)), (vs, (0.40,0.5,0.60)), (vs, (0.40,0.5,0.60)) }
(Gs, q2) = {(v1,(0.21,0.5,0.79)), (vs, (0.41,0.5,0.59)), (vs, (0.41,0.5,0.59))}
Then we have 7 = {0v,q), Lv,0), (F1,Q)} and o = {0v,0),1 (Gl, Q),(G2,Q)}.
Let h: (U,7,Q) — (V,0,Q) be an identity mapping. Then h is NSeO mapping in

U but not NSMO mapping in V.
Example 3.5. Let U = {uy,uz,uz},V = {v1,v2,v3},Q = {q1,¢2} and NSs’s

(F1,Q) in U and (G4, Q), (G2, Q), (G3,Q), (G4, Q) & (G5,Q) in V are defined as
(Fy,q1) = {(us, (0.70,0.5,0.30)), (us, (0.50,0.5,0.50)), {uz, (0.50, 0.5, 0.50))}
(F1,g0) = {(us, (0.71,0.5,0.29)), (us, (0.51,0.5,0.49)), (uz, (0.51,0.5,0.49))}
(G1,q1) = {{(v1,(0.30,0.5,0.70)), (vs, (0.40, 0.5, 0.60)), (v3, (0.30,0.5,0.70))}
(G, ) = {(v1, (0.31,0.5,0.69)), (vs, (0.41,0.5,0.59)), (vs, (0.31,0.5,0.69))}
(Gayq1) = { {01, (0.60,0.5,0.40)), (vs, (0.50,0.5,0.50)), (v3, (0.50, 0.5, 0.50))}
(Ga, q2) = {{v1, (0.61,0.5,0.39)), (vs, (0.51,0.5,0.49)), (vs, (0.51,0.5,0.49))}
(G, 1) = {(v1, (0.60,0.5,0.40)), (vs, (0.50,0.5,0.50)), (v, (0.40,0.5,0.60))}
(G, g0) = { {1, (0.61,0.5,0.39)), (vs, (0.51,0.5,0.49)), (vs, (0.41,0.5, 0.59))}
(Cayq1) = { {1, (0.30,0.5,0.70)), (vs, (0.40,0.5,0.60)), (v3, (0.40, 0.5, 0.60))}
(G, o) = {(v1, (0.31,0.5,0.69)), (vs, (0.41,0.5,0.59)), (vs, (0.41,0.5,0.59))}
(G, q1) = {(v1, (0.70,0.5,0.30)), (va, (0.50,0.5,0.50)), (v, (0.50,0.5, 0.50))}
(G5, 2) = {(v1, (0.71,0.5,0.29)), (vs, (0.51,0.5,0.49)), (vs, (0.51,0.5,0.49))}

Then we have 7 = {0wa), lwa), (F1,Q)} and o = {0w.q), Lv.a), (G1,Q), (G2, Q),

(G3,Q),(G4,Q)}. Let h: (U,7,Q) — (V,0,Q) be an 1dent1ty mapplng Then h is

NSMO mapping in U but not NS§PO mapping in V.
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Remark 3.1. The following diagram shows the above results.

NSHO map

a

NSOSO map NSO map

/

NSOPO ma

NSMO map NSOSO map

N

NSeO map

Theorem 3.2. A mapping h: (Y1,7,Q) — (Ya,0,Q) is NSMO iff for every NSs
(H,Q) of (Y1,7,Q), h(NSint(H,Q)) C NSMint(h(H,Q)).

Proof. Necessity: Let h be a NSMO mapping and (H,Q) be a NSos in
(Y1,7,Q). Now, NSint(H,Q) C (H,Q) implies h(NSint(H,Q)) C h(H,Q).
Since h is a NSMO mapping, h(NSint(ﬁ, Q)) is NSMos in (Y3, 0, Q) such that
hNSint(H, Q)) C h(H,Q). Therefore h(NSint(H,Q)) € NSMint(h(H,Q)).
Sufficiency: Assume (H,Q) is a NSos of (Y1, 7,Q). Then h(H,Q) = h(NSint(
H,Q)) € NSMint(h(H,Q)). But NSMint (h(H,Q)) C h(H,Q). So h(H,Q) =
NSMint(H,Q) which implies h(H, Q) is a NSMos of (Ys,0,Q) and hence h is a
NSMO.

Theorem 3.3. Ifh: (Y1, 7,Q) — (Y2,0,Q) is a NSMO mapping, then N Sint(h™!
(H,Q)) C h"Y(NSMint(H,Q)) for every NSs (H,Q) of (Ya,0,Q).

Proof. Let (H,Q) be a NSs of (Ys,0,Q). Then NSint(h™'(H,Q)) is a NSos in
(Y1,7,Q). Since h is NSMO, h(NSint(h"Y(H,Q))) is NSMO in (Y, 0,Q) and
hence h(NSint(h~'(H,Q))) € NSMint(h(h"'(H,Q))) € NSMint(H,Q). Thus
NSint(h="(H,Q)) C h"(NSMint(H,Q)).

Theorem 3.4. A mapping h: (Y1,7,Q) — (Ya,0,Q) is NSMO iff for each NSs
(G,Q) of (Yz,0,Q) and for each NScs (H,Q) of (Y1,7,Q) containing h‘{(G, Q),
there is a NSMcs (K, Q) of (Ya,0,Q) such that (G,Q) C (H,Q) and h™ (K, Q) C
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(H,Q).

Proof. Necessity: Assume h is a NSMO mapping. Let ( , Q) be the NScs of
(Yz,0,Q) and (H Q) is a NScs of (Y1, 7,Q) such that h~'(G, Q) C (If[, Q). Then
(K,Q) = (h"Y(H,Q)")¢ is NSMes of (Ya,0,Q) such that h~ (K, ) C (H,Q).
Sufficiency: Assume (H,Q) is a NSos of (Y1,7,Q). Then h_l(( (H,Q Q))°) <
(H,Q)¢ and (H, Q) is NScs in (YI,T Q). By hypothes1s there is a NSMes (G, Q)

of (Ya,0,Q) such that (h (H,Q))° C (G,Q) and h™1(G,Q) C (H, )c Therefore
(1.Q) € ("G, Q). Hence (G.Q)° € h(H,Q) C h((h™(G.Q))) C (G.Q)°
which implies h(H, Q) = (G, Q). Since (G, Q)¢ is NSMos of (Ya,0,Q), h(H, Q) is
NSMO in (Ys,0,Q) and thus h is NSMO mapping.

Theorem 3.5. A mapping h: (Y1,7,Q) — (Ya,0,Q) is NSMO iff "' (NSMcl(G,
Q)) € NScl(h"Y(G,Q)) for every NSs (G, Q) of (Y2,0,Q).

Proof. Necessﬂ:y Assume h is a NSMO mapping. For any NSs (G,Q) of
(Y2,0,Q), h (G Q) € NScl(h"'(G,Q)). Therefore by Theorem 3.4, there ex-
ists a NSMes (H,Q) in (Yz,0,Q) such that (G Q) C (H,Q) and h"'(H,Q) C
NScl(h™'(G,Q)). Therefore we obtain that h~ (NSMCZ(G,Q)) C h'(H,Q) C
NScl(h"Y(G,Q)).

Sufficiency: Assume (G, Q) is a NSs of (Ys,0,Q) an
(Y1, 7,Q) containing hfl(é,Q) Put (K,Q) = NScl(é,
and (K,Q) is NSMc and h™'(K,Q) € NScl(h"1(G,Q))
orem 3.4, h is NSMO mapping.

Theorem 3.6. Ifh : (Y1,7,Q) — (Y2,0,Q) and g : (Ya2,0,Q) — (Y3,p,Q) be
two neutrosophic soft mappings and go h : (Y1,7,Q) — (Y3,p,Q) is NSMO. If
g: (Ye,0,Q) — (Y3,p,Q) is NSMIrr, then h: (Y1, 7,Q) — (Y2,0,Q) is NSMO
mapping.

Proof. Let (H,Q) bea NSosin (Y1, 7, Q). Then goh(H, Q) is NSMos of (Y3, p, Q)
because goh is NSMO mapping. Since g is NSM Irr and goh([:l, Q) is NSMos of
(Ys,0,Q), g (goh(H,Q)) = h(H,Q) is NSMos in (Y3, 0, Q). Hence h is NSMO
mapping.

Theorem 3.7. Ifh: (Y1, 7,Q) — (Y2,0,Q) is NSO and g : (Y2,0,Q) — (Y3,p,Q)
is NSMO mappings, then goh: (Y1,7,Q) = (Y3,p,Q) is NSMO.

Proof. Let (H,Q) be a NSos in (Y1, 7, Q). Then h(H, Q) is a NSos of (Y3,0,Q)
because h is a NSO mapping. Since g is NSMO, g(h(H,Q)) = (go h)(H Q) is a
NSMos of (Y3, p,Q). Hence g o h is NSMO mapping.

H,Q Q) is a NScs of
hen

(G,Q) C (K,Q)

nd (
Q), t
C (H,Q). Then by The-

4. Neutrosophic Soft M-closed Mapping
Definition 4.1. A mapping h : (Y1, 7,Q) — (Y2, 0,Q) is neutrosophic soft 0-closed
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(resp. 0S-closed & M-closed) (briefly, NSOC (resp. NSOSC & NSMC')) mapping
if the image of every NScs in (Y1,7,Q) is a NSOcs (resp. NSOScs & NSMecs) in

(}/27 g, Q)

Theorem 4.1. The statements are hold but the converse does not true. Fvery
(1) Every NSOC mapping is a NSC mapping.
(i) Every NSOC mapping is a NSOSC mapping.
(i1i) Every NSOSC mapping is a NSMC' mapping.
(iv) Every NSC' mapping is a NSOSC mapping.
(v) Every NSC mapping is a NSSPC mapping.
(vi) Every NSOISC mapping is a NSeC mapping.
(vii) Every NSSPC mapping is a NSMC mapping.
(viit) Every NSMC mapping is a NSeC mapping.

Proof. Only (vii) is proven; the others are similar. )

(vii) Let (H,Q) be a NScs in Y;. Since h is NS§PC mapping, h(H, Q) is a
NS§Pes in Ys. Since every NSoPes is a NSMes [10], h(H, Q) is a NSMecs in Ys.
Hence h is a NSMC mapping.

Example 4.1. In Example 3.1, (Fy, Q)¢ is NSC mapping in U but not NSOC
mapping in V.
Example 4.2. In Example 3.2, (F}, Q)¢ is NSOSC mapping in U but not NSOC
mapping in V.
Example 4.3. In Example 3.3, (Fy, Q)¢ is NSMC mapping in U but not NS6SC
mapping in V.
Example 4.4. In Example 3.4, (F}, Q)¢ is NSeC mapping in U but not NSMC
mapping in V.
Example 4.5. In Example 3.5, (F}, Q)¢ is NSMC mapping in U but not NS§PC
mapping in V.

Theorem 4.2. A mapping h : (Y1,7,Q) — (Ya,0,Q) is NSMC iff for each NSs
(G,Q) of (Ya,0,Q) and for each NSos (H,Q) of (Y1,7,Q) containing h™*(G, Q),
there is a NSMos (K, Q) of (Ya,0,Q) such that (G, Q) C (K,Q) and h"(K,Q) C
(H.Q).
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Proof. Necessity: Assume h is a NSMC mapping. Let (G Q) be NScs of
(Y2,0,Q) and (H Q) is a NSos of (Y1,7,Q) such that h™ 1@, Q) C (]:I Q). Then
(K,Q) = Y((H, Q)°) is NSMos of (Y, 0,Q) such that h~ (f( Q) C(H,Q).
Sufﬁciency Assume (H,Q)is a NScs of (Y1,7,Q). Then (h ( ,Q)) is a NSS of
(Ya,0,Q) and (H, Q)¢ is NSos in (Y1, 7, Q) such that h='((h(H,Q))¢) C (H, Q) :
By hypothesis, there is a NSMos (K,Q) of (Ya,0,Q) such that (h (H, Q))°
(K,Q)and h"\(K,Q) C (H, Q). Therefore (H,Q) C (h~ YK, Q)). Hence (K, Q)
hMK,Q) C h((h(K,Q))°) C (K,Q)° which implies h(H, Q) (K,Q)°. Since
(K,Q)° is NSMcs of (Ya,0,Q), h(H,Q) is NSMc in (Ys,0,Q) and thus h is
NSMC mapping.

Theorem 4.3. Ifh: (Y1, 7,Q) — (Y2,0,Q) is NSC and g : (Y2,0,Q) — (Y3,p,Q)
is NSMC'. Then goh: (Y1,7,Q) — (Y3,p,Q) is NSMC.

Proof. Let (H,Q) be a NScs in (Y3, 7, Q). Then h(H,Q) is NScs of (Y, 0, Q) be-
cause h is NSC mapping. Now (goh)(H,Q) = g(h(H,Q)) is NSMecs in (Y3, p, Q)
because g is NSMC mapping. Thus g o h is NSMC mapping.

Theorem 4.4. Ifh: (Y1,7,Q) — (Ya,0,Q) is NSMC map, then NSMcl(h(H,Q)) C
hNScl(H,Q)).
Proof. Obvious.

Theorem 4.5. Let h: (Y1,7,Q) — (Y2,0,Q) and g : (Ya,0,Q) — (Y3,p,Q) are
NSMC mappings. If every NSMcs of (Ya,0,Q) is NScs, then goh : (Y1, 7,Q) —
(Ys, p,Q) is NSMC.

Proof. Let (H,Q) be a NScs in (Y1, 7,Q). Then h(H,Q) is NSMecs of (Ya, 0,Q)
because h is NSMC mapping. By hypothesis, h(]:l, Q) is NSes of (Y3,0,Q). Now
g(h(H,Q)) = (goh)(H,Q) is NSMes in (Ys, p, Q) because g is NSMC mapping.
Thus g o h is NSMC mapping.

Theorem 4.6. Let h: (Y1, 7,Q) — (Ys,0,Q) be a bijective mapping. Then the
statements are equivalent:

(i) his a NSMO mapping.
(ii) h is a NSMC mapping.
(iii) h=' is NSMCts mapping.

Proof. (i) = (ii): Let us assume that h is a NSMO mapping. By definition,
(H,Q)isa NSosin (Y1, 7,Q), then h(H, Q) isa NSMos in (Y3, 0, Q). Here, (H, Q)
is NSes in (Y1,7,Q). Then Y; — (H,Q) is a NSos in (Y;,7,Q). By assumption,
h(Y, — (H,Q)) is a NSMos in (Ya,0,Q). Hence, Y5 — h(Y; — (H,Q)) is a NSMcs
in (Ys,0,Q). Therefore, h is a NSMC mapping.
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(i) = (iii): Let (H,Q) be a NSecs in (Y1,7,Q) By (ii), h(H,Q) is a NSMecs
in (Ya,0,Q). Hence, h(H,Q) = (h~")"(H,Q). So h™'is a NSMes in (Ya,0,Q).
Hence, h=! is NSMCts.

(iii) = (i): Let (H,Q) be a NSos in (Yi,7,Q). By (iii), (b)Y (H,Q) =
h(H,Q) is a NSMO mapping.

5. Neutrosophic Soft M-homeomorphism

Definition 5.1. A bijection h: (Y1,7,Q) — (Ya,0,Q) is called a neutrosophic soft
M -homeomorphism (briefly NSMHom,) if h and h™ are NSMC'ts.

Theorem 5.1. Each NSHom is a NSM Hom. But not conversely.
Proof. Let h be NSHom, then h and h™! are NSCts. But every NSCts function
is NSMCts. Hence, h and h™! are NSMCts. Therefore, h is a NSM Hom.

Example 5.1. Let U = {uy,up,uz},V = {v1,v2,v3},Q = {q1,¢2} and NSs’s
(F1,Q), (Fy, Q) & (F5,Q) in U and (G, Q) in V are defined as

(Fy, q1) = {{us, (0.20,0.5,0.80)), (us, (0.30, 0.5, 0.70)), (us, (0.40, 0.5, 0.60)) }
(F1, ¢2) = {{us, (0.21,0.5,0.79)), (us, (0.31,0.5,0.69)), (us, (0.41,0.5,0.59)) }
(Fy, q1) = {{us, (0.10,0.5,0.90)), (us, (0.10,0.5,0.90)), (us, (0.40,0.5,0.60)) }
(Fy, ¢2) = {{uy, (0.11,0.5,0.89)), (us, (0.11,0.5,0.89)), (us, (0.41,0.5,0.59)) }
(Fy, q1) = {{us, (0.20,0.5,0.80)), (us, (0.20,0.5,0.80)), (us, (0.30,0.5,0.70)) }
(Fy, ¢2) = {{uy, (0.21,0.5,0.79)), (us, (0.21,0.5,0.79)), (us, (0.31,0.5,0.69)) }
(é 1) = {{v1,(0.20,0.5,0.80)), (vs, (0.20, 0.5, 0.80)), (vs, (0.30, 0.5, 0.70))}
(G1,q2) = {{v1, (0.21,0.5,0.79)), (13, (0.21,0.5,0.79)), (v3, (0.31,0.5,0.69)) }

Then we have 7 = {O(UQ), 1(U,Q)7 (Fl, Q), (FQ, Q)} and o = {0 (V,Q)> 1(\/@ (Gl, Q)}
Let h: (U,7,Q) — (V,0,Q) be an identity mapping. Then h is NSM Hom but
not NSHom.

Theorem 5.2. Let h : (Y1,7,Q) — (Y3,0,Q) be a bijective mapping. If h is
NSMCts, then the statements are equivalent:

(1) his a NSMC mapping.
(i1) his a NSMO mapping.

(iii) h™' is a NSM Hom.
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Proof. (i) = (ii) : Assume that A is a bijective mapping and a N.SMC' mapping.
Hence, h™! is a NSMCts mapping. We know that each NSos in (Y1, 7,Q) is a
NSMos in (Y3, 0,Q). Hence, h is a NSMO mapping.

(ii) = (iii) : Let h be a bijective and NSO mapping. Further, h~isa NSMCts
mapping. Hence, h and h™! are NSMCts. Therefore, h is a NSM Hom.

(iii) = (i): Let h be a NSM Hom. Then h and h™! are NSMC'ts. Since each
NSesin (Y1,7,Q) isa NSMcs in (Ya,0,Q), h is a NSMC mapping.
Definition 5.2. A NSts (Y1,7,Q) is said to be a neutrosophic soft MT; (briefly,
NSMT%)—space if every NSMes is NSes in (Y7, 7, Q).

Theorem 5.3. Let h : (Y1,7,Q) — (Ys,0,Q) be a NSMHom. Then h is a
NSHom if (Y1,7,Q) and (Ya2,0,Q) are NSMT%—space.

Proof. Assume that (G, Q) isa NScs in (Y, 0, Q). Then h~'(G, Q) isa NSMes in
(Y1, 7,Q). Since (Y1,7,Q) is an NSMT%—space, hY(G,Q) is a NScs in (Y1, 7,Q).
Therefore, h is NSCts. By hypothesis, h~! is NSMCts. Let (H,Q) be a NSecs in
(Y1,7,Q). Then, (h~"Y)"Y(H,Q) = h(H, Q) isa NScs in (Y2, 0, Q), by presumption.
Since (Y, 0, Q) is a NSMT:-space, h(H, Q) is a NScs in (Ya,0,Q). Hence, h™! is
NSCts. Hence, h is a NSHom.

Theorem 5.4. Let h: (Y1,7,Q) — (Ys,0,Q) be a NSts. Then the statements are
equivalent if (Ya,0,Q) is a NSMT% -space:

(i) his NSMC mapping.
(i) If (H,Q) is a NSos in (Y1, 7,Q), then h(H,Q) is NSMos in (Ya,0,Q).
(iii) h(NSint(H,Q)) C NScl(NSint(h(H,Q))) for every NSs (H,Q) in (Y1, 7, Q).

Proof. (i) = (ii): Obvious. .
(ii) = (iii): Let (H,Q) be a NSsin (Y1,7,Q). Then, NSint(H,Q) is a NSos
in (Y1, 7,Q). Then, h(NSint(H,Q)) is a NSMos in (Yz,0,Q). Since (Y3,0,Q) is a

NSMT%—space, so h(NSint(H,Q)) is a NSos in (Ya, 0, Q). Therefore, h(NSint(H,
Q)) = NSint(h(NSint(H,Q))) € NScl(NSint(h(H,Q))).

(iii) = (i): Let (H,Q) be a NScs in (Yi,7,Q). Then, (H,Q)° is a NSos
in (Vi,7,Q). From, h(NSint(F,Q)%) C NSc(NSint(h(f1,Q))), h(H,Q)) C
NScl(NSint(h(H,Q)°)). Therefore, h((H,Q)) is NSMos in (Y3,0,Q). There-
fore, h(H,Q) is a NSMes in (Y1, 7,Q). Hence, h is a NSC mapping.

Theorem 5.5. Let h : (Y1,7,Q) — (Y2,0,Q) and g : (Y2,0,Q) — (Y3,p,Q) be
NSMC, where (Y1, 7,Q) and (Y3, p,Q) are two NSts’s and (Ys,0,Q) a NSMT%—
space, then the composition go h is NSMC.



Maps and Homeomorphisms via M-open sets ... 381

Proof. Let (H,Q) be a NSes in (Y1, 7,Q). Since h is NSMec and h(H,Q) is a
NSMeces in (Ys,0,Q), by assumption, h(I:[,Q) is a NScs in (Y, 0,Q). Since g is
NSMe, then g(h(H,Q)) is NSMc in (Ys, p,Q) and g(h(H,Q)) = (g o h)(H,Q).
Therefore, go h is NSMC.

Theorem 5.6. Let h: (Y1, 7,Q) — (Ya2,0,Q) and g : (Ya,0,Q) — (Y3, p, Q) be two
NSts’s, then the statements are hold:

(i) If goh is NSMO and h is NSC'ts, then g is NSMO.

(i) If goh is NSO and g is NSMCts, then h is NSMO.

Proof. Obvious.
6. Neutrosophic Soft M-C Homeomorphism

Definition 6.1. A bijection h : (Y1, 7,Q) — (Ys,0,Q) is called a neutrosophic soft
M-C homeomorphism (briefly, NSMCHom) if h and h=' are NSM Irr mappings.

Theorem 6.1. Each NSMCHom is a NSM Hom. But not conversely.

Proof. Let us assume that (é, Q) is a NScs in (Ys, 0,@Q). This shows that (é, Q)
is a NSMes in (Ya,0,Q). By assumption, h1(G,Q) is a NSMes in (Y, 7, Q).
Hence, h is a NSMCts mapping. Hence, h and h~! are NSMCts mappings.
Hence h is a NSM Hom.

Example 6.1. Let U = {uy,uz,uz},V = {v1,v2,v3},Q = {q1,¢2} and NSs’s
(F1,Q), (F2,Q) & (F3,Q) in U and (G4,Q) in V are defined as

(Fy, 1) = {{ug, (0.20,0.5,0.80)), (us, (0.30,0.5,0.70)), (us, (0.40,0.5,0.60)) }
(F1, q2) = {(u1, (0.21,0.5,0.79)), (us, (0.31,0.5,0.69)), (us, (0.41,0.5,0.59))}
(Fy, 1) = {{ug, (0.10,0.5,0.90)), (us, (0.10,0.5,0.90)), (us, (0.40,0.5,0.60))}
(Fy, q2) = {(u1, (0.11,0.5,0.89)), (ug, (0.11,0.5,0.89)), (us, (0.41,0.5,0.59))}
(F3, 1) = {{ug, (0.20,0.5,0.80)), (us, (0.20,0.5,0.80)), (us, (0.30,0.5,0.70)) }
(F3, q2) = {{ug, (0.21,0.5,0.79)), (ug, (0.21,0.5,0.79)), (us, (0.31,0.5,0.69)) }
(G1,q1) = {(v1,(0.20,0.5,0.80)), (vs, (0.20, 0.5, 0.80)), (vs, (0.30,0.5,0.70))}
(G, q2) = {(v1,(0.21,0.5,0.79)), (vs, (0.21,0.5,0.79)), (vs, (0.31,0.5,0.69)) }

Then we have 7 = {O(U,Q)y 1(U,Q)7 (Fl, Q), (FQ, Q)} and o = {O(VQ), 1(\/7@), (él, Q)}
Let h: (U,7,Q) — (V,0,Q) be an identity mapping. Then h is NSM Hom but
not NSMCHom.



382 South FEast Asian J. of Mathematics and Mathematical Sciences

Theorem 6.2. Ifh : (Y1,7,Q) — (Ys2,0,Q) is a NSMCHom, then NSMecl(
h (G, Q) C h Y(NSc(G,Q)) for each NSs (G, Q) in (Ya,0,Q).

Proof. Let (G,Q) be a NSs in (Y3,0,Q). Then, NScl(G,Q) is a NScs in
(Y2,0,Q), and every NScs is a NSMes in (Yz,0,Q). Assume h is NSMIrr
and h"Y(NScl(H,Q)) is a NSMes in (Yy,7,Q). Then, NScl(h"'(NScl(G,Q))) =
WY (NScl(G,Q)). Here, NSMcl(h~(G,Q)) € NSMcl(h""(NScl(H,Q))) = h~(
N~Scl(é, Q)). Therefore, NSMcl(h~Y(G,Q)) € h™ (NScl(G,Q)) for every NSs
(G,Q) in (V2,0,0Q).

Theorem 6.3. Let h: (Y1,7,Q) — (Ya,0,Q) be a NSMCHom. Then NSMecl(
UG, Q) = h (NSMcl(G, Q)) for each NSs (G, Q) in (Y, 0,Q).

Proof. Since h is a NSMCHom, h is a NSMIrr mapping. Let (G,Q) be
a NSs in (Ys,0,Q). Clearly, NSMcl(G,Q) is a NSMes in (Ya,0,Q). Then
NSMcl(G,Q) is a NSMes in (Y, 0,Q). Since h™'(G,Q) € h™'(NSMcl(G,Q)),
then NSMcl(h~Y(G,Q)) € NSMcl(h~"(NSMcl(G,Q))) = h"{(NSMcl(G,Q)).
Therefore, NSMcl(hY(G,Q)) € " (NSMcl(G,Q)). Let h be a NSMCHom.
h=tis a NSMIrr mapping. Let us consider N Ss h_l(é, Q) in (Y1, 7,Q), which im-
plies NSMcl(h~(G, Q)) is a NSMes in (Yi, 7, Q). Hence, NSMcl(h~"(G,Q)) is a
NSMesin (Yy, 7, Q). This implies that (=) ""(NSMdl(h="(G,Q))) = h(NSMcl(
hY(G,Q))) isa NSMecs in (Ya, 0, Q). This proves (G, Q) = (h"1)"'(h ™' (G, Q)) C
(Y)Y (NSMd(h (G, Q))) = h(NSMcl(h~'(G,Q))). Therefore, NSMcl(G, Q)
C NSMcl(h(NSMc(h™ (G,Q)))) = h(NSMcl(h (G, Q))), since h™' is a NS
MIrr mapping. Hence, h™"(NSMcl(G,Q)) € h Y (h(NSMcl(h=(G,Q)))) =
NSMcl(h™Y(G,Q)). That is, h" (NSMcl(G,Q)) € NSMcl(h~1(G,Q)). Hence,
NSMcl(h= (G, Q)) = h {(NSMcl(G,Q)).

Theorem 6.4. Ifh: (Y1,7,Q) — (Y2,0,Q) and g : (Y3,0,Q) — (Y3,p,Q) are
NSMCHom’s, then goh is a NSMCHom.

Proof. Let h and g be two NSMCHom’s. Assume (G,Q) is a NSMecs in
(Ys,p,Q). Then, ¢-(G,Q) is a NSMecs in (Ys,0,Q). Then, by hypothesis,
hY g (G, Q)) is a NSMes in (Yy,7,Q). Hence, g o h is a NSMIrr mapping.
Now, let (H,Q) be a NSMes in (Yy,7,Q). Then, by presumption, h(H,Q) is a
NSMes in (Ys,0,Q). Then, by hypothesis, g(h(H,Q)) is a NSMes in (Ys, p, Q).
This implies that g o h is a NSM Irr mapping. Hence, go h is a NSMCHom.

7. Conclusion

In this paper, the concepts of NSMO and a NSMC mappings in NSts were
discussed. Furthermore, the work was extended to include NSHom, NSM Hom
and NSM T% -space. In addition, the study demonstrated NSMC Hom and derived
some of its related characteristics. In future, the research is to be investigate on
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neutrosophic soft M-compactness, neutrosophic soft M-connectedness and neutro-
sophic soft contra M-continuous functions.
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