South East Asian J. of Mathematics and Mathematical Sciences Vol. 19, No. 1 (2023), pp. 361-366 DOI: 10.56827/SEAJMMS.2023.1901.28 ISSN (Onli

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

FUZZY T_q-SPACES

K. Balasubramaniyan and R. Prabhakaran*

Department of Mathematics, Annamalai University, Annamalai Nagar - 608002, Cuddalore, Tamil Nadu, INDIA

E-mail : kgbalumaths@gmail.com

*Department of Mathematics, Arignar Anna Government Arts College, Vadachennimalai - 636121, Salem, Tamil Nadu, INDIA

E-mail : pkraviprabha@gmail.com

(Received: Feb. 08, 2023 Accepted: Apr. 24, 2023 Published: Apr. 30, 2023)

Abstract: In this paper, we introduce and study the concepts of fuzzy $T\tilde{g}$ -spaces, fuzzy $gT_{\tilde{g}}$ -spaces and their properties are obtain. The relations between $T_{\tilde{g}}$ -spaces, fuzzy $gT_{\tilde{g}}$ -spaces and other fuzzy spaces are given. Also many suitable examples are given.

Keywords and Phrases: Fuzzy \tilde{g} -closed sets, fuzzy $T_{\tilde{g}}$ -spaces and fuzzy $gT_{\tilde{g}}$ -spaces.

2020 Mathematics Subject Classification: 54A05, 54A10, 54C08, 54C10.

1. Introduction

In the year 1965, Zadeh [18] introduced and studied the concept of a fuzzy subset. Following research in this area and related activities, many branches of science and engineering have found applications. Chang [5] introduced and studied fuzzy. Many researchers have contributed to the development of fuzzy topological spaces, for example Azad [1], Wong [16], Tirpahy [14], Dutta [6] and Sarma [10] and so on. The concepts of image and inverse image of a fuzzy set under a function are included, as are the properties demonstrated by Chang [5] and Warren [15].

The basic concepts and results on fuzzy topological spaces from the work of Chang [5], Wong [16] and Malghan [8] are extended.

2. Preliminaries

Definition 2.1. A fuzzy subset A of a fuzzy topological space (X, τ) is called:

- 1. fuzzy semi-open set [1] if $A \leq cl(int(A))$.
- 2. fuzzy α -open set [4] if $A \leq int(cl(int(A)))$.
- 3. fuzzy semi-preopen set [13] if $A \leq cl(int(cl(A)))$.
- 4. fuzzy regular open set [1] if A = int(cl(A)).

The complements of the above mentioned fuzzy open sets are called their respective fuzzy closed sets.

The operators namely, fuzzy semi-closure [17], fuzzy α -closure [9], fuzzy semipreclosure [17] in (X, F_{τ}) .

Definition 2.2. A fuzzy subset A of a fuzzy topological space (X, τ) is called:

- 1. a fuzzy generalized semi-closed (briefly fgs-closed) set [7] if $scl(A) \leq U$ whenever $A \leq U$ and U is fuzzy open in (X, τ) . The complement of fgs-closed set is called fgs-open set;
- 2. a fuzzy α -generalized closed (briefly f α g-closed) set [11] if α cl(A) $\leq U$ whenever $A \leq U$ and U is fuzzy open in (X, τ) . The complement of f α g-closed set is called f α g-open set;
- 3. a fuzzy ω -closed set (briefly f ω -closed) [12] if $cl(A) \leq U$ whenever $A \leq U$ and U is fuzzy semi-open in (X, τ) . The complement of f ω -closed set is called f ω -open set;
- 4. a fuzzy \tilde{g} -closed set (shortly denotes $f\tilde{g}$ -closed) [3] if $cl(H) \leq U$ whenever $H \leq U$ and U is fsg-open.

The complements of the above mentioned fuzzy closed sets are called their respective fuzzy open sets.

Definition 2.3. A fts (X, τ) is called fuzzy $T_{1/2}$ -space [2] if every fg-closed set in it is fuzzy closed.

3. On Fuzzy $T_{\tilde{g}}$ -spaces

We introduce the following definitions.

Definition 3.1. A fuzzy topological space (X, F_{τ}) is said to be a

- 1. fuzzy $T\omega$ -space if each $f\omega$ -closed set in it is fuzzy closed.
- 2. fuzzy $T\tilde{g}$ -space if each $f\tilde{g}$ -closed set in it is fuzzy closed.
- 3. fuzzy αT_b -space if each $f \alpha g$ -closed set in it is fuzzy closed.
- 4. fuzzy T_b -space if each fgs-closed set in it is fuzzy closed.

Example 3.2. Consider $X = \{m, n\}$ with $F_{\tau} = \{0_X, \eta, 1_X\}$ where η is a fuzzy set in X defined by $\eta(m) = 0.5, \eta(n) = 0.4$. Then (X, F_{τ}) is a fuzzy topological space. This verifies that (X, F_{τ}) is a fuzzy $T\omega$ space.

Example 3.3. Consider $X = \{m, n\}$ with $F_{\tau} = \{0_X, \eta, 1_X\}$ where η is a fuzzy set in X defined by $\eta(m) = 0.5, \eta(n) = 0.5$. Then (X, F_{τ}) is a fuzzy topological space. This verifies that (X, F_{τ}) is a fuzzy $T\tilde{g}$ space.

Example 3.4. Consider $X = \{m, n\}$ with $F_{\tau} = \{0_X, \eta, \mu, 1_X\}$ where η, μ are fuzzy sets in X defined by $\eta(m) = 0.4, \eta(n) = 0.4, \mu(m) = 0.6, \mu(n) = 0.6$. Then (X, F_{τ}) is a fuzzy topological space. This verifies (X, F_{τ}) is a fuzzy αT_b -space.

Example 3.5. Consider $X = \{m, n\}$ with $F_{\tau} = \{0_X, \eta, 1_X\}$ where η is a fuzzy set in X defined by $\eta(m) = 0.5, \eta(n) = 0.5$. This verifies (X, F_{τ}) is a fuzzy topological space. This verifies that (X, F_{τ}) is a fuzzy T_b -space.

Example 3.6. Consider $X = \{m, n\}$ with $F_{\tau} = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(m) = 1$ and $\alpha(n) = 0$. Then (X, F_{τ}) is a fuzzy topological space. This verifies that (X, F_{τ}) is not a fuzzy $T_{\tilde{a}}$ -space.

4. Properties of Fuzzy $T_{\tilde{g}}$ -spaces

Proposition 4.1. A fuzzy $T_{1/2}$ -space is fuzzy $T_{\tilde{g}}$ -space.

Proof. If *H* is a $f\tilde{g}$ -closed set of (X, F_{τ}) . Each $f\tilde{g}$ -closed set is fg-closed. Since (X, F_{τ}) is a fuzzy $T_{1/2}$ -space, then *H* is fuzzy closed. Which verifies that (X, F_{τ}) is a fuzzy $T_{\tilde{g}}$ -Space.

Remark 4.2. The following example shows that the converse of Proposition 4.1 is not true in general.

Example 4.3. Consider $X = \{m, n\}$ with $F_{\tau} = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(m) = 0.5, \alpha(n) = 0.5$. Then (X, F_{τ}) is a fuzzy topological space. This verifies that (X, F_{τ}) is a fuzzy $T_{\tilde{q}}$ -space but not fuzzy $T_{1/2}$ -space.

Proposition 4.4. A fuzzy T_{ω} -space is fuzzy $T_{\tilde{g}}$ -space.

Proof. If H is a $f\tilde{g}$ -closed set of (X, F_{τ}) . Each $f\tilde{g}$ -closed set is $f\omega$ -closed. Since (X, F_{τ}) is a fuzzy T_{ω} -space, then H is fuzzy closed. This verifies that (X, F_{τ}) is a

fuzzy $T_{\tilde{g}}$ -space.

Remark 4.5. The following example shows that the converse of Proposition 4.4 is not true in general.

Example 4.6. Consider $X = \{m, n\}$ with $F_{\tau} = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(m) = 0.5, \alpha(n) = 0.5$. Then (X, F_{τ}) is a fuzzy topological space. This verifies that (X, F_{τ}) is fuzzy $T_{\bar{q}}$ -space but not a fuzzy T_{ω} -space.

Proposition 4.7. A fuzzy αT_b -space is fuzzy $T_{\tilde{q}}$ -space.

Proof. If H is a $f\tilde{g}$ -closed set of (X, F_{τ}) . Each $f\tilde{g}$ -closed set is $f\alpha g$ -closed. Since (X, F_{τ}) is a fuzzy αT_b -space, then H is fuzzy closed. This verifies that (X, F_{τ}) is fuzzy $T_{\tilde{g}}$ -space.

Remark 4.8. The following example shows that the converse of Proposition 4.7 is not true in general.

Example 4.9. Consider $X = \{m, n\}$ with $F_{\tau} = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(m) = 0.5, \alpha(n) = 0.5$. Then (X, F_{τ}) is a fuzzy topological space. This verifies that (X, F_{τ}) is fuzzy $T_{\tilde{g}}$ -space but not a fuzzy αT_b -space.

5. Fuzzy $gT_{\tilde{g}}$ -spaces

Definition 5.1. A fuzzy topological space (X, F_{τ}) is said be a fuzzy $gT_{\tilde{g}}$ -space if each fg-closed set in $f\tilde{g}$ -closed.

Example 5.2. Consider $X = \{m, n\}$ with $F_{\tau} = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(m) = \alpha(n) = 0.5$. Then (X, F_{τ}) is a fuzzy topological space. This verifies that (X, F_{τ}) is a fuzzy $gT_{\tilde{g}}$ -space.

Example 5.3. Consider $X = \{m, n\}$ with $F_{\tau} = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(m) = 1$ and $\alpha(n) = 0$. It follows that (X, F_{τ}) is not a fuzzy $gT_{\tilde{g}}$ -space.

Proposition 5.4. A fuzzy $T_{1/2}$ -space is fuzzy $gT_{\tilde{g}}$ -space.

Proof. Let *H* be any *fg*-closed set of (X, F_{τ}) . Since (X, F_{τ}) is a fuzzy $T_{1/2}$ space, *H* is fuzzy closed. Hence (X, F_{τ}) is a fuzzy $gT_{\tilde{g}}$ -space.

Remark 5.5. The following example shows that the converse of Proposition 5.4 is not true in general.

Example 5.6. Consider $X = \{m, n\}$ with $F_{\tau} = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(m) = 0.5$, $\alpha(n) = 0.5$. Thus (X, F_{τ}) is a fuzzy $gT_{\tilde{g}}$ -space but not fuzzy $T_{1/2}$ -space.

Remark 5.7. The following example shows that the concepts of fuzzy $T\tilde{g}$ -space

and the concepts of fuzzy $gT_{\tilde{q}}$ -space are independent.

Example 5.8.

- 1. Consider $X = \{m, n\}$ with $F_{\tau} = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(m) = 0.6$ and $\alpha(n) = 0.6$. Then (X, F_{τ}) is a fuzzy topological space. This verifies that (X, F_{τ}) is fuzzy $gT_{\tilde{q}}$ -space but not a fuzzy $T_{\tilde{q}}$ -space.
- 2. Consider $X = \{m, n\}$ with $F_{\tau} = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(m) = 0.5, \alpha(n) = 0.5$. Thus (X, F_{τ}) is a fuzzy $T_{\tilde{g}}$ -space but not fuzzy $gT_{\tilde{g}}$ -space.

Theorem 5.9. A fuzzy topological space (X, F_{τ}) , then the following statements are equivalent.

- 1. (X, F_{τ}) is a fuzzy $T_{1/2}$ -space
- 2. (X, F_{τ}) is fuzzy $T_{\tilde{g}}$ -space and fuzzy $gT_{\tilde{g}}$ -space.

Proof. (1) \Rightarrow (2): It follows from the Proposition 4.1 and the Proposition 5.4.

 $(2) \Rightarrow (1)$: Assume that X is both a fuzzy $T_{\tilde{g}}$ -space and fuzzy $gT_{\tilde{g}}$ -space. Let H be a fg-closed set of (X, F_{τ}) . Since (X, F_{τ}) is fuzzy $gT_{\tilde{g}}$ -space, H is a $f\tilde{g}$ -closed set of (X, F_{τ}) . Since (X, F_{τ}) is a fuzzy $T_{\tilde{g}}$ -space, H is a fuzzy closed set of (X, F_{τ}) . Therefore (X, F_{τ}) is a fuzzy $T_{1/2}$ -space.

References

- Azad K. K., On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal., 82 (1) (1981), 14-32.
- [2] Balasubramanian G. and Sundaram P., On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems, 86 (1) (1997), 93-100.
- [3] Balasubramaniyan K. and Prabhakaran R., On fuzzy ğ-closed sets and it's properties, Advances in Mathematics: Scientific Journal, 9 (4) (2020), 2167-2170.
- [4] Bin Shahna A. S., On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems, 44 (2) (1991), 303-308.
- [5] Chang C. L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.

- [6] Dutta A. and Tripathy B. C., On fuzzy b-θ-open sets in fuzzy topological space, Journal of Intelligent and Fuzzy Systems, 32 (1) (2017), 137-139.
- [7] Maki H., Fukutaka T., Kojima M. and Harade H., Generalized closed sets in fuzzy topological spaces, I. Meeting on topological Spaces, Theory and Appl., (1998), 23-26.
- [8] Malghan S. R. and Benchalli S. S., Open maps, closed maps and local compactness in fuzzy topological spaces, Journal of Mathematical Analysis and Applications, 990 (1984), 338-349.
- [9] Prasad R., Thakur S. S. and Saraf R. K., Fuzzy α-irresolute mappings, J. Fuzzy Math., 2 (2) (1994), 335-339.
- [10] Sarma D. J. and Tripathy B. C., Fuzzy semi-pre quasi neighborhood structure, Afrika Matematika, 30 (1-2) (2019), 217-221.
- [11] Saraf R. K., Caldas M. and Mishra S., Results via Fg α -Closed sets and F α g-closed sets, preprint.
- [12] Sudha M., Roja E. and Uma M. K., Slightly fuzzy ω -continuous mappings, Int. Journal of Math Analysis, 5 (16) (2011), 779-787.
- [13] Thakur S. S. and Singh S., On fuzzy semi pre-open sets and fuzzy semi pre continuity, Fuzzy Sets and Systems, 98 (3) (1998), 383-391.
- [14] Tripathy B. C. and Debnath S., γ -open sets and γ -continuous mappings in fuzzy bitopological spaces, Journal of Intelligent and Fuzzy Systems, 24 (3) (2013), 631-635.
- [15] Warren R. H., Neighborhoods, bases and continuity in fuzzy topological spaces, The Rocky Mountain J. Math., 8 (3) (1978), 459-470.
- [16] Wong C. K., Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl., 46 (1974), 316-328.
- [17] Yalvac T. H., semi-interior and Semi-closure of a fuzzy set, J. Math. Anal. Appl., 132 (2) (1988), 356-364.
- [18] Zadeh L. A., Fuzzy sets, Information and Control, 8 (1965), 338-353.