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Abstract: The present paper deals with the FRW-Cosmological Model of uni-
verse for Wy flat perfect fluid space time. Einstein field equations with variable
cosmological constant (A) has been obtained for such spacetime and in order to
get the complete cosmological solution the law of variation for Hubble’s parameter
is considered. A new class of solution have been discussed for the Einstein field
equations with variable cosmological constant in which the pressure, energy den-
sity, and cosmological constant A are found to be decreasing function of cosmic
time. The physical and kinematical properties of models are also discussed.
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1. Introduction

The study of W, curvature tensor in differentiable manifolds and general relativ-

ity has attracted attention of researchers from many years.Pokhariyal and Mishra

[32] have introduced this new curvature tensor and studies its properties. This (0,4)

type tensor denoted by W,, For the shake of convenience, we shall denote this
tensor by W and is defined as

Whijk = Rpiji +

1
m[gthik — 9i; Rnk] (1)
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where Rp;i, is the Riemann curvature tensor and R;; the Ricci-tensor. A space-
time for which all components of W}, vanishes at each point is said to be of W5
flatness. Zafar Ahsan and Musavvir Ali [3] have studied the W5 curvature tensor
for the spacetimes of general relativity. FRW- space time has been studied by
several researchers in different physical and geometrical aspects. FRW- space time
describe non-static evolution of universe for W, flatness (discussed in this work).
Motivated by the work of [32, 3], in this paper we have made a study of the FRW-
cosmological model for W5 flatness by considering perfect fluid as source of mat-
ter distribution.Here, we look at Robertson-Walker space time, where the source
of matter distribution is a perfect fluid, and Einstein’s field equations for W5 flat
space time with a variable cosmological term A. The cosmological models with
dynamical terms A are gaining popularity from many years because they naturally
address the issue of the cosmological constant problem.

The cosmos’s current, accelerated expansion suggests that an unidentified dark
energy (DE), an unusual energy with negative pressure, is in charge of our uni-
verse. The most basic DE candidate is cosmic constant’s mathematical equivalent
to the vacuum energy density. Since then, the cosmological constant A has been
a motivating factor in gravitational theory. In order to create the gravitational
repulsion required to support a static world, Einstein first proposed it in 1917.
Since the Hubble constant was found, it has been assumed that the universe is
expanding. Additionally, Friedmann [17] was able to create an expanding universe
without the requirement for the phrase cosmological constant. In his equations
for the gravitational field, Einstein acknowledged that a term was not necessary in
any particular way. Zel’dovich [50] reignited the cosmological constant A debate
by connecting it to the vacuum energy density brought on by quantum fluctua-
tions. In this manner, the maintenance of the cosmological constant A was taking
place gradually and gaining solid theoretical support. Since the empirical upper
bound was so great (A < 1072° Planck units) and there was no direct astronomical
evidence for before 1998, several particle physicists hypothesised that some under-
lying principle must compel its value to be exactly zero. Two separate teams, led
by Riess et al. [40] and Perlmutter et al. [31], have made similar attempts to
demonstrate the universe’s expansion rate through the use of type la supernovae.
With A ~ 1.7X107'?! Planck units, this finding offered the first definite proof that
is greater than 0. The research established today holds that the finest appropriate
explanation for recent discoveries that the universe appears to be expanding and
speeding up involves a type of repulsive pressure, known as DE, which operates
through the cosmological constant.

The simplest and most popular candidate to describe this exotic component
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among the many options is the cosmological constant, which functions in Ein-
stein’s field equation as an source with p = —w that is homogeneous and isotropic.
Due to its excellent approximation of the current astronomical data, the cosmo-
logical constant holds a privileged position in the hierarchy of DE models. The
applicability of a nonzero cosmological constant in relation to the observations was
investigated by Krauss and Turner [23] and Dreitlein [14]. According to research by
Linde [25], cosmological constant A is time-dependent, a function of temperature,
and connected to the spontaneous breaking process. Some authors have looked
into the cosmological models with decaying vacuum energy density A [9], [43], [37].
Present universe is homogeneous and isotropic and going on accelerating expansion
confirmed by many observations [[39], [44], [15], [27], [21], [22], [23], [46], [47], [1],
[30], [17]]. Many authors consider Einstein field equation with cosmological con-
stant and find the solutions [[11], [18], [33], [35], [40], 41]. Recently Goswami et. al
[19] investigated FRW dark energy cosmological model with hybrid expansion law.
Dixit et. al [13] presented RHDE models in FRW Universe with two IR cut-offs
with redshift parametrization. Ram Bharosha Tiwari and Sudhir Kumar Srivastva
[45] investigated FRW-Cosmological Model of universe filled with dark matter for
concircularly flat spacetime and Ujjal Debnath [12] investigated gravitational waves
for some dark energy models in FRW Universe. Rakesh Raushan and R. Chaubey
[38] investigated Dynamic evolution of FRW cosmology using variable A in Lyra
geometry. Iver Brevik et. al [10] studied the FRW cosmological model assuming
that the cosmic fluid is heterogeneous, viscous, and coupled with dark matter.
The portions of the current paper are as follows. The discussion of W5 tensor
and some basic equations for FRW- space time are presented in next section (2). In
section (3) the class of solution of field equations has been discussed. To obtained an
exact solution to such field equations , an attempt has been made to formulate the
law of variation for Hubble’s parameter. The law together with the field equations
exhibits cosmological solutions in two different cases(subsection (3.1) and (3.2)).

2. Basic Equations

2.1. W, Tensor in FRW- space Time
The homogeneous and isotropic universe FRW - space time is defined by [49]
the line element

ds* = —dt* + a*(t)[(1 — kr®)~tdr® 4 r2d6? + r?sin*0d¢?) (2)

Where a is cosmic scale factor and function of cosmic time ¢ and k a constant
known as curvature constant which have the value +1,0 or -1 for closed, flat and
open universe. The Hubble’s parameter and the spacial proper volume for this
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model are n
2 3 a

V(t) = 2n%a°, H(t)= o) (3)
The vanishing of the covariant divergence of the energy momentum tensor and the
Bianchi-identity for the Einstein tensor R;; — g gi; in general relativity suggest that
the cosmic term A is constant.In the theory of the variable A term, one can either
add new terms to the field equation’s left side to cancel the nonzero divergence of
Agi; ([4, 48]) or treat A as a matter source and move it to the right side, as in
[50], so that the energy-momentum conservation is understood as 77 = 0 where
15 =T — 8% gij- For a particular theory, these two approaches are obviously equal
[28]. Here we adopt the latter strategy and take into account the perfect fluid
energy momentum tensor with A as

. A
T = (p+ p)ugu; + (p — g)gz‘j (4)
And the equation of state for perfect fluid

p=wp 0<w<1 (5)

Where p and p are the perfect fluid energy density and pressure respectively and
the four velocity vector we consider as u; = (1,0,0,0).
The Einstein field equations of perfect fluid are

1 *k
Rij — §ng = —877'7_;]» (6)

The Ws curvature tensor for four dimensional spacetime is

1
Whijk; = Rm‘jk + g[gthik — ginhk] (7)
Wik = Rijy, + 3107 Rir. — i Ry

A space time is said to be Wa-flat if its Ws-curvature tensor vanishes. For Ws-flat
spacetime above equation leads to

Ry, = =307 Riv — 9i; 1]

)

which clearly shows that a Ws- flat spacetime is of constant curvature. which on
contraction over h and k yields

_ R
Rij = 1 9ij
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Thus

which indicate that W5 - flat space-time is Einstein space.

It is also known that spaces with constant curvature play an important role in
cosmology. The simplest model of the universe is that the universe is isotropic and
of the same kind. This is known as the cosmological principle. Translated into the
language of Riemannian geometry, this principle asserts that the three-dimensional
position space is a space of constant curvature whose curvature depends on time [2].
The cosmological solution to the Einstein equation involving a three-dimensional
space-like surface of constant curvature is the Friedman-Robertson-Walker metric.
Therefore, we consider the FRW cosmological model for Ws-flat space-time.

Thus for W, flat spacetime, the Einstein field equations (6) reduce to the form

which yield the following independent equations :

3ai = —(8mp + N)a® (10)
ai + 2a* + 2k = (87p — A)a? (11)
Equivalently the above equation can be written as
d  a
—(=)=ka?—4 12
() = ka m(p+ p) (12)

where the dot represents the derivation with respect to cosmic time ¢.

The Einstein field equations (10) and (11) are two equations with four unknowns
a, p, p, and A. Therefore, the complete solution of the system with (5) requires
another relation, which we will find in the next section by applying the new law of
variation of the Hubble parameter.

3. Class of Cosmological Solutions

The solution of the field equation can be obtained by applying the law of vari-
ation of the Hubble parameter. It is interesting to note that in order to get exact
solution of Einstein field equations this law was first introduced by Berman [5]
in his FRW model of universe that gives a constant value for the deceleration
parameter. In general, Einstein and Brans-Dicke theories are accepted for FRW
metrics with constant deceleration parameters. Berman [5], Berman and Gomide
(6], Maharaja and Naidu [26], Johri and Desikan [20], Pradhan and Viswakarma
[34], many researchers like Rahman et al., [37], R. Kumar and S. K. Srivastava [24]
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obtained a new cosmological model with constant deceleration parameters. So we
also considered the same law for our models.
The law of variation of the Hubble parameter in FRW spacetime is

H=aa™" (13)

Where >0 and n > 0 are constants.
The Deceleration parameter ¢ is define by

4= ) (14)
from (3) and (13) we obtained
a(t) = (nat+ A))»  for  n#£0 (15)
a(t) = Age™ for  n=0 (16)
Here A; and As are constant of integration.
Now using (15) and (16) into (14), we get
g=n-—1 or g=—1 (17)

This indicates that the deceleration parameters for this model are constant.
We are now describing a new cosmological model of the universe about different
values of n and their physical behaviour.

3.1. Case (i) Cosmological Model for n # 0

Using (15) into the Einstein field equation (10) and (11) and solving with (5) we
get the expression for the energy density p, pressure p and cosmological constant
A for the models as

1

p= m[nQQ(nat + A2 4 k(nat + Al)_TQ} (18)
w —2
p= m[noﬂ(nat + A2+ k(nat + Ay) = | (19)
—1 4k —2
A:3a2(nat—|—A1)’2(nZ+1 —1) - w+1(no¢+Al)7 (20)

It is clear from the above that the equation (15) and (18)-(20) satisfy the equa-
tion (12) correspondingly and therefore this shows the exact solution of Einstein
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field equations. For this reason in the light of expression (15), the model for uni-
verse which the exact Ws-flat is given as

ds® = —dt* + (nat + A1>%[(1 — kr®)"Ydr? + r?d0” + r*sin®0d¢?] (21)

The model has expression for some other cosmological parameters.
The parameter expansion scalar © and spatial volume V' are given as

O(t) =u}; = a(nat + A;) ™! (22)

V(t) = 2r%(nat + Ay« (23)

The cosmological redshift and scale factor are directly related. The most significant
knowledge regarding the cosmic scale factor is discovered by looking at frequency
variations in light that is emitted by far-off astronomical bodies. Such a model’s
cosmological redshift is 1 4+ z = 2”;"“; hence

TLO&tl + Al 1

n—1 1 >1 24
nat2+A2 ! 2 ( )

and Hubble’s time is defined as the reciprocal of the Hubble constant, 1/H.
Hy' = a(naty + Ay) (25)

where ty represent the current age of the universe.
3.2. Physical Behaviour of the Model

We see that at t = % cosmic scale factor and spatial volume vanishes and the
energy density p, pressure p, cosmological constant A, the Hubble’s parameters H,
expansion scalar 6, becomes infinite. The universe start at ¢t = A1 with volume
V' = 0 then expands with infinite velocity. It shows that this model has singularity
at t = n‘il. Vanishing of scalar factor at t = =21 indicate that this singularity
is of point type singularity.The energy density p, pressure p,cosmological constant
A becomes proportional to t=2 at the value of A; = 0 and this model agree with
Berman and Som [7] model. Again as we take n = a = 1 with A; = 0, the current
age of the universe becomes equal to the Hubble’ time.

As time t increases cosmic scale factor and spatial volume increases and the
energy density p, pressure p, cosmological constant A, the Hubble’s parameters
H, expansion scalar 0, decreases. Therefore, the rate of expansion slows with
time. As t — oo, the cosmological parameters cosmic scale factor and spatial
volume vanishes and the energy density p, pressure p, cosmological constant A, the
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Hubble’s parameters H, expansion scalar ¢, vanishes which shows empty universe.
3.3. Case (ii) Cosmological Model for n =0

Substituting (14) into the Einstein field equations (10) and (11) and solving with
(5) yields energy density p, pressure p and cosmological constant A term in the

model
k €—2at

- 26
P~ Bir(1 +w) (26)
kwe =2
SRk 27
P= a1+ w) (27)
2]{3 —2at
A = —3[a? ‘ (28)

i 3A%4rm(1 + w)]

Since the solutions (15) and (18)-(20) equally satisfy the equation (12), they rep-
resent exact solutions to the Einstein field equations. Therefore, in light of the
equation (15), the exact W5 flat model of the universe.

ds® = —dt* + (A2e***[(1 — kr®)~tdr? + r?d6* 4 r?sin*0d¢?] (29)

Here we found formulas for other cosmic parameters of the model.
The expansion term © and spatial volume of universe V' of the model are

o(t) = 3a (30)

V(t) = 2% Al (31)

The scale factor and the cosmological redshift are closely related. The studies
of frequency shifts in the light emitted by distant celestial bodies provide the most
significant knowledge regarding the cosmic scale factor. For a model like this, the
cosmic redshift is 1 + z = “T;L‘”“ hence

Gthen

z = Ga(tl_t2) —1 t1 > 1o (32)

and also the Hubble’s time which is defined as the reciprocal of the Hubble constant,
1/H,.
Hi'=at (33)
3.4. Physical Behaviour of the Model
At t = 0 the cosmological parameters,the cosmic scale factor a, spatial vol-

ume V', energy density p, pressure p, are constant. Therefore, the universe begins
to evolve with a constant volume and expands exponentially. The model is free
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from initial singularity. It is interesting to note that the universe exhibits uniform
expansion because the Hubble parameter and the expansion scalar are constant
throughout the universe’s evolution. As t increases the cosmic scale factor, spatial
volume, the energy density, pressure, increase exponentially.

Universe become empty for the value of curvature index k = 0 as energy density
and pressure becomes zero. Ast — oo, the cosmic scalar factor and spatial volumes
grew infinitely, and p, p, and A approaches to zero. This indicates that the late
universe is dominated by vacuum energy, suggesting an accelerated expansion of
the universe which is also satisfied with recent data.

4. Concluding Remarks

In this paper we have studied the FRW cosmological model of W5 flat spacetime
filled with perfect fluid and variable cosmological constant A, using variations in
Hubble’s parameter law that give constant values for deceleration parameter. This
article is divided into two parts. The first part examines the universe model of
n # 0. This model exhibit expansion of the power law of the universe, where as
at t = _n—zl the model has a point singularity and the energy density, pressure, and
A terms diverge at the initial singularity. The universe begins to evolve from zero
volume at t = _—‘21 with an infinite expansion rate, and as t increases the cosmo-
logical parameters the cosmic scale factor and spatial volume increase whereas the
expansion scalar decreases.
In the second case n = 0 the universe at initial epoch has constant energy den-
sity, pressure and cosmological constant and start expanding exponentially with
increase of time.
The universe becomes empty when energy density and pressure tends to zero as
t — oo in both cases. It is interesting to see that our model becomes similar to [24]
although some cosmological parameters are different as we consider different space-
time. As our models shows that the universe becomes empty when energy density
and pressure tends to zero as t — oo in both cases this quite indicate that some
modification required according to Weyl’s postulates and geometric properties of
different curvature tensors defined by Pokhriyal and Mishra [32] and its application
in relativity and cosmology.
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