South East Asian J. of Mathematics and Mathematical Sciences Vol. 19, No. 1 (2023), pp. 367-384

DOI: 10.56827/SEAJMMS.2023.1901.29

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

MAPS AND HOMEOMORPHISMS VIA *M*-OPEN SETS IN NEUTROSOPHIC SOFT TOPOLOGICAL SPACES

D. Jeeva, A. Vadivel* and D. Sivakumar**

Department of Mathematics, Thiruvalluvar Goverment Arts College, Rasipuram - 637401, Tamil Nadu, INDIA

E-mail: djeevamaths@gmail.com

*Department of Mathematics, Arignar Anna Government Arts College, Namakkal - 637002, Tamil Nadu, INDIA

E-mail : avmaths@gmail.com

**Department of Mathematics, Annamalai University, Annamalai Nagar - 608002, Tamil Nadu, INDIA. E-mail : sivakumarmaths1965@gmail.com

(Received: Nov. 24, 2021 Accepted: Apr. 09, 2023 Published: Apr. 30, 2023)

Abstract: In this article, we introduce the concept of NSM-open and NSM-closed mappings in neutrosophic soft topological spaces and study some of their related properties. Further the work is extended to NSM-homeomorphism, NSM-C homeomorphism and $NSMT_{\frac{1}{2}}$ -space in neutrosophic soft topological spaces and establish some of their related attributes.

Keywords and Phrases: NSM-open map, NSM-closed map, NSM-homeomorphism, NSM-C homeomorphism, $NSMT_{\frac{1}{2}}$ -space.

2020 Mathematics Subject Classification: 03E72, 54A10, 54A40, 54C05.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [21] in 1965. Then Chang [4] introduced the concept of fuzzy topological space in 1968. After that, it was developed into the concept of intuitionistic fuzzy set by Atanassov [2] in 1983, which gives a degree of membership and a non-membership functions. Coker [6] in 1997 relied on intuitionistic fuzzy set to introduce the concept of intuitionistic fuzzy topological space. Molodtsov [13] initiated the soft set theory as a new mathematical tool in 1999. He successfully applied several directions for the applications of soft set theory in different fields. Shabir and Naz [18] presented soft topological spaces and defined some concepts of soft sets on this space and separation axioms.

The concepts of neutrosophy and neutrosophic set were introduced by Smarandache [16, 19] in 2005. In 2012, Salama and Alblowi [17] defined neutrosophic topological space. Neutrosophic soft sets were first defined by Maji [12] and after this concept was modified by Deli and Broumi [7]. Later neutrosophic soft topological spaces were presented by Bera [3]. Gundaz et al. [5] introduced neutrosophic soft continuity in neutrosophic soft topological spaces. The notion of M-open sets in topological spaces were introduced by El-Maghrabi and Al-Juhani [8] in 2011, kalaiyarasan et al. [11] introduced in fuzzy nano topological spaces and Vadivel et al. [20] investigated in neutrosophic nano topological spaces. Some types of continuous functions and open functions were introduced by Revathi et al. [14, 15] in neutrosophic soft topological spaces and Jeeva et al. [10] introduced neutrosophic soft M-open sets in neutrosophic topological spaces and developed the concepts of neutrosophic soft M-Continuity and M-Irresolute maps.

2. Preliminaries

Definition 2.1. [7] Let Y be an initial universe, Q be a set of parameters. Let P(Y) denotes the set of all neutrosophic sets of Y. Then a neutrosophic soft set (\tilde{H}, Q) over Y (briefly, NSs) is defined by a set valued function \tilde{H} representing a mapping $\tilde{H} : Q \to P(Y)$, where \tilde{H} is called the approximate function of the neutrosophic soft set (\tilde{H}, Q) .

In other words, the neutrosophic soft set is a parametrized family of some elements of the set P(Y) and hence it can be written as a set of ordered pairs: $(\tilde{H}, Q) = \{(q, \langle y, \mu_{\tilde{H}(q)}(y), \sigma_{\tilde{H}(q)}(y), \nu_{\tilde{H}(q)}(y) \rangle : y \in Y) : q \in Q\}$, where $\mu_{\tilde{H}(q)}(y), \sigma_{\tilde{H}(q)}(y), \nu_{\tilde{H}(q)}(y), \nu_{\tilde{H}(q)}(y) \rangle \in [0, 1]$ are respectively called the degree of membership function, the degree of indeterminacy function and the degree of non-membership function of $\tilde{H}(q)$. Since the supremum of each μ, σ, ν is 1, the inequality $0 \leq \mu_{\tilde{H}(q)}(y) + \sigma_{\tilde{H}(q)}(y) + \nu_{\tilde{H}(q)}(y) \leq 3$ is obvious. **Definition 2.2.** [3, 12] Let Y be an initial universe & the NSs's (\hat{H}, Q) & (\hat{G}, Q) are in the form $(\hat{H}, Q) = \{(q, \langle y, \mu_{\tilde{H}(q)}(y), \sigma_{\tilde{H}(q)}(y), \nu_{\tilde{H}(q)}(y)\rangle : y \in Y) : q \in Q\}$ & $(\tilde{G}, Q) = \{(q, \langle y, \mu_{\tilde{G}(q)}(y), \sigma_{\tilde{G}(q)}(y), \nu_{\tilde{G}(q)}(y)\rangle : y \in Y) : q \in Q\}$, then

- (i) $0_{(Y,Q)} = \{(q, \langle y, 0, 0, 1 \rangle : y \in Y) : q \in Q\}$ and $1_{(Y,Q)} = \{(q, \langle y, 0, 0, 1 \rangle : y \in Y) : q \in Q\}$
- $\begin{array}{l} (ii) \ (\tilde{H},Q) \subseteq (\tilde{G},Q) \ iff \ \mu_{\tilde{H}(q)}(y) \leq \mu_{\tilde{G}(q)}(y) \ , \ \sigma_{\tilde{H}(q)}(y) \leq \sigma_{\tilde{G}(q)}(y) \ \& \ \nu_{\tilde{H}(q)}(y) \geq \nu_{\tilde{G}(q)}(y) : y \in Y : q \in Q. \end{array}$
- (iii) $(\tilde{H},Q) = (\tilde{G},Q)$ iff $(\tilde{H},Q) \subseteq (\tilde{G},Q)$ and $(\tilde{G},Q) \subseteq (\tilde{H},Q)$.

$$(iv) \ (H,Q)^c = \{ (q, \langle y, \nu_{\tilde{H}(q)}(y), 1 - \sigma_{\tilde{H}(q)}(y), \mu_{\tilde{H}(q)}(y) \rangle : y \in Y) : q \in Q \}.$$

- $\begin{array}{l} (v) \ (\tilde{H},Q) \cup (\tilde{G},Q) = \{(q,\langle y, \max(\mu_{\tilde{H}(q)}(y), \mu_{\tilde{G}(q)}(y)), \max(\sigma_{\tilde{H}(q)}(y), \sigma_{\tilde{G}(q)}(y)), \\ \min(\nu_{\tilde{H}(q)}(y), \nu_{\tilde{G}(q)}(y)) \rangle : y \in Y) : q \in Q \}. \end{array}$
- $\begin{array}{l} (vi) \ (\tilde{H},Q) \cap (\tilde{G},Q) = \{(q,\langle y,\min(\mu_{\tilde{H}(q)}(y),\mu_{\tilde{G}(q)}(y)),\min(\sigma_{\tilde{H}(q)}(y),\sigma_{\tilde{G}(q)}(y)),\\ \max(\nu_{\tilde{H}(q)}(y),\nu_{\tilde{G}(q)}(y))\rangle : y \in Y) : q \in Q\}. \end{array}$

Definition 2.3. [3] A neutrosophic soft topology (briefly, NSt) on an initial universe Y is a family τ of neutrosophic soft subsets (\tilde{H}, Q) of Y where Q is a set of parameters, satisfying

- (*i*) $0_{(Y,Q)}, 1_{(Y,Q)} \in \tau$.
- (*ii*) $[(\tilde{H}, Q) \cap (\tilde{G}, Q)] \in \tau$ for any $(\tilde{H}, Q), (\tilde{G}, Q) \in \tau$.
- $(iii) \bigcup_{\rho \in A} (\tilde{H}, Q)_{\rho} \in \tau, \ \forall \ \ (\tilde{H}, Q)_{\rho} : \rho \in A \subseteq \tau.$

Then (Y, τ, Q) is called a neutrosophic soft topological space (briefly, NSts) in Y. The τ elements are called neutrosophic soft open sets (briefly, NSos) in Y. A NSs (\tilde{H}, Q) is called a neutrosophic soft closed set (briefly, NScs) if its complement $(\tilde{H}, Q)^c$ is NSos.

Definition 2.4. [1, 3] Let (Y, τ, Q) be NSts on Y and (\tilde{H}, Q) be an NSs on Y, then the neutrosophic soft

(i) interior of (\tilde{H}, Q) (briefly, $NSint(\tilde{H}, Q)$) is defined by $NSint((\tilde{H}, Q)) = \bigcup\{(\tilde{F}, Q) : (\tilde{F}, Q) \subseteq (\tilde{H}, Q) \text{ and } (\tilde{G}, Q) \text{ is a } NSos \text{ in } Y\}.$

- (ii) closure of (\tilde{H}, Q) (briefly, $NScl(\tilde{H}, Q)$) is defined by $NScl((\tilde{H}, Q)) = \bigcap \{ (\tilde{F}, Q) : (\tilde{F}, Q) \supseteq (\tilde{H}, Q) \text{ and } (\tilde{G}, Q) \text{ is a } NScs \text{ in } Y \}.$
- (iii) δ interior of (\tilde{H}, Q) (briefly, $NS\delta int(\tilde{H}, Q)$) is defined by $NS\delta int(\tilde{H}, Q) = \bigcup \{ (\tilde{F}, Q) : (\tilde{F}, Q) \subseteq (\tilde{H}, Q) \& (\tilde{F}, Q) \text{ is a } NSros \text{ in } Y \}.$
- (iv) δ closure of (\tilde{H}, Q) (briefly, $NS\delta cl(\tilde{H}, Q)$) is defined by $NS\delta cl(\tilde{H}, Q) = \bigcap\{(\tilde{F}, Q) : (\tilde{H}, Q) \subseteq (\tilde{F}, Q) \& (\tilde{F}, Q) \text{ is a } NSrcs \text{ in } Y\}.$

Definition 2.5. [3, 9] Let (Y, τ, Q) be NSts on Y and (\tilde{H}, Q) be a NSs on Y. Then (\tilde{H}, Q) is said to be a neutrosophic soft regular (resp. pre, semi, $\alpha \& \beta$) open set (briefly, NSros (resp. NSPos, NSSos, NS α os & NS β os)) if $(\tilde{H}, Q) = NSint(NScl(\tilde{H}, Q))$ (resp. $(\tilde{H}, Q) \subseteq NSint(NScl(\tilde{H}, Q))$, $(\tilde{H}, Q) \subseteq NSint(NScl(\tilde{H}, Q))$, $(\tilde{H}, Q) \subseteq NSint(NScl(\tilde{H}, Q))$) & $(\tilde{H}, Q) \subseteq NSint(NScl(\tilde{H}, Q))$).

The complement of a NSPos (resp. NSSos, $NS\alpha os$, $NSros \& NS\beta os$) is called a neutrosophic soft pre (resp. semi, α , regular & β) closed set (briefly, NSPcs (resp. NSScs, $NS\alpha cs$, $NSrcs \& NS\beta cs$)) in Y.

Definition 2.6. [14] Let (Y, τ, Q) be NSts on Y and (\tilde{H}, Q) be a NSs on Y. Then (\tilde{H}, Q) is said to be a neutrosophic soft

- (i) δ -open set [1] (briefly, NS δ os) if $(\tilde{H}, Q) = NS\delta$ int (\tilde{H}, Q) .
- (*ii*) δ -pre open set (briefly, $NS\delta\mathcal{P}os$) if $(\tilde{H}, Q) \subseteq NSint(NS\delta cl(\tilde{H}, Q))$.
- (iii) δ -semi open set (briefly, $NS\delta Sos$) if $(\tilde{H}, Q) \subseteq NScl(NS\delta int(\tilde{H}, Q))$.
- (iv) e-open set (briefly, NSeos) if $(\tilde{H}, Q) \subseteq NScl(NS\delta int(\tilde{H}, Q)) \cup NSint(NS\delta cl(\tilde{H}, Q))$.

The complement of a NSe-open set (resp. $NS\delta os$, $NS\delta Pos \& NS\delta Sos$) is called a neutrosophic soft e- (resp. δ , δ -pre & δ -semi) closed set (briefly, NSecs (resp. $NS\delta cs NS\delta Pcs \& NS\delta Scs$)) in Y.

Definition 2.7. [10] Let (Y, τ, Q) be NSts on Y and (\hat{H}, Q) be a NSs on Y. Then (\hat{H}, Q) is said to be a neutrosophic soft

- (i) θ interior of (\tilde{H}, Q) (briefly, $NS\theta int(\tilde{H}, Q)$) is defined by $NS\theta int(\tilde{H}, Q) = \bigcup \{NSint(\tilde{G}, Q) : (\tilde{G}, Q) \subseteq (\tilde{H}, Q) \& (\tilde{G}, Q) \text{ is a } NScs \text{ in } Y \}.$
- (ii) θ closure of (\tilde{H}, Q) (briefly, $NS\theta cl(\tilde{H}, Q)$) is defined by $NS\theta cl(\tilde{H}, Q) = \bigcap \{NScl(\tilde{G}, Q) : (\tilde{H}, Q) \subseteq (\tilde{G}, Q) \& (\tilde{G}, Q) \text{ is a } NSos \text{ in } Y\}.$

- (iii) θ -open set (briefly, NS θ os) if $(\tilde{H}, Q) = NS\theta$ int (\tilde{H}, Q)).
- (iv) θ -semi open set (briefly, $NS\theta Sos$) if $(\tilde{H}, Q) \subseteq NScl(NS\theta int(\tilde{H}, Q))$.
- (v) *M*-open set (briefly, *NSMos*) if $(\tilde{H}, Q) \subseteq NScl(NS\thetaint(\tilde{H}, Q)) \cup NSint(NS \\ \delta cl(\tilde{H}, Q)).$

The complement of a NSMos (resp. $NS\theta os \& NS\theta Sos$) is called a neutrosophic soft M- (resp. $\theta \& \theta$ -semi) closed set (briefly, NSMcs (resp. $NS\theta cs \& NS\theta Scs$)) in Y.

Definition 2.8. [10] Let (Y, τ, Q) be NSts on Y and (\tilde{H}, Q) be a NSs on Y. Then (\tilde{H}, Q) is said to be a neutrosophic soft

- (i) M interior of (\tilde{H}, Q) (briefly, $NSMint(\tilde{H}, Q)$) is defined by $NSMint(\tilde{H}, Q)$ = $\bigcup \{ (\tilde{G}, Q) : (\tilde{G}, Q) \subseteq (\tilde{H}, Q) \& (\tilde{G}, Q) \text{ is a } NSMos \text{ in } Y \}.$
- (ii) M closure of (\tilde{H}, Q) (briefly, $NSMcl(\tilde{H}, Q)$) is defined by $NSMcl(\tilde{H}, Q) = \bigcap\{(\tilde{G}, Q) : (\tilde{H}, Q) \subseteq (\tilde{G}, Q) \& (\tilde{H}, Q) \text{ is a } NSMcs \text{ in } Y\}.$

Definition 2.9. [10, 14, 15] Let (Y_1, τ, Q) and (Y_2, σ, Q) be any two NSts's. A map $h: (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ is said to be neutrosophic soft

- (i) continuous (resp. M-continuous) (briefly, NSCts (resp. NSMCts)) if the inverse image of every NSos in (Y_2, σ, Q) is a NSos (resp. NSMos) in (Y_1, τ, Q) .
- (ii) *M*-irresolute (briefly, NSMIrr) map if $h^{-1}(\tilde{G}, Q)$ is a NSMos in (Y_1, τ, Q) for every NSMos (\tilde{G}, Q) of (Y_2, σ, Q) .
- (iii) e-open (resp. open, δ -semi open & δ -pre open) (briefly, NSeO (resp. NSO, NS δ SO & NS δ PO)) if the image of every neutrosophic soft open set of (Y₁, τ , Q) is NSeo (resp.NSo, NS δ So & NS δ Po) set in (Y₂, σ , Q).
- (iv) homeomorphism (briefly NSHom) if h and h^{-1} are NSCts mappings.

3. Neutrosophic Soft *M*-open Mapping

Definition 3.1. A mapping $h : (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ is neutrosophic soft θ -open (resp. θS -open & M-open) (briefly, NS θO (resp. NS θSO & NSMO)) mapping if the image of every NSos in (Y_1, τ, Q) is a NS θos (resp. NS θSos & NSMos) in (Y_2, σ, Q) .

Theorem 3.1. The statements are hold but the converse does not true. Every

- (i) Every $NS\theta O$ mapping is a NSO mapping.
- (ii) Every NS θ O mapping is a NS θ SO mapping.
- (iii) Every $NS\theta SO$ mapping is a NSMO mapping.
- (iv) Every NSO mapping is a $NS\delta SO$ mapping.
- (v) Every NSO mapping is a $NS\delta PO$ mapping.
- (vi) Every $NS\delta SO$ mapping is a NSeO mapping.
- (vii) Every $NS\delta \mathcal{P}O$ mapping is a NSMO mapping.
- (viii) Every NSMO mapping is a NSeO mapping.

Proof. Only (vii) is proven; the others are similar.

(vii) Let (\tilde{H}, Q) be a *NSos* in Y_1 . Since *h* is *NS* $\delta \mathcal{P}O$ mapping, h(H, Q) is a *NS* $\delta \mathcal{P}os$ in Y_2 . Since every *NS* $\delta \mathcal{P}os$ is a *NSMos* [10], $h(\tilde{H}, Q)$ is a *NSMos* in Y_2 . Hence *h* is a *NSMO* mapping.

Example 3.1. Let $U = \{u_1, u_2, u_3\}, V = \{v_1, v_2, v_3\}, Q = \{q_1, q_2\}$ and NSs's (\tilde{F}_1, Q) in U and (\tilde{G}_1, Q) & (\tilde{G}_2, Q) in V are defined as

$$\begin{split} & (\bar{F}_1, q_1) = \{ \langle u_1, (0.20, 0.5, 0.80) \rangle, \langle u_2, (0.30, 0.5, 0.70) \rangle, \langle u_3, (0.40, 0.5, 0.60) \rangle \} \\ & (\tilde{F}_1, q_2) = \{ \langle u_1, (0.21, 0.5, 0.79) \rangle, \langle u_2, (0.31, 0.5, 0.69) \rangle, \langle u_3, (0.41, 0.5, 0.59) \rangle \} \\ & (\tilde{G}_1, q_1) = \{ \langle v_1, (0.20, 0.5, 0.80) \rangle, \langle v_2, (0.30, 0.5, 0.70) \rangle, \langle v_3, (0.40, 0.5, 0.60) \rangle \} \\ & (\tilde{G}_1, q_2) = \{ \langle v_1, (0.21, 0.5, 0.79) \rangle, \langle v_2, (0.31, 0.5, 0.69) \rangle, \langle v_3, (0.41, 0.5, 0.59) \rangle \} \\ & (\tilde{G}_2, q_1) = \{ \langle v_1, (0.10, 0.5, 0.90) \rangle, \langle v_2, (0.11, 0.5, 0.90) \rangle, \langle v_3, (0.41, 0.5, 0.60) \rangle \} \\ & (\tilde{G}_2, q_2) = \{ \langle v_1, (0.11, 0.5, 0.89) \rangle, \langle v_2, (0.11, 0.5, 0.89) \rangle, \langle v_3, (0.41, 0.5, 0.59) \rangle \} \end{split}$$

Then we have $\tau = \{0_{(U,Q)}, 1_{(U,Q)}, (\tilde{F}_1, Q)\}$ and $\sigma = \{0_{(V,Q)}, 1_{(V,Q)}, (\tilde{G}_1, Q), (\tilde{G}_2, Q)\}$. Let $h: (U, \tau, Q) \to (V, \sigma, Q)$ be an identity mapping. Then h is NSO mapping in U but not NS θ O mapping in V.

Example 3.2. Let $U = \{u_1, u_2, u_3\}, V = \{v_1, v_2, v_3\}, Q = \{q_1, q_2\}$ and NSs's

 (\tilde{F}_1, Q) in U and $(\tilde{G}_1, Q), (\tilde{G}_2, Q) \& (\tilde{G}_3, Q)$ in V are defined as

$$\begin{split} &(F_1, q_1) = \{ \langle u_1, (0.90, 0.5, 0.10) \rangle, \langle u_2, (0.80, 0.5, 0.20) \rangle, \langle u_3, (0.70, 0.5, 0.30) \rangle \} \\ &(\tilde{F}_1, q_2) = \{ \langle u_1, (0.91, 0.5, 0.09) \rangle, \langle u_2, (0.81, 0.5, 0.19) \rangle, \langle u_3, (0.71, 0.5, 0.29) \rangle \} \\ &(\tilde{G}_1, q_1) = \{ \langle v_1, (0.20, 0.5, 0.80) \rangle, \langle v_2, (0.30, 0.5, 0.70) \rangle, \langle v_3, (0.40, 0.5, 0.60) \rangle \} \\ &(\tilde{G}_1, q_2) = \{ \langle v_1, (0.21, 0.5, 0.79) \rangle, \langle v_2, (0.31, 0.5, 0.69) \rangle, \langle v_3, (0.41, 0.5, 0.59) \rangle \} \\ &(\tilde{G}_2, q_1) = \{ \langle v_1, (0.10, 0.5, 0.90) \rangle, \langle v_2, (0.10, 0.5, 0.90) \rangle, \langle v_3, (0.41, 0.5, 0.60) \rangle \} \\ &(\tilde{G}_3, q_1) = \{ \langle v_1, (0.11, 0.5, 0.89) \rangle, \langle v_2, (0.11, 0.5, 0.89) \rangle, \langle v_3, (0.41, 0.5, 0.59) \rangle \} \\ &(\tilde{G}_3, q_2) = \{ \langle v_1, (0.90, 0.5, 0.10) \rangle, \langle v_2, (0.81, 0.5, 0.20) \rangle, \langle v_3, (0.71, 0.5, 0.29) \rangle \} \\ &(\tilde{G}_3, q_2) = \{ \langle v_1, (0.91, 0.5, 0.09) \rangle, \langle v_2, (0.81, 0.5, 0.19) \rangle, \langle v_3, (0.71, 0.5, 0.29) \rangle \} \end{split}$$

Then we have $\tau = \{0_{(U,Q)}, 1_{(U,Q)}, (\tilde{F}_1, Q)\}$ and $\sigma = \{0_{(V,Q)}, 1_{(V,Q)}, (\tilde{G}_1, Q), (\tilde{G}_2, Q)\}$. Let $h: (U, \tau, Q) \to (V, \sigma, Q)$ be an identity mapping. Then h is $NS\theta SO$ mapping in U but not $NS\theta O$ mapping in V.

Example 3.3. Let $U = \{u_1, u_2, u_3\}, V = \{v_1, v_2, v_3\}, Q = \{q_1, q_2\}$ and NSs's (\tilde{F}_1, Q) in U and $(\tilde{G}_1, Q), (\tilde{G}_2, Q) \& (\tilde{G}_3, Q)$ in V are defined as

$$\begin{split} & (\bar{F}_1, q_1) = \{ \langle u_1, (0.20, 0.5, 0.80) \rangle, \langle u_2, (0.20, 0.5, 0.80) \rangle, \langle u_3, (0.30, 0.5, 0.70) \rangle \} \\ & (\tilde{F}_1, q_2) = \{ \langle u_1, (0.21, 0.5, 0.79) \rangle, \langle u_2, (0.21, 0.5, 0.79) \rangle, \langle u_3, (0.31, 0.5, 0.69) \rangle \} \\ & (\tilde{G}_1, q_1) = \{ \langle v_1, (0.20, 0.5, 0.80) \rangle, \langle v_2, (0.30, 0.5, 0.70) \rangle, \langle v_3, (0.40, 0.5, 0.60) \rangle \} \\ & (\tilde{G}_1, q_2) = \{ \langle v_1, (0.21, 0.5, 0.79) \rangle, \langle v_2, (0.31, 0.5, 0.69) \rangle, \langle v_3, (0.41, 0.5, 0.59) \rangle \} \\ & (\tilde{G}_2, q_1) = \{ \langle v_1, (0.10, 0.5, 0.90) \rangle, \langle v_2, (0.10, 0.5, 0.90) \rangle, \langle v_3, (0.41, 0.5, 0.60) \rangle \} \\ & (\tilde{G}_3, q_1) = \{ \langle v_1, (0.20, 0.5, 0.80) \rangle, \langle v_2, (0.21, 0.5, 0.89) \rangle, \langle v_3, (0.31, 0.5, 0.70) \rangle \} \\ & (\tilde{G}_3, q_2) = \{ \langle v_1, (0.21, 0.5, 0.79) \rangle, \langle v_2, (0.21, 0.5, 0.79) \rangle, \langle v_3, (0.31, 0.5, 0.69) \rangle \} \end{split}$$

Then we have $\tau = \{0_{(U,Q)}, 1_{(U,Q)}, (\tilde{F}_1, Q)\}$ and $\sigma = \{0_{(V,Q)}, 1_{(V,Q)}, (\tilde{G}_1, Q), (\tilde{G}_2, Q)\}$. Let $h: (U, \tau, Q) \to (V, \sigma, Q)$ be an identity mapping. Then h is NSMO mapping in U but not $NS\theta SO$ mapping in V.

Example 3.4. Let $U = \{u_1, u_2, u_3\}, V = \{v_1, v_2, v_3\}, Q = \{q_1, q_2\}$ and NSs's

 (\tilde{F}_1, Q) in U and $(\tilde{G}_1, Q), (\tilde{G}_2, Q) \& (\tilde{G}_3, Q)$ in V are defined as

$$\begin{split} & (\tilde{F}_1, q_1) = \{ \langle u_1, (0.20, 0.5, 0.80) \rangle, \langle u_2, (0.40, 0.5, 0.60) \rangle, \langle u_3, (0.40, 0.5, 0.60) \rangle \} \\ & (\tilde{F}_1, q_2) = \{ \langle u_1, (0.21, 0.5, 0.79) \rangle, \langle u_2, (0.41, 0.5, 0.59) \rangle, \langle u_3, (0.41, 0.5, 0.59) \rangle \} \\ & (\tilde{G}_1, q_1) = \{ \langle v_1, (0.20, 0.5, 0.80) \rangle, \langle v_2, (0.30, 0.5, 0.70) \rangle, \langle v_3, (0.40, 0.5, 0.60) \rangle \} \\ & (\tilde{G}_1, q_2) = \{ \langle v_1, (0.21, 0.5, 0.79) \rangle, \langle v_2, (0.31, 0.5, 0.69) \rangle, \langle v_3, (0.41, 0.5, 0.59) \rangle \} \\ & (\tilde{G}_2, q_1) = \{ \langle v_1, (0.10, 0.5, 0.90) \rangle, \langle v_2, (0.10, 0.5, 0.90) \rangle, \langle v_3, (0.41, 0.5, 0.60) \rangle \} \\ & (\tilde{G}_3, q_1) = \{ \langle v_1, (0.21, 0.5, 0.89) \rangle, \langle v_2, (0.11, 0.5, 0.89) \rangle, \langle v_3, (0.41, 0.5, 0.59) \rangle \} \\ & (\tilde{G}_3, q_2) = \{ \langle v_1, (0.21, 0.5, 0.79) \rangle, \langle v_2, (0.41, 0.5, 0.59) \rangle, \langle v_3, (0.41, 0.5, 0.59) \rangle \} \\ & (\tilde{G}_3, q_2) = \{ \langle v_1, (0.21, 0.5, 0.79) \rangle, \langle v_2, (0.41, 0.5, 0.59) \rangle, \langle v_3, (0.41, 0.5, 0.59) \rangle \} \\ & (\tilde{G}_3, q_2) = \{ \langle v_1, (0.21, 0.5, 0.79) \rangle, \langle v_2, (0.41, 0.5, 0.59) \rangle, \langle v_3, (0.41, 0.5, 0.59) \rangle \} \end{split}$$

Then we have $\tau = \{0_{(U,Q)}, 1_{(U,Q)}, (\tilde{F}_1, Q)\}$ and $\sigma = \{0_{(V,Q)}, 1_{(V,Q)}, (\tilde{G}_1, Q), (\tilde{G}_2, Q)\}$. Let $h: (U, \tau, Q) \to (V, \sigma, Q)$ be an identity mapping. Then h is NSeO mapping in U but not NSMO mapping in V.

Example 3.5. Let $U = \{u_1, u_2, u_3\}, V = \{v_1, v_2, v_3\}, Q = \{q_1, q_2\}$ and NSs's (\tilde{F}_1, Q) in U and $(\tilde{G}_1, Q), (\tilde{G}_2, Q), (\tilde{G}_3, Q), (\tilde{G}_4, Q) \& (\tilde{G}_5, Q)$ in V are defined as

$$\begin{split} & (\tilde{F}_{1},q_{1}) = \{ \langle u_{1}, (0.70,0.5,0.30) \rangle, \langle u_{2}, (0.50,0.5,0.50) \rangle, \langle u_{3}, (0.50,0.5,0.50) \rangle \} \\ & (\tilde{F}_{1},q_{2}) = \{ \langle u_{1}, (0.71,0.5,0.29) \rangle, \langle u_{2}, (0.51,0.5,0.49) \rangle, \langle u_{3}, (0.51,0.5,0.49) \rangle \} \\ & (\tilde{G}_{1},q_{1}) = \{ \langle v_{1}, (0.30,0.5,0.70) \rangle, \langle v_{2}, (0.40,0.5,0.60) \rangle, \langle v_{3}, (0.30,0.5,0.70) \rangle \} \\ & (\tilde{G}_{1},q_{2}) = \{ \langle v_{1}, (0.31,0.5,0.69) \rangle, \langle v_{2}, (0.41,0.5,0.59) \rangle, \langle v_{3}, (0.31,0.5,0.69) \rangle \} \\ & (\tilde{G}_{2},q_{1}) = \{ \langle v_{1}, (0.60,0.5,0.40) \rangle, \langle v_{2}, (0.50,0.5,0.50) \rangle, \langle v_{3}, (0.50,0.5,0.50) \rangle \} \\ & (\tilde{G}_{2},q_{2}) = \{ \langle v_{1}, (0.61,0.5,0.39) \rangle, \langle v_{2}, (0.51,0.5,0.49) \rangle, \langle v_{3}, (0.51,0.5,0.49) \rangle \} \\ & (\tilde{G}_{3},q_{1}) = \{ \langle v_{1}, (0.61,0.5,0.39) \rangle, \langle v_{2}, (0.51,0.5,0.49) \rangle, \langle v_{3}, (0.40,0.5,0.60) \rangle \} \\ & (\tilde{G}_{4},q_{1}) = \{ \langle v_{1}, (0.61,0.5,0.39) \rangle, \langle v_{2}, (0.51,0.5,0.49) \rangle, \langle v_{3}, (0.41,0.5,0.59) \rangle \} \\ & (\tilde{G}_{4},q_{2}) = \{ \langle v_{1}, (0.31,0.5,0.69) \rangle, \langle v_{2}, (0.41,0.5,0.59) \rangle, \langle v_{3}, (0.41,0.5,0.59) \rangle \} \\ & (\tilde{G}_{5},q_{1}) = \{ \langle v_{1}, (0.70,0.5,0.30) \rangle, \langle v_{2}, (0.50,0.5,0.50) \rangle, \langle v_{3}, (0.50,0.5,0.50) \rangle \} \\ & (\tilde{G}_{5},q_{2}) = \{ \langle v_{1}, (0.71,0.5,0.29) \rangle, \langle v_{2}, (0.51,0.5,0.49) \rangle, \langle v_{3}, (0.51,0.5,0.49) \rangle \} \end{split}$$

Then we have $\tau = \{0_{(U,Q)}, 1_{(U,Q)}, (\tilde{F}_1, Q)\}$ and $\sigma = \{0_{(V,Q)}, 1_{(V,Q)}, (\tilde{G}_1, Q), (\tilde{G}_2, Q), (\tilde{G}_3, Q), (\tilde{G}_4, Q)\}$. Let $h : (U, \tau, Q) \to (V, \sigma, Q)$ be an identity mapping. Then h is NSMO mapping in U but not NS $\delta \mathcal{P}O$ mapping in V.

Remark 3.1. The following diagram shows the above results.

Theorem 3.2. A mapping $h: (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ is NSMO iff for every NSs (\tilde{H}, Q) of (Y_1, τ, Q) , $h(NSint(\tilde{H}, Q)) \subseteq NSMint(h(\tilde{H}, Q))$.

Proof. Necessity: Let h be a NSMO mapping and (\tilde{H}, Q) be a NSos in (Y_1, τ, Q) . Now, $NSint(\tilde{H}, Q) \subseteq (\tilde{H}, Q)$ implies $h(NSint(\tilde{H}, Q)) \subseteq h(\tilde{H}, Q)$. Since h is a NSMO mapping, $h(NSint(\tilde{H}, Q))$ is NSMos in (Y_2, σ, Q) such that $h(NSint(\tilde{H}, Q)) \subseteq h(\tilde{H}, Q)$. Therefore $h(NSint(\tilde{H}, Q)) \subseteq NSMint(h(\tilde{H}, Q))$.

Sufficiency: Assume (\tilde{H}, Q) is a NSos of (Y_1, τ, Q) . Then $h(\tilde{H}, Q) = h(NSint(\tilde{H}, Q)) \subseteq NSMint(h(\tilde{H}, Q))$. But NSMint $(h(\tilde{H}, Q)) \subseteq h(\tilde{H}, Q)$. So $h(\tilde{H}, Q) = NSMint(\tilde{H}, Q)$ which implies $h(\tilde{H}, Q)$ is a NSMos of (Y_2, σ, Q) and hence h is a NSMO.

Theorem 3.3. If $h: (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ is a NSMO mapping, then $NSint(h^{-1}(\tilde{H}, Q)) \subseteq h^{-1}(NSMint(\tilde{H}, Q))$ for every NSs (\tilde{H}, Q) of (Y_2, σ, Q) . **Proof.** Let (\tilde{H}, Q) be a NSs of (Y_2, σ, Q) . Then $NSint(h^{-1}(\tilde{H}, Q))$ is a NSos in (Y_1, τ, Q) . Since h is NSMO, $h(NSint(h^{-1}(\tilde{H}, Q)))$ is NSMO in (Y_2, σ, Q) and hence $h(NSint(h^{-1}(\tilde{H}, Q))) \subseteq NSMint(h(h^{-1}(\tilde{H}, Q))) \subseteq NSMint(\tilde{H}, Q))$. Thus $NSint(h^{-1}(\tilde{H}, Q)) \subset h^{-1}(NSMint(\tilde{H}, Q))$.

Theorem 3.4. A mapping $h: (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ is NSMO iff for each NSs (\tilde{G}, Q) of (Y_2, σ, Q) and for each NScs (\tilde{H}, Q) of (Y_1, τ, Q) containing $h^{-1}(\tilde{G}, Q)$, there is a NSMcs (\tilde{K}, Q) of (Y_2, σ, Q) such that $(\tilde{G}, Q) \subseteq (\tilde{H}, Q)$ and $h^{-1}(\tilde{K}, Q) \subseteq$

 $(\tilde{H}, Q).$

Proof. Necessity: Assume h is a NSMO mapping. Let (\tilde{G}, Q) be the NScs of (Y_2, σ, Q) and (\tilde{H}, Q) is a NScs of (Y_1, τ, Q) such that $h^{-1}(\tilde{G}, Q) \subseteq (\tilde{H}, Q)$. Then $(\tilde{K}, Q) = (h^{-1}(\tilde{H}, Q)^c)^c$ is NSMcs of (Y_2, σ, Q) such that $h^{-1}(\tilde{K}, Q) \subseteq (\tilde{H}, Q)$.

Sufficiency: Assume (\tilde{H}, Q) is a *NSos* of (Y_1, τ, Q) . Then $h^{-1}((h(\tilde{H}, Q))^c) \subseteq (\tilde{H}, Q)^c$ and $(\tilde{H}, Q)^c$ is *NScs* in (Y_1, τ, Q) . By hypothesis, there is a *NSMcs* (\tilde{G}, Q) of (Y_2, σ, Q) such that $(h(\tilde{H}, Q))^c \subseteq (\tilde{G}, Q)$ and $h^{-1}(\tilde{G}, Q) \subseteq (\tilde{H}, Q)^c$. Therefore $(\tilde{H}, Q) \subseteq (h^{-1}(\tilde{G}, Q))^c$. Hence $(\tilde{G}, Q)^c \subseteq h(\tilde{H}, Q) \subseteq h((h^{-1}(\tilde{G}, Q))^c) \subseteq (\tilde{G}, Q)^c$ which implies $h(\tilde{H}, Q) = (\tilde{G}, Q)^c$. Since $(\tilde{G}, Q)^c$ is *NSMos* of (Y_2, σ, Q) , $h(\tilde{H}, Q)$ is *NSMO* in (Y_2, σ, Q) and thus *h* is *NSMO* mapping.

Theorem 3.5. A mapping $h : (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ is NSMO iff $h^{-1}(NSMcl(\tilde{G}, Q)) \subseteq NScl(h^{-1}(\tilde{G}, Q))$ for every NSs (\tilde{G}, Q) of (Y_2, σ, Q) .

Proof. Necessity: Assume h is a NSMO mapping. For any $NSs(\tilde{G},Q)$ of $(Y_2, \sigma, Q), h^{-1}(\tilde{G}, Q) \subseteq NScl(h^{-1}(\tilde{G}, Q))$. Therefore by Theorem 3.4, there exists a $NSMcs(\tilde{H},Q)$ in (Y_2, σ, Q) such that $(\tilde{G},Q) \subseteq (\tilde{H},Q)$ and $h^{-1}(\tilde{H},Q) \subseteq NScl(h^{-1}(\tilde{G},Q))$. Therefore we obtain that $h^{-1}(NSMcl(\tilde{G},Q)) \subseteq h^{-1}(\tilde{H},Q) \subseteq NScl(h^{-1}(\tilde{G},Q))$.

Sufficiency: Assume (\tilde{G}, Q) is a NSs of (Y_2, σ, Q) and (\tilde{H}, Q) is a NScs of (Y_1, τ, Q) containing $h^{-1}(\tilde{G}, Q)$. Put $(\tilde{K}, Q) = NScl(\tilde{G}, Q)$, then $(\tilde{G}, Q) \subseteq (\tilde{K}, Q)$ and (\tilde{K}, Q) is NSMc and $h^{-1}(\tilde{K}, Q) \subsetneq NScl(h^{-1}(\tilde{G}, Q)) \subseteq (\tilde{H}, Q)$. Then by Theorem 3.4, h is NSMO mapping.

Theorem 3.6. If $h : (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ and $g : (Y_2, \sigma, Q) \to (Y_3, \rho, Q)$ be two neutrosophic soft mappings and $g \circ h : (Y_1, \tau, Q) \to (Y_3, \rho, Q)$ is NSMO. If $g : (Y_2, \sigma, Q) \to (Y_3, \rho, Q)$ is NSMIrr, then $h : (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ is NSMO mapping.

Proof. Let (\tilde{H}, Q) be a *NSos* in (Y_1, τ, Q) . Then $g \circ h(\tilde{H}, Q)$ is *NSMos* of (Y_3, ρ, Q) because $g \circ h$ is *NSMO* mapping. Since g is *NSMIrr* and $g \circ h(\tilde{H}, Q)$ is *NSMos* of $(Y_3, \rho, Q), g^{-1}(g \circ h(\tilde{H}, Q)) = h(\tilde{H}, Q)$ is *NSMos* in (Y_2, σ, Q) . Hence h is *NSMO* mapping.

Theorem 3.7. If $h: (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ is NSO and $g: (Y_2, \sigma, Q) \to (Y_3, \rho, Q)$ is NSMO mappings, then $g \circ h: (Y_1, \tau, Q) \to (Y_3, \rho, Q)$ is NSMO.

Proof. Let (\hat{H}, Q) be a *NSos* in (Y_1, τ, Q) . Then $h(\hat{H}, Q)$ is a *NSos* of (Y_2, σ, Q) because h is a *NSO* mapping. Since g is *NSMO*, $g(h(\hat{H}, Q)) = (g \circ h)(\hat{H}, Q)$ is a *NSMos* of (Y_3, ρ, Q) . Hence $g \circ h$ is *NSMO* mapping.

4. Neutrosophic Soft *M*-closed Mapping

Definition 4.1. A mapping $h: (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ is neutrosophic soft θ -closed

(resp. θS -closed & M-closed) (briefly, NS θC (resp. NS θSC & NSMC)) mapping if the image of every NScs in (Y_1, τ, Q) is a NS θcs (resp. NS θScs & NSMcs) in (Y_2, σ, Q) .

Theorem 4.1. The statements are hold but the converse does not true. Every

- (i) Every $NS\theta C$ mapping is a NSC mapping.
- (ii) Every $NS\theta C$ mapping is a $NS\theta SC$ mapping.
- (iii) Every $NS\theta SC$ mapping is a NSMC mapping.
- (iv) Every NSC mapping is a $NS\delta SC$ mapping.
- (v) Every NSC mapping is a $NS\delta \mathcal{P}C$ mapping.
- (vi) Every $NS\delta SC$ mapping is a NSeC mapping.
- (vii) Every $NS\delta \mathcal{P}C$ mapping is a NSMC mapping.

(viii) Every NSMC mapping is a NSeC mapping.

Proof. Only (vii) is proven; the others are similar.

(vii) Let (H, Q) be a NScs in Y_1 . Since h is NS $\delta \mathcal{P}C$ mapping, h(H, Q) is a NS $\delta \mathcal{P}cs$ in Y_2 . Since every NS $\delta \mathcal{P}cs$ is a NSMcs [10], $h(\tilde{H}, Q)$ is a NSMcs in Y_2 . Hence h is a NSMC mapping.

Example 4.1. In Example 3.1, $(\tilde{F}_1, Q)^c$ is NSC mapping in U but not $NS\theta C$ mapping in V.

Example 4.2. In Example 3.2, $(\tilde{F}_1, Q)^c$ is $NS\theta SC$ mapping in U but not $NS\theta C$ mapping in V.

Example 4.3. In Example 3.3, $(\tilde{F}_1, Q)^c$ is NSMC mapping in U but not NS θ SC mapping in V.

Example 4.4. In Example 3.4, $(\tilde{F}_1, Q)^c$ is *NSeC* mapping in *U* but not *NSMC* mapping in *V*.

Example 4.5. In Example 3.5, $(\tilde{F}_1, Q)^c$ is NSMC mapping in U but not $NS\delta\mathcal{P}C$ mapping in V.

Theorem 4.2. A mapping $h: (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ is NSMC iff for each NSs (\tilde{G}, Q) of (Y_2, σ, Q) and for each NSos (\tilde{H}, Q) of (Y_1, τ, Q) containing $h^{-1}(\tilde{G}, Q)$, there is a NSMos (\tilde{K}, Q) of (Y_2, σ, Q) such that $(\tilde{G}, Q) \subseteq (\tilde{K}, Q)$ and $h^{-1}(\tilde{K}, Q) \subseteq (\tilde{H}, Q)$.

Proof. Necessity: Assume h is a NSMC mapping. Let (\tilde{G}, Q) be the NScs of (Y_2, σ, Q) and (\tilde{H}, Q) is a NSos of (Y_1, τ, Q) such that $h^{-1}(\tilde{G}, Q) \subseteq (\tilde{H}, Q)$. Then $(\tilde{K}, Q) = Y_2 - h^{-1}((\tilde{H}, Q)^c)$ is NSMos of (Y_2, σ, Q) such that $h^{-1}(\tilde{K}, Q) \subseteq (\tilde{H}, Q)$. **Sufficiency:** Assume (\tilde{H}, Q) is a NScs of (Y_1, τ, Q) . Then $(h(\tilde{H}, Q))^c$ is a NSs of (Y_2, σ, Q) and $(\tilde{H}, Q)^c$ is NSos in (Y_1, τ, Q) such that $h^{-1}((h(\tilde{H}, Q))^c) \subseteq (\tilde{H}, Q)^c$. By hypothesis, there is a NSMos (\tilde{K}, Q) of (Y_2, σ, Q) such that $(h(\tilde{H}, Q))^c \subseteq (\tilde{K}, Q)^c$. By hypothesis, there is a NSMos (\tilde{K}, Q) of (Y_2, σ, Q) such that $(h(\tilde{H}, Q))^c \subseteq (\tilde{K}, Q)^c$. By hypothesis, there is a NSMos (\tilde{K}, Q) of (Y_2, σ, Q) such that $(h(\tilde{H}, Q))^c \subseteq (\tilde{K}, Q)^c$. By hypothesis, there is a NSMos (\tilde{K}, Q) of (Y_2, σ, Q) such that $(h(\tilde{H}, Q))^c \subseteq (\tilde{K}, Q)^c$. By hypothesis, there is a NSMos (\tilde{K}, Q) of (Y_2, σ, Q) such that $(h(\tilde{H}, Q))^c \subseteq (\tilde{K}, Q)^c \subseteq (\tilde{K}, Q)^c$. Hence $(\tilde{K}, Q)^c \subseteq h(\tilde{K}, Q)^c$ is NSMcs of (Y_2, σ, Q) , $h(\tilde{H}, Q)$ is NSMc in (Y_2, σ, Q) and thus h is NSMC mapping.

Theorem 4.3. If $h: (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ is NSC and $g: (Y_2, \sigma, Q) \to (Y_3, \rho, Q)$ is NSMC. Then $g \circ h: (Y_1, \tau, Q) \to (Y_3, \rho, Q)$ is NSMC. **Proof.** Let (\tilde{H}, Q) be a NScs in (Y_1, τ, Q) . Then $h(\tilde{H}, Q)$ is NScs of (Y_2, σ, Q) because h is NSC mapping. Now $(g \circ h)(\tilde{H}, Q) = g(h(\tilde{H}, Q))$ is NSMcs in (Y_3, ρ, Q) because g is NSMC mapping. Thus $g \circ h$ is NSMC mapping.

Theorem 4.4. If $h: (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ is NSMC map, then $NSMcl(h(\tilde{H}, Q)) \subseteq h(NScl(\tilde{H}, Q))$. **Proof.** Obvious.

Theorem 4.5. Let $h: (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ and $g: (Y_2, \sigma, Q) \to (Y_3, \rho, Q)$ are NSMC mappings. If every NSMcs of (Y_2, σ, Q) is NScs, then $g \circ h: (Y_1, \tau, Q) \to (Y_3, \rho, Q)$ is NSMC.

Proof. Let (\tilde{H}, Q) be a *NScs* in (Y_1, τ, Q) . Then $h(\tilde{H}, Q)$ is *NSMcs* of (Y_2, σ, Q) because *h* is *NSMC* mapping. By hypothesis, $h(\tilde{H}, Q)$ is *NScs* of (Y_2, σ, Q) . Now $g(h(\tilde{H}, Q)) = (g \circ h)(\tilde{H}, Q)$ is *NSMcs* in (Y_3, ρ, Q) because *g* is *NSMC* mapping. Thus $g \circ h$ is *NSMC* mapping.

Theorem 4.6. Let $h : (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ be a bijective mapping. Then the statements are equivalent:

- (i) h is a NSMO mapping.
- (ii) h is a NSMC mapping.

(iii) h^{-1} is NSMCts mapping.

Proof. (i) \Rightarrow (ii): Let us assume that h is a NSMO mapping. By definition, (\tilde{H}, Q) is a NSos in (Y_1, τ, Q) , then $h(\tilde{H}, Q)$ is a NSMos in (Y_2, σ, Q) . Here, (\tilde{H}, Q) is NScs in (Y_1, τ, Q) . Then $Y_1 - (\tilde{H}, Q)$ is a NSos in (Y_1, τ, Q) . By assumption, $h(Y_1 - (\tilde{H}, Q))$ is a NSMos in (Y_2, σ, Q) . Hence, $Y_2 - h(Y_1 - (\tilde{H}, Q))$ is a NSMcs in (Y_2, σ, Q) . Therefore, h is a NSMC mapping.

(ii) \Rightarrow (iii): Let (\tilde{H}, Q) be a *NScs* in (Y_1, τ, Q) By (ii), $h(\tilde{H}, Q)$ is a *NSMcs* in (Y_2, σ, Q) . Hence, $h(\tilde{H}, Q) = (h^{-1})^{-1}(\tilde{H}, Q)$. So h^{-1} is a *NSMcs* in (Y_2, σ, Q) . Hence, h^{-1} is *NSMCts*.

(iii) \Rightarrow (i): Let (\tilde{H}, Q) be a *NSos* in (Y_1, τ, Q) . By (iii), $(h^{-1})^{-1}(\tilde{H}, Q) = h(\tilde{H}, Q)$ is a *NSMO* mapping.

5. Neutrosophic Soft *M*-homeomorphism

Definition 5.1. A bijection $h: (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ is called a neutrosophic soft *M*-homeomorphism (briefly NSMHom) if h and h^{-1} are NSMCts.

Theorem 5.1. Each NSHom is a NSMHom. But not conversely. **Proof.** Let h be NSHom, then h and h^{-1} are NSCts. But every NSCts function is NSMCts. Hence, h and h^{-1} are NSMCts. Therefore, h is a NSMHom.

Example 5.1. Let $U = \{u_1, u_2, u_3\}, V = \{v_1, v_2, v_3\}, Q = \{q_1, q_2\}$ and NSs's $(\tilde{F}_1, Q), (\tilde{F}_2, Q) \& (\tilde{F}_3, Q)$ in U and (\tilde{G}_1, Q) in V are defined as

$$\begin{split} & (\tilde{F}_1, q_1) = \{ \langle u_1, (0.20, 0.5, 0.80) \rangle, \langle u_2, (0.30, 0.5, 0.70) \rangle, \langle u_3, (0.40, 0.5, 0.60) \rangle \} \\ & (\tilde{F}_1, q_2) = \{ \langle u_1, (0.21, 0.5, 0.79) \rangle, \langle u_2, (0.31, 0.5, 0.69) \rangle, \langle u_3, (0.41, 0.5, 0.59) \rangle \} \\ & (\tilde{F}_2, q_1) = \{ \langle u_1, (0.10, 0.5, 0.90) \rangle, \langle u_2, (0.10, 0.5, 0.90) \rangle, \langle u_3, (0.40, 0.5, 0.60) \rangle \} \\ & (\tilde{F}_2, q_2) = \{ \langle u_1, (0.11, 0.5, 0.89) \rangle, \langle u_2, (0.11, 0.5, 0.89) \rangle, \langle u_3, (0.41, 0.5, 0.59) \rangle \} \\ & (\tilde{F}_3, q_1) = \{ \langle u_1, (0.20, 0.5, 0.80) \rangle, \langle u_2, (0.20, 0.5, 0.80) \rangle, \langle u_3, (0.30, 0.5, 0.70) \rangle \} \\ & (\tilde{F}_3, q_2) = \{ \langle u_1, (0.21, 0.5, 0.79) \rangle, \langle u_2, (0.21, 0.5, 0.79) \rangle, \langle u_3, (0.31, 0.5, 0.69) \rangle \} \\ & (\tilde{G}_1, q_1) = \{ \langle v_1, (0.21, 0.5, 0.79) \rangle, \langle v_2, (0.21, 0.5, 0.79) \rangle, \langle v_3, (0.31, 0.5, 0.69) \rangle \} \\ & (\tilde{G}_1, q_2) = \{ \langle v_1, (0.21, 0.5, 0.79) \rangle, \langle v_2, (0.21, 0.5, 0.79) \rangle, \langle v_3, (0.31, 0.5, 0.69) \rangle \} \end{split}$$

Then we have $\tau = \{0_{(U,Q)}, 1_{(U,Q)}, (\tilde{F}_1, Q), (\tilde{F}_2, Q)\}$ and $\sigma = \{0_{(V,Q)}, 1_{(V,Q)}, (\tilde{G}_1, Q)\}$. Let $h : (U, \tau, Q) \to (V, \sigma, Q)$ be an identity mapping. Then h is NSMHom but not NSHom.

Theorem 5.2. Let $h : (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ be a bijective mapping. If h is NSMCts, then the statements are equivalent:

- (i) h is a NSMC mapping.
- (ii) h is a NSMO mapping.
- (iii) h^{-1} is a NSMHom.

Proof. (i) \Rightarrow (ii) : Assume that *h* is a bijective mapping and a *NSMC* mapping. Hence, h^{-1} is a *NSMCts* mapping. We know that each *NSos* in (Y_1, τ, Q) is a *NSMos* in (Y_2, σ, Q) . Hence, *h* is a *NSMO* mapping.

(ii) \Rightarrow (iii) : Let *h* be a bijective and *NSO* mapping. Further, h^{-1} is a *NSMCts* mapping. Hence, *h* and h^{-1} are *NSMCts*. Therefore, *h* is a *NSMHom*.

(iii) \Rightarrow (i): Let *h* be a *NSMHom*. Then *h* and h^{-1} are *NSMCts*. Since each *NScs* in (Y_1, τ, Q) is a *NSMcs* in (Y_2, σ, Q) , *h* is a *NSMC* mapping.

Definition 5.2. A *NSts* (Y_1, τ, Q) is said to be a neutrosophic soft $MT_{\frac{1}{2}}$ (briefly, $NSMT_{\frac{1}{2}}$)-space if every *NSMcs* is *NScs* in (Y_1, τ, Q) .

Theorem 5.3. Let $h : (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ be a NSMHom. Then h is a NSHom if (Y_1, τ, Q) and (Y_2, σ, Q) are $NSMT_{\frac{1}{2}}$ -space.

Proof. Assume that (\tilde{G}, Q) is a NScs in (Y_2, σ, Q) . Then $h^{-1}(\tilde{G}, Q)$ is a NSMcs in (Y_1, τ, Q) . Since (Y_1, τ, Q) is an $NSMT_{\frac{1}{2}}$ -space, $h^{-1}(\tilde{G}, Q)$ is a NScs in (Y_1, τ, Q) . Therefore, h is NSCts. By hypothesis, h^{-1} is NSMCts. Let (\tilde{H}, Q) be a NScs in (Y_1, τ, Q) . Then, $(h^{-1})^{-1}(\tilde{H}, Q) = h(\tilde{H}, Q)$ is a NScs in (Y_2, σ, Q) , by presumption. Since (Y_2, σ, Q) is a $NSMT_{\frac{1}{2}}$ -space, $h(\tilde{H}, Q)$ is a NScs in (Y_2, σ, Q) . Hence, h^{-1} is NSCts. Hence, h is a $NSHT_{\frac{1}{2}}$ -space.

Theorem 5.4. Let $h: (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ be a NSts. Then the statements are equivalent if (Y_2, σ, Q) is a $NSMT_{\frac{1}{2}}$ -space:

(i) h is NSMC mapping.

(ii) If (\tilde{H}, Q) is a NSos in (Y_1, τ, Q) , then $h(\tilde{H}, Q)$ is NSMos in (Y_2, σ, Q) .

(*iii*) $h(NSint(\tilde{H},Q)) \subseteq NScl(NSint(h(\tilde{H},Q)))$ for every $NSs(\tilde{H},Q)$ in (Y_1,τ,Q) .

Proof. (i) \Rightarrow (ii): Obvious.

(ii) \Rightarrow (iii): Let (\tilde{H}, Q) be a NSs in (Y_1, τ, Q) . Then, $NSint(\tilde{H}, Q)$ is a NSos in (Y_1, τ, Q) . Then, $h(NSint(\tilde{H}, Q))$ is a NSMos in (Y_2, σ, Q) . Since (Y_2, σ, Q) is a $NSMT_{\frac{1}{2}}$ -space, so $h(NSint(\tilde{H}, Q))$ is a NSos in (Y_2, σ, Q) . Therefore, $h(NSint(\tilde{H}, Q)) = NSint(h(NSint(\tilde{H}, Q))) \subseteq NScl(NSint(h(\tilde{H}, Q)))$.

(iii) \Rightarrow (i): Let (\tilde{H}, Q) be a NScs in (Y_1, τ, Q) . Then, $(\tilde{H}, Q)^c$ is a NSos in (Y_1, τ, Q) . From, $h(NSint(\tilde{H}, Q)^c) \subseteq NScl(NSint(h(\tilde{H}, Q)^c)), h((\tilde{H}, Q)^c) \subseteq NScl(NSint(h(\tilde{H}, Q)^c))$. Therefore, $h((\tilde{H}, Q)^c)$ is NSMos in (Y_2, σ, Q) . Therefore, $h(\tilde{H}, Q)$ is a NSMcs in (Y_1, τ, Q) . Hence, h is a NSC mapping.

Theorem 5.5. Let $h : (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ and $g : (Y_2, \sigma, Q) \to (Y_3, \rho, Q)$ be NSMC, where (Y_1, τ, Q) and (Y_3, ρ, Q) are two NSts's and (Y_2, σ, Q) a NSM $T_{\frac{1}{2}}$ -space, then the composition $g \circ h$ is NSMC.

Proof. Let (\tilde{H}, Q) be a *NScs* in (Y_1, τ, Q) . Since *h* is *NSMc* and $h(\tilde{H}, Q)$ is a *NSMcs* in (Y_2, σ, Q) , by assumption, $h(\tilde{H}, Q)$ is a *NScs* in (Y_2, σ, Q) . Since *g* is *NSMc*, then $g(h(\tilde{H}, Q))$ is *NSMc* in (Y_3, ρ, Q) and $g(h(\tilde{H}, Q)) = (g \circ h)(\tilde{H}, Q)$. Therefore, $g \circ h$ is *NSMC*.

Theorem 5.6. Let $h: (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ and $g: (Y_2, \sigma, Q) \to (Y_3, \rho, Q)$ be two NSts's, then the statements are hold:

- (i) If $g \circ h$ is NSMO and h is NSCts, then g is NSMO.
- (ii) If $g \circ h$ is NSO and g is NSMCts, then h is NSMO.

Proof. Obvious.

6. Neutrosophic Soft *M*-C Homeomorphism

Definition 6.1. A bijection $h: (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ is called a neutrosophic soft M-C homeomorphism (briefly, NSMCHom) if h and h^{-1} are NSMIrr mappings.

Theorem 6.1. Each NSMCHom is a NSMHom. But not conversely. **Proof.** Let us assume that (\tilde{G}, Q) is a NScs in (Y_2, σ, Q) . This shows that (\tilde{G}, Q) is a NSMcs in (Y_2, σ, Q) . By assumption, $h^{-1}(\tilde{G}, Q)$ is a NSMcs in (Y_1, τ, Q) . Hence, h is a NSMCts mapping. Hence, h and h^{-1} are NSMCts mappings. Hence h is a NSMHom.

Example 6.1. Let $U = \{u_1, u_2, u_3\}, V = \{v_1, v_2, v_3\}, Q = \{q_1, q_2\}$ and NSs's $(\tilde{F}_1, Q), (\tilde{F}_2, Q) \& (\tilde{F}_3, Q)$ in U and (\tilde{G}_1, Q) in V are defined as

$$\begin{split} & (\tilde{F}_1, q_1) = \{ \langle u_1, (0.20, 0.5, 0.80) \rangle, \langle u_2, (0.30, 0.5, 0.70) \rangle, \langle u_3, (0.40, 0.5, 0.60) \rangle \} \\ & (\tilde{F}_1, q_2) = \{ \langle u_1, (0.21, 0.5, 0.79) \rangle, \langle u_2, (0.31, 0.5, 0.69) \rangle, \langle u_3, (0.41, 0.5, 0.59) \rangle \} \\ & (\tilde{F}_2, q_1) = \{ \langle u_1, (0.10, 0.5, 0.90) \rangle, \langle u_2, (0.10, 0.5, 0.90) \rangle, \langle u_3, (0.40, 0.5, 0.60) \rangle \} \\ & (\tilde{F}_2, q_2) = \{ \langle u_1, (0.11, 0.5, 0.89) \rangle, \langle u_2, (0.11, 0.5, 0.89) \rangle, \langle u_3, (0.41, 0.5, 0.59) \rangle \} \\ & (\tilde{F}_3, q_1) = \{ \langle u_1, (0.20, 0.5, 0.80) \rangle, \langle u_2, (0.20, 0.5, 0.80) \rangle, \langle u_3, (0.30, 0.5, 0.70) \rangle \} \\ & (\tilde{F}_3, q_2) = \{ \langle u_1, (0.21, 0.5, 0.79) \rangle, \langle u_2, (0.21, 0.5, 0.79) \rangle, \langle u_3, (0.31, 0.5, 0.69) \rangle \} \\ & (\tilde{G}_1, q_1) = \{ \langle v_1, (0.21, 0.5, 0.79) \rangle, \langle v_2, (0.21, 0.5, 0.79) \rangle, \langle v_3, (0.31, 0.5, 0.69) \rangle \} \\ & (\tilde{G}_1, q_2) = \{ \langle v_1, (0.21, 0.5, 0.79) \rangle, \langle v_2, (0.21, 0.5, 0.79) \rangle, \langle v_3, (0.31, 0.5, 0.69) \rangle \} \end{split}$$

Then we have $\tau = \{0_{(U,Q)}, 1_{(U,Q)}, (\tilde{F}_1, Q), (\tilde{F}_2, Q)\}$ and $\sigma = \{0_{(V,Q)}, 1_{(V,Q)}, (\tilde{G}_1, Q)\}$. Let $h : (U, \tau, Q) \to (V, \sigma, Q)$ be an identity mapping. Then h is NSMHom but not NSMCHom. **Theorem 6.2.** If $h : (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ is a NSMCHom, then NSMcl($h^{-1}(\tilde{G}, Q)) \subseteq h^{-1}(NScl(\tilde{G}, Q))$ for each NSs (\tilde{G}, Q) in (Y_2, σ, Q) .

Proof. Let (\tilde{G}, Q) be a NSs in (Y_2, σ, Q) . Then, $NScl(\tilde{G}, Q)$ is a NScs in (Y_2, σ, Q) , and every NScs is a NSMcs in (Y_2, σ, Q) . Assume h is NSMIrr and $h^{-1}(NScl(\tilde{H}, Q))$ is a NSMcs in (Y_1, τ, Q) . Then, $NScl(h^{-1}(NScl(\tilde{G}, Q))) = h^{-1}(NScl(\tilde{G}, Q))$. Here, $NSMcl(h^{-1}(\tilde{G}, Q)) \subseteq NSMcl(h^{-1}(NScl(\tilde{H}, Q))) = h^{-1}(NScl(\tilde{G}, Q))$. Therefore, $NSMcl(h^{-1}(\tilde{G}, Q)) \subseteq h^{-1}(NScl(\tilde{G}, Q))$ for every NSs (\tilde{G}, Q) in (Y_2, σ, Q) .

Theorem 6.3. Let $h: (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ be a NSMCHom. Then NSMcl($h^{-1}(\tilde{G}, Q)) = h^{-1}(NSMcl(\tilde{G}, Q))$ for each NSs (\tilde{G}, Q) in (Y_2, σ, Q) .

Proof. Since *h* is a *NSMCHom*, *h* is a *NSMIrr* mapping. Let (\tilde{G}, Q) be a *NSs* in (Y_2, σ, Q) . Clearly, *NSMcl* (\tilde{G}, Q) is a *NSMcs* in (Y_2, σ, Q) . Then *NSMcl* (\tilde{G}, Q) is a *NSMcs* in (Y_2, σ, Q) . Since $h^{-1}(\tilde{G}, Q) \subseteq h^{-1}(NSMcl(\tilde{G}, Q))$, then *NSMcl* $(h^{-1}(\tilde{G}, Q)) \subseteq NSMcl(h^{-1}(NSMcl(\tilde{G}, Q))) = h^{-1}(NSMcl(\tilde{G}, Q))$. Therefore, *NSMcl* $(h^{-1}(\tilde{G}, Q)) \subseteq h^{-1}(NSMcl(\tilde{G}, Q))$. Let *h* be a *NSMCHom*. h^{-1} is a *NSMIrr* mapping. Let us consider *NSs* $h^{-1}(\tilde{G}, Q)$ in (Y_1, τ, Q) , which implies *NSMcl* $(h^{-1}(\tilde{G}, Q))$ is a *NSMcs* in (Y_1, τ, Q) . Hence, *NSMcl* $(h^{-1}(\tilde{G}, Q))$ is a *NSMcs* in (Y_1, τ, Q) . This implies that $(h^{-1})^{-1}(NSMcl(h^{-1}(\tilde{G}, Q))) = h(NSMcl(h^{-1}(\tilde{G}, Q)))$. Therefore, *NSMcl* (\tilde{G}, Q) $\subseteq NSMcl(h(NSMcl(h^{-1}(\tilde{G}, Q)))) = h(NSMcl(h^{-1}(\tilde{G}, Q)))$. Therefore, *NSMcl* (\tilde{G}, Q) $\subseteq NSMcl(h(NSMcl(h^{-1}(\tilde{G}, Q)))) = h(NSMcl(h^{-1}(\tilde{G}, Q)))$, since h^{-1} is a *NS MIrr* mapping. Hence, $h^{-1}(NSMcl(\tilde{G}, Q)) \subseteq h^{-1}(h(NSMcl(h^{-1}(\tilde{G}, Q)))) = NSMcl(h^{-1}(\tilde{G}, Q))$. That is, $h^{-1}(NSMcl(\tilde{G}, Q)) \subseteq NSMcl(h^{-1}(\tilde{G}, Q))$. Hence, *NSMcl* $(h^{-1}(\tilde{G}, Q)) = h^{-1}(NSMcl(\tilde{G}, Q))$.

Theorem 6.4. If $h : (Y_1, \tau, Q) \to (Y_2, \sigma, Q)$ and $g : (Y_2, \sigma, Q) \to (Y_3, \rho, Q)$ are NSMCHom's, then $g \circ h$ is a NSMCHom.

Proof. Let h and g be two NSMCHom's. Assume (\tilde{G}, Q) is a NSMcs in (Y_3, ρ, Q) . Then, $g^{-1}(\tilde{G}, Q)$ is a NSMcs in (Y_2, σ, Q) . Then, by hypothesis, $h^{-1}(g^{-1}(\tilde{G}, Q))$ is a NSMcs in (Y_1, τ, Q) . Hence, $g \circ h$ is a NSMIrr mapping. Now, let (\tilde{H}, Q) be a NSMcs in (Y_1, τ, Q) . Then, by presumption, $h(\tilde{H}, Q)$ is a NSMcs in (Y_2, σ, Q) . Then, by hypothesis, $g(h(\tilde{H}, Q))$ is a NSMcs in (Y_3, ρ, Q) . This implies that $g \circ h$ is a NSMIrr mapping. Hence, $g \circ h$ is a NSMCrbox.

7. Conclusion

In this paper, the concepts of NSMO and a NSMC mappings in NSts were discussed. Furthermore, the work was extended to include NSHom, NSMHom and $NSMT_{\frac{1}{2}}$ -space. In addition, the study demonstrated NSMCHom and derived some of its related characteristics. In future, the research is to be investigate on

neutrosophic soft M-compactness, neutrosophic soft M-connectedness and neutrosophic soft contra M-continuous functions.

References

- [1] Acikgoz A., Esenbel F., Neutrosophic soft δ -topology and neutrosophic soft compactness, AIP Conference Proceedings, 2183 (2019), 030002.
- [2] Atanassov K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- [3] Bera T., Mahapatra N. K., Introduction to neutrosophic soft topological space, Opsearch, 54 (2017), 841-867.
- [4] Chang C. L., Fuzzy topological space, J. Math. Anal. Appl., 24 (1968), 182-190.
- [5] Gunduz Aras C., Bayramov S., Neutrosophic Soft Continuity in Neutrosophic Soft Topological Spaces, Filomat, 34 (10) (2020), 3495-3506.
- [6] Coker D., An introduction to intuitionistic topological spaces, Fuzzy sets and systems, 88 (1997), 81-89.
- [7] Deli I., Broumi S., Neutrosophic soft relations and some properties, Ann Fuzzy Math Inform, 9 (2015), 169-182.
- [8] El-Maghrabi A. I., Al-Juhani M. A., M open sets in topological spaces, Pioneer J. Math. Sci., 4 (2) (2011), 213-230.
- [9] Evanzalin Ebenanjar P., Jude Immaculate H., Sivaranjani K., Introduction to neutrosophic soft topological spatial region, Neutrosophic Sets and Systems, 31 (2020), 297-304.
- [10] Jeeva D., Vadivel A., Sivakumar D., Contra *M*-Continuous Maps in Neutrosophic Soft Topological Spaces, International Journal of Neutrosophic Science, 20 (3) (2023), 98-106.
- [11] Kalaiyarasan V., Tamilselvan S., Vadivel A., John Sundar C., Normal spaces associated with fuzzy nano *M*-open sets and its application, Journal of Mathematics and Computer Science, 29 (2) (2023), 156-166.
- [12] Maji P. K., Neutrosophic soft set, Ann Fuzzy Math Inform, 5 (2013), 157-168.

- [13] Molodtsov D., Soft set theory-first results, Comput Math Appl, 37 (1999), 19-31.
- [14] Revathi P., Chitirakala K., Vadivel A., Soft *e*-separation axioms in neutrosophic soft topological spaces, Journal of Physics: Conference Series, 2070 (2021), 012028.
- [15] Revathi P., Chitirakala K., Vadivel A., Neutrosophic Soft e-Open Maps, Neutrosophic Soft e-Closed Maps and Neutrosophic Soft e-Homeomorphisms in Neutrosophic Soft Topological Spaces, Springer Proceedings in Mathematics and Statistics, 384 (2022), 47-58.
- [16] Salama A. A., Smarandache F., Neutrosophic crisp set theory, Educational Publisher, Columbus, Ohio, USA, 2015.
- [17] Salama A. A., Alblowi S. A., Neutrosophic Set and Neutrosophic Topological Spaces, IOSR Journal of Mathematics, 3 (4) (2012), 31-35.
- [18] Shabir M., Naz M., On soft topological spaces, Comput Math Appl, 61 (2011), 1786-1799.
- [19] Smarandache F., Neutrosophic set: A generalization of the intuitionistic fuzzy sets, Inter. J. Pure Appl. Math., 24 (2005), 287-297.
- [20] Vadivel A., John Sundar C., Saraswathi K., Tamilselvan S., Neutrosophic Nano M Open Sets, International Journal of Neutrosophic Science, 19 (1) (2022), 132-147.
- [21] Zadeh L. A., Fuzzy sets, Information and control, 8 (1965), 338-353.