
South East Asian J. of Mathematics and Mathematical Sciences
Vol. 19, No. 1 (2023), pp. 287-300

DOI: 10.56827/SEAJMMS.2023.1901.24 ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

PARACOMPACTNESS IN GENERALIZED TOPOLOGICAL
SPACES

Bushra Beevi K. K. and Baby Chacko*

Department of Mathematics,
Government Brennen College,

Thalassery - 670106, Kerala, INDIA

E-mail : bushrabkk@gmail.com

*Department of Mathematics,
St. Joseph’s College, Devagiri, Kerala, INDIA

E-mail : babychacko@rediffmail.com

(Received: Feb. 02, 2022 Accepted: Apr. 25, 2023 Published: Apr. 30, 2023)
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1. Introduction
Topological apace has been generalized in many ways, some of them are supra

topological space [10] and generalized topological space [8]. A. S. Mashhour in-
troduce the supra topological spaces in [10] and discuss about supra open sets,
neighborhood, continuity etc in supra toplogical spaces. T.M. Al-Shami introduces
and discuss about some fundamental properties of supra completly Hausdorff and
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completly regular spaces[1]. He also introduced supra semi compact (supra semi
Lindeloff) spaces, almost supra semi compact (almost supra semi Lindeloff) spaces
and mildly supra semi compact (mildly supra semi Lindeloff) spaces and extended
his study into paracompactness and some wheredense properties in supra topolog-
ical spaces [3, 4, 6].

Generalized topological space is an important generalization of topological spaces.
Cs

′
asz

′
ar and others are worked so many years on the generalized topological

spaces and they develop a basic theory for them. Especially Cs
′
asz

′
ar develop

this theory using some basic operators. For this he consider all monotonic func-
tions from power set of X to power set of X, where X is a nonempty set. The
collection of all monotonic functions is denoted by Γ(X). For γ ∈ Γ, let G =
{A ⊂ X : A ⊂ γ(A)}. Cs

′
asz

′
ar found that ϕ ∈ G and G is closed under arbitrary

union. He named such families as generalized topology and the pair (X,G) is called
generalized topological spaces [8].

In this paper we introduce the concepts like G - locally finite, σG - locally
finite properties in generalized topological spaces. Then introduce the concept
paracompactness in generalized topological spaces. There are 5 sections. Section 2
contains the preliminary ideas used in subsequent sections. In section 3 we discuss
about G - locally finite and σG - locally finite properties in generalized topology. In
section 4 introduce the main concept paracompactness in generalized topological
space and the last section is the conclusion. Here also discuss about some relation
between separation axioms and paracompactness in generalized topological spaces.

2. Preliminaries

Definition 2.1. [8] Let X be a set and exp(X) its power set. A subset G of
exp(X) is called a generalized topology (GT) on X and (X,G) is called a generalized
topological space (GTS) if G has the following properties.

1. ϕ ∈ G

2. Any union of elements of G belongs to G

Here G is also called G-topology on X.

Definition 2.2. [8] A generalized topology G is called strong if X ∈ G.
In a generalized topological space (X,G), define MG = ∪{U : U ∈ G}.

Definition 2.3. [8] A subset A of a GTS is called G-open if A ∈ G. A subset B is
called G-closed if (X/B) is G-open.
Definition 2.4. [13] The G-closure of A is denoted by CG(A) is the intersection
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of all G-closed sets containing A.

Theorem 2.1. [12] Let (X,G) be a GTS and A,B ⊂ X. Then the following
statements are hold.

1. x ∈ CG(A) if and only if x ∈ U ∈ G implies U ∩ A ̸= ϕ

2. If U, V ∈ G and U ∩ V = ϕ then CG(U) ∩ V = ϕ and U ∩ CG(V ) = ϕ

Theorem 2.2. [7] Let A, B are subsets of a GTS (X,G). Then the following
conditions are hold.

1. CG(A) is G-closed in X. More over it is the smallest G-closed set of X con-
taining A.

2. A is G-closed in X if and only if CG(A) = A.

3. CG(CG(A)) = CG(A)

4. CG(A) ∪ CG(B) ⊂ CG(A ∪B).

Definition 2.5. [13] Let (X,G) be a generalized topological space. A collection U
of subsets of X is said to be a G - cover of X if the union of elements of U equals
X.

Definition 2.6. [13] Let (X,G) be a generalized topological space. A G - subcover
of a G - cover U is a subcollection µ of U which itself a G - cover. If the elements
of U are G - open then we say that U is a G - open cover.

Definition 2.7. [13] If every G - open cover of X has a finite G - subcover then
we say that X is G - compact (generalized compact).

Definition 2.8. [7] Let (X,G) be a generalized topological space, x0 ∈ X and
N ⊂ X. Then N is said to be a generalized neighbourhood (G −neighbourhood) of
x0, if there is a G - open set V such that x0 ∈ V and V ⊂ N .

Definition 2.9. [7] Let (X,G) be a generalized topological space. Let ηx be the
set of all G -neighbourhoods of x in X. The family ηx is called the generalized
neighbourhood system at x.

Definition 2.10. [7] Let A be a subset of a generalized topological space X and y ∈
X. Then y is said to be a generalized accumulation point (G −accumulationpoint)
of A if every G - open set containing y contains atleast one point of A other than
y.
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Definition 2.11. [7] Let A be a subset of a generalized topological space X, then
the generalized derived set of A is the set of all generalized accumulation points of
A. It is denoted by A

′G.

Theorem 2.3. [7] Let A be a subset of a GTS X, then CG = A ∪ A
′G.

Definition 2.12. [11] Let (X,G) be a generalized topological space. Then X is
called a GT1 - space, if for x1, x2 are two distinct points in MG, there exists U, V ∈ G
such that x1 ∈ U, x2 /∈ U and x2 ∈ V, x1 /∈ V .

Definition 2.13. [11] A generalized topological space is said to be GT2, if x and y
are two distinct points in MG = ∪{U : U ∈ G} implies there exists two disjoint G -
open sets U and V containing x and y respectively.

Definition 2.14. [11] Let (X,G) be a generalized topological space. Then X is
said to be G - regular if for each x ∈ MG and a G - closed set F such that x /∈ F ,
there are disjoint G - open sets U and V such that x ∈ U and F ∩MG ⊂ V . If X
is GT1 and G - regular then we say that X is GT3.

Definition 2.15. [11] A generalized topological space X is said to be G - normal if
for any two G - closed sets A and B such that A∩B ∩MG = ϕ there exists disjoint
G - open sets U and V such that A ∩MG ⊂ U and B ∩MG ⊂ V . If X is GT2 and
G - normal we say that X is GT4.

For the reference of locally finite, σ - locally finite, and paracompactness. [9]

3. G - locally Finite and σG - locally Finite.

Definition 3.1. Let X be a generalized topological space. Then a family U of
subsets of X is said to be G - locally finite if for each x ∈ MG, there exists a G -
neighbourhood hood N of x which intersect only finitely many members of U .
Definition 3.2. Let X be a generalized topological space. Then a family V of
subsets of X is said to be σG - locally finite, if it can be written as the union of
countably many subfamilies each of which is G - locally finite.

Example 3.1.

1. Every finite family of subsets of a generalized topological space X is G -
locally finite.

2. Every countable family of subsets of a generalized topological space X is σG
- locally finite.

Example 3.2. Let X = R, the set of real numbers. Let G be the generalized
topology on R which is generated by the set {{n} : n ∈ N}.
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Consider U = {{1, 2, 3, ...}, {2, 3, 4, ...}, {3, 4, 5, ...}, ..., {k, k + 1, k + 2, ...}, ...} . It
is a countable collection of subsets of R. Note that G is the power set of N. Let
x ∈ MG, so x must be a member of N . There for {x} is a G - neighbourhood of x,
which intersect only finitely many members of U . So U is G - locally finite.
Also U is a countable collection, so U is σG - locally finite.

Remark 3.1. The G - locally finite and σG − locallyfinite properties are coincides
with locally finite and σ - locally finite properties in ordinary topological space if we
replace topological space with generalized topological space.

Theorem 3.1. Every G - locally finite collection of subsets of G - compact strong
GTS must be finite.
Proof. Let (X,G) be a generalized topological space. Let F = {Fa : a ∈ Λ} be
a G - locally finite family of subsets of X. For each point x ∈ X, choose a G -
open neighbourhood Ux that intersect a finite number of subsets in F . Clearly the
family of subsets {Ux : x ∈ X} is a G - open cover of X. Since X is G - compact,
this cover has a sub collection which cover X, say {Ukn : n = 1, 2, 3, ..., r}. Since
each {Uki , i = 1, 2, 3, ..., n} intersects only a finite number of subsets in F .
Suppose Uk1 intersect Fk11

, Fk12
, ..., Fk1n1

Uk2 intersect Fk21
, Fk22

, ..., Fk2n2

.

.

.

.
Ukr intersect Fkr1

, Fkr2
, ..., Fkrnl

.
If possible F is infinite, so there exist G ∈ F such that G ̸= Fkim

for each
i = 1, 2, 3, ..., r , m = 1, 2, 3, ..., l and for each Uki , i = 1, 2, 3, ...., r does not inter-
sect G. So there exist g ∈ G such that g /∈ ∪r

i=1Uki . But ∪r
i=1Uki = X. Since

g ∈ G ⊂ X and g /∈ ∪r
i=1Uki which is a contradiction. So F is infinite is wrong.

Hence F is finite.

Remark 3.2. In ordinary topological space the union of a locally finite collection
of closed subsets of a topological space is itself closed. But in generalized topological
space this result does not hold.

That is the union of G - locally finite collection of G - closed subsets need not
be G - closed.

Example 3.3. Let X = {a, b, c, d} and G = {ϕ, {c, d}, {a, d}, {a, c, d}}. Then G is
a generalized topology on X and (X,G) is a generalized topological space.

Let F = {{a, b}, {b, c}} . Since G is a finite collection, it is a G - locally finite
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collection.
But {a, b} ∪ {b, c} = {a, b, c} is not G - closed.

Lemma 3.1. For a subset A of a generalized topological space X, CG(A) = {y ∈ X
: every G - neighbourhood of y meets A nonvacuousely. }
Proof. Let ηy be the generalized neighbourhood system of y. That is ηy be the
collection of all G - neighbourhoods of y.

Let B = {y ∈ X : U ∈ ηy implies U ∩ A ̸= ϕ}.
Claim. CG(A) = B.
We have CG(A) = A ∪ A

′G. So we want to claim that A ∪ A
′G = B.

Let y ∈ A ∪ A
′G. So y ∈ A or y ∈ A

′G.
If y ∈ A, then every G - neighbourhood of y intersect A, because every G - neigh-
bourhood of y contain y and y ∈ A. So in this case y ∈ B.

Next we consider the case y ∈ A
′G. So y is a generalized accumulation point

of A. By the definition of generalized accumulation point, we see that every G -
neighbourhood of y meets A nonvacuously. So y ∈ B. Hence A ∪ A

′G ⊂ B.
Conversely let y ∈ B. If y /∈ A∪A

′G, then y /∈ CG(A) ( bcz, CG(A) = A∪A
′G ).

Since CG(A) is the smallest G - closed set containing A, we see that (X−CG(A)) is
a G - open set and so it is a G - neighbourhood of y which does not meet A. Which
is a contradiction to the fact that y ∈ B. So B ⊂ A ∪ A

′G. Hence B = CG(A).

Theorem 3.2. Let C is a G - locally finite family of subsets of a generalized topo-
logical space X. Then {CG(C) : C ∈ C} is G - locally finite.
Proof. Assume the contrary that {CG(C) : C ∈ C} is not G - locally finite. So
there exist x ∈ MG such that every G - neighbourhood of x intersect infinitely many
members of {CG(C) : C ∈ C}. By above lemma, x ∈ CG(CG(C)) for infinitely many
C ∈ C. But we have CG(CG(C)) = CG(C), there for x ∈ CG(C) for infinitely many
C ∈ C. Again by above lemma, every G - neighbourhood of x intersect infinitely
many C ∈ C.

Also x ∈ MG and given that C is G - locally finite, so there exist a G - neigh-
bourhood Nx of x which intersect only finitely many members of C, which is a
contradiction, since we just claim that every G - neighbourhood of x intersect in-
finitely many members of C. Hence {CG(C) : C ∈ C} is G - locally finite.

4. Paracompactness in Generalized Topological Spaces

Definition 4.1. A generalized topological space is called G - paracompact if it is G -
regular and if every G - open cover of MG has G - open, G - locally finite refinement
which is also a cover of MG.

Lemma 4.1. Let A,B are nonempty subsets of a generalized topological space X.
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Then A
′G ∪B

′G = (A ∪B)
′G.

Proof. Let x ∈ A
′G ∪B

′G =⇒ x is a generalized accumulation point of A or that
of B.

If x is a generalized accumulation point of A, then every G - neighbourhood of
x intersect A. So every G - neighbourhood of x intersect A ∪ B. That is x is a
generalized accumulation point of A ∪B. Which implies x ∈ (A ∪B)

′G.
Similarly if x is a generalized accumulation point of B we can prove x ∈

(A ∪B)
′G.

A
′G ∪B

′G ⊂ (A ∪B)
′G ......................(1).

Let y ∈ (A∪B)
′G =⇒ y is a generalized accumulation point of (A∪B). So every

G - neighbourhood of y intersect A ∪ B. That is every G - neighbourhood of y
intersect A or B or both. In any case we get y ∈ A

′G ∪B
′G.

(A ∪B)
′G ⊂ A

′G ∪B
′G................................(2).

From (1) and (2), we get A
′G ∪B

′G = (A ∪B)
′G.

Theorem 4.1. Let X be a GT2 space. Then X is G - paracompact if and only if it
has the property that every G - open cover of MG has a G - open, G - locally finite
refinement which is also a cover of MG.
Proof. Suppose X is G - paracompact space. So by the definition of G paracom-
pactness, we get X is G - regular and if every G - open cover of MG has G - open,
G - locally finite refinement which is also a cover of MG.

Conversely suppose X is GT2 and the given property hold. We want to prove
that X is G - paracompact. We need only to show that X is G - regular.

Let x ∈ X and C is a G - closed subset of X not containing x. We want to find
two disjoint G - open sets U and V such that x ∈ U and C ∩MG ⊂ V . Since C is
a G - closed set not containing x, we get X −C is a G - open set containing x . So
x ∈ X − C ⊂ MG =⇒ x ∈ MG.

Let y ∈ C ∩ MG =⇒ y ∈ C and y ∈ MG =⇒ x and y are two distinct
elements in MG. Since X is GT2 , there exists disjoint G - open sets Ux and Uy such
that x ∈ Ux and y ∈ Uy. So X − Ux is G - closed in X and Uy ⊂ X − Ux. That is
X − Ux is a G - closed set containing Uy, but CG(Uy) is the smallest G - closed set
containing Uy. There for CG(Uy) ⊂ X − Ux. So x /∈ CG(Uy) as x /∈ X − Ux.

Let U = {Uy : y ∈ C ∩ MG} ∪ {X − C}. Then U is a G - open cover of
MG. Let V be a G - open, G - locally finite refinement of U which is also a cover
of MG. So by the definition of refinement, every member of V is contained in
some member of Uy or in X − C. In the second case it cannot intersect C. Let
W = {V ∈ V : V ∩ C ̸= ϕ}. Then every member of W is contained in some Uy.
Let G = ∪W∈WW . Since each W ∈ W is G - open, we see that G is G - open.
Claim. C ∩MG ⊂ G
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Let a ∈ C ∩MG =⇒ a ∈ C and a ∈ MG. Since a ∈ MG and V is a G - open cover
of MG, there exists V ∈ V such that a ∈ V . Since V is a refinement of U , there
exists Uy ∈ U such that a ∈ V ⊂ Uy. Since a ∈ V and a ∈ C =⇒ V ∩ C ̸= ϕ.
There for V ∈ W =⇒ a ∈ G. That is C ∩MG ⊂ G.
Claim. x /∈ CG(G).
If possible x ∈ CG(G) =⇒ x ∈ CG(∪W∈WW ) = (∪W∈WW ) ∪ (∪W∈WW )

′G.
So either x ∈ (∪W∈WW ) or x ∈ (∪W∈WW )

′G. That is either x ∈ W for some
W ∈ W or x is a generalized accumulation point of W for some W ∈ W ( From
above lemma). Note that x ∈ Ux and each Uy does not intersect Ux, we see that
x /∈ V, forallV ∈ V . So x /∈ W, for all W ∈ W . So x must be a generalized accu-
mulation point of W , for some W ∈ W . So every G - neighbourhood of x intersect
W . But this is impossible, because the G - open set Ux containing x, which does
not intersect W .

There for x /∈ CG(G) =⇒ x ∈ X − CG(G). Also note that X − CG(G) is G -
open. So we take U = X −CG(G) and V = G. Hence x ∈ U and C ∩MG ⊂ V and
U ∩ V = ϕ.

Lemma 4.2. Let X is G - regular space then for any x ∈ X and any G - open set G
containing x there exists a G - open set H containing x such that CG(H) ⊂ G∪M c

G.
Proof. Suppose X is a G - regular space. Let x ∈ X and G be any G - open subset
of X containing x.

So X −G is a G - closed set not containing x. So there exists disjoint G - open
sets U and V such that x ∈ U and (X − G) ∩MG ⊂ V . =⇒ (Gc ∩MG)

c ⊃ V c (
taking complements on both sides ) . By De Morgan’s law (X − V ) ⊂ (G ∪M c

G)
Since U ⊂ (X−V ) and (X−V ) is G - closed, we get CG(A) ⊂ (X−V ). Hence

CG(U) ⊂ G ∪M c
G. Take H = U , we see that x ∈ H and CG(H) ⊂ G ∪M c

G.

Theorem 4.2. Every G - paracompact space is G - normal.
Proof. Let X is a G - paracompact space. Let A and B are two G - closed subsets
of X such that A∩B ∩MG = ϕ. Since X is G - paracompact, it is G - regular and
every G - open cover of MG has G - open , G - locally finite refinement which is also
a cover of MG.

Since X is G - regular, for each x ∈ A ∩ MG and x /∈ B ∩ MG, there are
disjoint G - open sets Ux and Vx such that x ∈ Ux and B ∩ MG ⊂ Vx. Since
X is G - regular and using above lemma, there exists G - open set Hx such that
CG(Hx) ⊂ Ux ∪M c

G, x ∈ Hx.
Let U = {Hx : x ∈ A ∩MG} ∪ {X − A}. Then U be a G - open cover of MG.

Since X is G - paracompact , by the definition of G - paracompactness U has a G
- open, G - locally finite refinement which is also a cover of MG.



Paracompactness in Generalized topological Spaces 295

Let V be a G - open, G - locally finite refinement of U which is also a cover of
MG. So by the definition of refinement, every member of V is contained in some
member of U . Let W be {V ∈ V : V ∩ A ̸= ϕ}. Now let G = ∪W∈WW . Then G is
G - open.
Claim. A ∩MG ⊂ G.
Let z ∈ A ∩MG =⇒ z ∈ Hz, where Hz ∈ U . So z ∈ W , for some W ∈ W . Hence
z ∈ G.
Claim. B ∩MG ⊂ (X − CG(G)).
Let z ∈ B ∩MG =⇒ z ∈ B and z ∈ MG. To prove that z /∈ CG(G).

If possible z ∈ CG(G). Using theorem 1.4.13, we have CG(G) = G∪G
′G. There

for z ∈ G ∪G
′G =⇒ z ∈ G or z ∈ G

′G.
Case(i). z ∈ G

If z ∈ G =⇒ z ∈ (∪W∈WW ).
=⇒ z ∈ W for some W ∈ W .

=⇒ z ∈ V for some V ∈ V and V ∩ A ̸= ϕ.
Since every member of V is contained in some member of U . So there exists

U ∈ U such that V ⊂ U . This U is of the form Hx, x ∈ A ∩ MG or is (X − A).
Since (X − A) does not intersect A, so U is of the form Hx, x ∈ A ∩MG

Let U is of the form of Hx, then z ∈ Hx as z ∈ V ⊂ U . So by the defini-
tion of Hx, x ∈ A ∩MG, there exists disjoint G - open sets such that x ∈ Ux and
B ∩MG ⊂ Vx. Also CG(HX) ⊂ Ux ∪M c

G. So z ∈ V ⊂ Hx ⊂ CG(Hx) ⊂ Ux ∪M c
G.

Since z ∈ MG, we get z ∈ Ux. Also z ∈ B ∩ MG =⇒ z ∈ Vx. Which is a
contradiction to the fact that Ux ∩ Vx = ϕ. There for z /∈ G.
Case(ii). z ∈ G

′G.
If z ∈ G

′G. By theorem 3.4.2 we have G
′G = (∪W∈GW )

′G = ∪W∈W(W
′G). There

for z ∈ ∪W∈W(W
′G) =⇒ z ∈ W

′G, for some W ∈ G =⇒ z is a G - accumulation
point of W . By the definition of W ,W = V, V ∈ V such that V ∩ A ̸= ϕ. Since V
is a refinement of U , by the definition of refinement, there exist U ∈ U such that
V ⊂ U . By the definition of U , U is of the form Hx, x ∈ A. That is there exists
Hx ∈ U , such that W ⊂ Hx, x ∈ A. So there exist disjoint G - open sets Ux and
Vx such that x ∈ Ux, B ∩MG ⊂ Vx and CG(Hx) ⊂ Ux ∪ (MG)

c. Since W ⊂ Hx and
Hx ⊂ CG(Hx) =⇒ W ⊂ CG(Hx) ⊂ Ux ∪M c

G.
=⇒ W ⊂ Ux as W ⊂ MG.

Also z ∈ B ∩ MG and B ∩ MG ⊂ Vx =⇒ z ∈ Vx. Since Vx is G - open and
z ∈ Vx, it is a G - neighbourhood of z. Since z is a G - accumulation point of W ,
we see that Vx ∩W ̸= ϕ.

We get W ⊂ Ux and W ∩Vx ̸= ϕ, we get Ux∩Vx ̸= ϕ. Which is a contradiction.
There for B ∩MG ⊂ (X − CG(G)).
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That is there are two G - open sets G and (X −CG(G)) such that A∩MG ⊂ G
and B ∩MG. Hence X is G - normal.

Lemma 4.3. Let X is a G - normal space. Then for any G - closed set C and any
G - open set G containing C, there exist G - open set H such that C ∩ MG ⊂ H
and CG(H) ⊂ G ∪M c

G.
Proof. Suppose X is a G - normal space. Let C be a G - closed subset of X and
G be a G - open subset of X containing C. Then X − G is a G - closed subset of
X not containing C. That is C and (X − G) are two disjoint G - closed subset
of X. Since X is G - normal, by the definition of G - normality, there are disjoint
G - open sets U and V such that C ∩ MG ⊂ U and (X − G) ∩ MG ⊂ V . Since
U ∩ V = ϕ, we see that U ∩ (X − V ) and X − V is a G - closed subset of X . But
we know that CG(U) is the smallest G - closed set containing U . Therefor we get
CG(U) is the smallest G - closed set containing U . So CG(U) ⊂ (X − V ).

Also (X −G) ∩MG ⊂ V =⇒ ((X −G) ∩MG)
c ⊃ (X − V ).

=⇒ (X − V ) ⊂ G ∪M c
G ( by De Morgan’s law ).

But CG(U) ⊂ X −V ⊂ G∪M c
G =⇒ CG(U) ⊂ G∪M c

G. So we take H = U . Then
we get C ∩MG ⊂ H and CG(H) ⊂ G ∪M c

G.

Theorem 4.3. Let U be the G - open, G - locally finite cover of a G - nor-
mal space X. Then for each U ∈ U there exists a G - open set G(U) such that
CG(G(U)) ⊂ U ∪M c

G and the family {G(U) : U ∈ U} covers X.
Proof. Let (X,G) be a generalized topological space. Also given that X is a G -
normal space and let U be be a G - open, G - locally finite cover of X. Since U is
a G - open cover of X, we see that MG = X.

We want to find a function G : U → G with the property that for each
U ∈ U , G(U) is G - open, CG(G(U)) ⊂ U ∪ M c

G and the family {G(U) : U ∈ U}
covers X. Call such a function G as a total shrinking function for U .

Next define a partial shrinking function for U to be a function F : V → G, where
V ⊂ U , CG(F (V )) ⊂ V ∪M c

G, for all V ∈ V and the family (U−V)∪{F (V ) : V ∈ V}
is a cover of X. Let F be a family of all partial shrinking functions for U . Note
that F is nonempty because the function with empty domain belong to it.
Define an order ′ ≤′ in F as follows. Given two partial shrinking functions F,H
for F , we say that F ≤ H if

1. domain of F is contained in that of H.

2. F (V ) = H(V ) for all V ∈ domain of F .

Claim. ′ ≤′ is a partial order on F .
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1. Reflexivity :
Let F ∈ F , then clearly F ≤ F .

2. Antisymmetric:
Let F,H ∈ F such that F ≤ H and H ≤ F . To prove that F = H.
F ≤ H =⇒ the domain of F is contained in the domain of H.
H ≤ F =⇒ the domain of H is contained in the domain F .
There for domain F = domain of H.
Let domain of F = domain of H = V . Then
F ≤ H and H ≤ F =⇒ F (V ) = H(V ), for all V ∈ V . Hence F = H.

3. Transityvity:
Let F,G,H are three members in F such that F ≤ G and G ≤ H. To prove
that F ≤ H.
F ≤ G =⇒ domain of F is contained in the domain of G and
G ≤ H =⇒ domain of G is contained in the domain of H. Hence domain
of F is contained in the domain of H.
Let D(F ),D(G),D(H) are denotes the domain of F,G and H respectively.
Then
F ≤ G =⇒ F (V ) = G(V ) for all V ∈ D(F ).
G ≤ H =⇒ G(V ) = H(V ) for all V ∈ D(G).
Since D(F ) ⊂ D(G) ⊂ D(H) =⇒ D(F ) ⊂ D(H) and hence F (V ) = H(V )
for all V ∈ F .
Therefor F ≤ H. Hence ′ ≤′ is a partial order on F .

Claim. F has a maximal element.
Let {Fi : i ∈ I} is a chain in F . We want to find an upper bound for this chain.

For this construct a partial shrinking function F from this chain as follows:
LetD(F ) be the domain of F and letD(F ) = ∪i∈ID(Fi), where F⟩ is the domain

of Fi. Now if V ∈ D(F ), so V ∈ D(Fi) for some i ∈ I and set F (V ) = Fi(V ). This
is well defined because if V ∈ D(Fi) ∩ D(Fj) for i ̸= j in I, then V ∈ D(Fi) and
D(Fj). If Fi ̸= Fj, then we may assume that Fi ≤ Fj. So D(Fi) ⊂ D(Fj) =⇒
D(Fi)∩D(Fj) = D(Fi). Also Fi = Fj on D(Fi) =⇒ Fi(V ) = Fj(V ) as V ∈ D(Fi).
Claim. CG(F (V )) ⊂ V ∪M c

G, V ∈ D(F ).
Let V ∈ D(F ), so V ∈ D(Fi) for some i ∈ I. Also by the definition F , we have

F (V ) = Fi(V ) for some i ∈ I. Since for each i ∈ I, Fi is a partial shrinking on U , by
the definition of partial shrinking CG(Fi(V )) ⊂ V ∪M c

G =⇒ CG(F (V )) ⊂ V ∪M c
G

for all V ∈ D(F ).
In order to show that F is a partial shrinking for U , it only remains to show
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that the family (U − D(F )) ∪ {F (V ) : V ∈ D(F )} is a cover of X.
Let x ∈ X, since MG = X =⇒ x ∈ MG. Given that U is locally finite , then

by the definition of locally finite property, there is a G - neighbourhood N of x
which intersect only finitely many members of U . So x contain only finitely many
members of U Suppose that U1, U2, ...., Un are the only members in U contain x. If
at least one of the Ui is (U−D(F )) we are done. Otherwise , since F is the collection
of all partial shrinking for U , there exist i1, i2, i3, ..., in in I, such that Ur ∈ D(Fir)
for r = 1, 2, 3, ...., n. Since {Fi : i ∈ I} is a chain , without loss of generality
we may assume that Fi1 ≤ Fi2 ≤ .... ≤ Fin . By the definition of ′ ≤′, we get
D(Fi1) ⊂ D(F12) ⊂ .... ⊂ D(Fin). Since U1 ∈ D(Fi1), U2 ∈ D(Fi2), ..., Un ∈ D(Fin),
we get Ur ∈ D(Fin) for all r = 1, 2, ..., n. Since these are the only members of U
containing x and by the definition of Fin , we see that (U −D(Fin))∪{Fin(V ) : V ∈
D(Fin)} is a cover of X. So there is a V ∈ D(Fin) such that x ∈ V . But we have
D(F ) = ∪i∈ID(Fi) and F = Fi on D(Fi). There for F (V ) = Fin(V ). Thus we get
U−D(F )∪{F (V ) : V ∈ D(F )} is a cover of X. So F is a partial shrinking function
for U and by its construction it is an upper bound for the chain {Fi : i ∈ I}.

Thus every chain in F has an upper bound in F . By Zorn’s lemma, we have F
has a maximal element. That is we get a partial shrinking function, say G for U
which is maximal with respect to the ordering ′ ≤′.

To conclude the proof, we assert that G is a total shrinking for U . That is
to show that the domain of G,D(G) = U . Clearly D(G) ⊂ U as G is a partial
shrinking function on U . So we want to prove that U ⊂ D(G)

If not there exist U ∈ U such that U /∈ D(G). That is U ∈ U −D(G). Let Wbe
the union of the sets ∪{G(V ) : V ∈ D(G)} and the set ∪(U − D(G) − U). Note
that in the definition of W is a collection some G - open sets because the domain
of G is a sub collection of U and the second collection is also a sub collection of U .
So their union must be G - open. Hence W is a G - open subset of X. There for
X −W is G - closed. Since (U − D(G)) ∪ {G(V ) : V ∈ D(G)} is a cover of X, we
get X −W ⊂ U . Now by G - normality and using above lemma, we see that there
exist a G - open set Q such that (X −W ) ∩MG ⊂ Q and CG(Q) ⊂ U ∪M c

G.
Define H : D(G) ∪ {U} → G by H(V ) = G(V ) for V ∈ D(G) and H(U) = Q.

Since G is a partial shrinking function on U , we getH is a partial shrinking function
for U . Also note thatH is strictly greater thanG. Which contradict the maximality
of G. Thus D(G) = U .
5. Conclusion

Recently many scholars are working in generalized topological spaces and num-
ber of articles are published in various journals. Here we found that some results
in ordinary topological spaces which are related to paracompactness are valid in
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generalized topological spaces whenever it is a strong GTS. But some results in
topological spaces never hold in GTS for example the union of locally finite col-
lection of closed subsets of a topological space is closed , in the case of GTS the
union of G - locally finite collection of G - closed sets need not be G - closed. T. M.
Al shami present the concept of sum of the ordered spaces using pairwise disjoint
topological ordered spaces [8]. We plan in an upcoming paper to introduce this
concept in GTS.
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