ON THE NUMBER OF FUZZY SUBGROUPS AND FUZZY NORMAL SUBGROUPS OF S_{2}, S_{3} AND A_{4}

Dhiraj Kumar and Manoranjan Kumar Singh
Department of Mathematics, Magadh University, Bodh-Gaya - 824234, Bihar, INDIA
E-mail : dhirajraj1982@gmail.com, drmksingh_ gaya@yahoo.com

(Received: Nov. 24, 2021 Accepted: Mar. 26, 2023 Published: Apr. 30, 2023)
Abstract: Counting fuzzy subgroups of a finite group is a fundamental problem of fuzzy group theory. Many researchers have made significant contributions to the rapid growth of this topic in recent years. The number of fuzzy subgroups of any group is infinite without the aid of equivalence relation. Some authors have used the equivalence relation of fuzzy sets to study the equivalence of fuzzy subgroups ([5], [6], [16]). The problem of counting the number of distinct fuzzy subgroups of a finite group is relative to the choice of the equivalence relation. The number of fuzzy subgroups of a particular group varies from one equivalence relation to the other. The equivalence relation applied in our computation can be seen in the existing literature. Sulaiman and Abd Ghafur [10] define an equivalence relation for counting fuzzy subgroups of group G. We have used this relation to find fuzzy subgroups and fuzzy normal subgroups of S_{2}, S_{3} and A_{4}. Lattice subgroup diagrams were used in our computation.

Keywords and Phrases: Fuzzy Subgroups, Fuzzy Normal Subgroups, Equivalence Relation, Chain, Subgroup Lattice, Symmetric Group, Alternating Group.
2020 Mathematics Subject Classification: 20N25, 06D72, 20E15, 22 F05.

1. Introduction

The idea of fuzzy set was first propounded by Lotfi A. Zadeh in 1965. Since the inception of the conception of a fuzzy set, which laid the foundations of fuzzy
set theory (FST), the literature on FST and its application has been proliferating rapidly and are widely scattered over many disciplines. In 1971, Azriel Rosenfeld initiated fuzzy sets in the realm of group theory and formulated the notion of fuzzy subgroup of a group. Since then, the study of different fuzzy algebraic structures was started. Many authors use the equivalence relation of fuzzy sets to study the number of fuzzy subgroups of group G. In this regard, R. Sulaiman and Abd Ghafur define an equivalence relation. In this paper, we will use this relation to count the number of fuzzy subgroups and fuzzy normal subgroups of S_{2}, S_{3} and A_{4}.

This paper is constructed into four sections.In section one introduction is given. Section two provides some preliminary results, definitions, and an overview of the equivalence defined by Sulaiman and Abd Ghafur. In section three, we have the effects of finding the number of fuzzy subgroups and fuzzy normal subgroups of S_{2}, S_{3} and A_{4}. Finally, some conclusions and further research directions are given in section four.

2. Preliminaries

Definition 2.1. Zadeh [15] Let X be a nonempty set. A fuzzy subset of X is a function μ from X into $[0,1]$

$$
\mu: X \rightarrow[0,1]
$$

Definition 2.2. Rosenfeld [7] Let G be a group. A fuzzy subset of G is said to be a fuzzy subgroup of G if

1. $\mu(x y) \geq \min \{\mu(x), \mu(y)\}, \forall x, y \in G$,
2. $\mu\left(x^{-1}\right) \geq \mu(x), \forall x \in G$

Definition 2.3. Sulaiman and Abd Ghafur: A fuzzy subset μ of G is a fuzzy subgroup of G if there is a sequence of subgroups $P_{1}<P_{2}<\ldots .<P_{n}=G$ in subgroup lattice of G such that μ can be written as

$$
\mu(x)= \begin{cases}\theta_{1}, & x \in P_{1} \\ \theta_{2}, & x \in P_{2} \backslash P_{1} \\ \vdots & \\ \theta_{n}, & x \in P_{n} \backslash P_{n-1}\end{cases}
$$

Definition 2.4. R. Sulaiman, Let α, β be fuzzy subgroup of G of the form

$$
\begin{gathered}
\alpha(x)= \begin{cases}\theta_{1}, & x \in P_{1} \\
\theta_{2}, & x \in P_{2} \backslash P_{1} \\
\vdots & \\
\theta_{n}, & x \in P_{n} \backslash P_{n-1}\end{cases} \\
\beta(x)= \begin{cases}\delta_{1}, & x \in M_{1} \\
\delta_{2}, & x \in M_{2} \backslash M_{1} \\
\vdots & \\
\delta_{n}, & x \in M_{n} \backslash M_{n-1}\end{cases}
\end{gathered}
$$

Then we say that α and β are equivalent and write $\alpha \sim \beta$ if

$$
\text { (i) } m=n(i i) P_{i}=M_{i} \forall i \in\{1,2, \ldots, m\} .
$$

3. Results

3.1. Constructing fuzzy subgroup of S_{2}

$$
S_{2}=\{I,(1,2)\}
$$

We have two subgroups of S_{2}, those are $\{I\},\{I,(12)\}$. Subgroup lattice diagram of S_{2} is as shown below

$\{I\}$

Figure 1
We notice the diagram and calculate how many subgroups there are in S_{2}. If $Q_{1}(\mu)=S_{2}, S_{2}$ has 1 fuzzy subgroup, namely

$$
\mu_{1}(x)=\theta_{1} \forall x \in S_{2}
$$

If $Q_{1}(\mu)=I$, we have one fuzzy subgroup of S_{2}

$$
\text { i.e. } \mu_{2}(x)= \begin{cases}\theta_{1}, & x \in\{I\} \\ \theta_{2}, & x \in S_{2} \backslash\{I\}, .\end{cases}
$$

S_{2} has $1+1=2$ fuzzy subgroups.

3.2. Counting fuzzy normal subgroups of S_{2}

We infer that every subgroup of S_{2} is normal. So S_{2} has 2 fuzzy normal subgroups.

3.3. Constructing fuzzy subgroups of S_{3}

$$
S_{3}=\left\{I,\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right\}
$$

We have six subgroups of S_{3}, namely $K_{1}=\{I\}, K_{2}=\{I,(12)\}, K_{3}=\{I,(23)\}$, $K_{4}=\left\{I,\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}, M=\left\{I,\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\}$ and S_{3}.
The diagram of subgroup lattice of S_{3} is as depicted below.

Figure 2

By observing the diagram we obtain the number of fuzzy subgroups in S_{3}.
If $Q_{1}(\mu)=S_{3}, S_{3}$ has 1 fuzzy subgroup, namely

$$
\mu_{1}(x)=\theta_{1} \forall x \in K_{2} .
$$

If $Q_{1}(\mu)=K_{2}$ there are 1 fuzzy subgroup of S_{3} with $Q_{1}(\mu)=K_{2}$ i.e.

$$
\mu_{2}(x)= \begin{cases}\theta_{1}, & x \in K_{2}, \\ \theta_{2}, & x \in S_{3} \backslash K_{2} .\end{cases}
$$

Also there is 1 fuzzy subgroup each for $Q_{1}(\mu)=K_{3}, Q_{1}(\mu)=K_{4}, Q_{1}(\mu)=M$. For $Q_{1}(\mu)=K_{1}=\{I\}$ we have 5 fuzzy subgroups. S_{3} has $2 \times(1+1+1+1+1)=10$ fuzzy subgroups.

3.4. Constructing fuzzy normal subgroups of Symmetric Group S_{3}

$$
S_{3}=\left\{I,\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{l}
1
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right.
$$

We have three normal subgroups of S_{3}, those are $K_{1}=\{I\}, M=\{I$, (12 3), (1 32 2) $\}$ and S_{3} itself. The diagram of normal subgroup lattice of S_{3} is as shown below:

Figure 3
Now we determine the number of fuzzy normal subgroups in S_{3}. If $Q_{1}(\mu)=S_{3}, S_{3}$ has 1 fuzzy normal subgroup, namely

$$
\mu_{1}(x)=\theta_{1} \forall x \in S_{3} .
$$

If $Q_{1}(\mu)=M$, there is 1 fuzzy normal subgroup of S_{3} i.e.

$$
\mu_{2}(x)= \begin{cases}\theta_{1}, & x \in M \\ \theta_{2}, & x \in S_{3} \backslash M .\end{cases}
$$

If $Q_{1}(\mu)=K_{1}=\{I\}$, we have 2 fuzzy normal subgroups So S_{3} has $2 \times(1+1)=4$ fuzzy normal subgroups.

3.5. Constructing fuzzy subgroups of Alternating Group A_{4}

$A_{4}=\{I,(12)(34),(13)(24),(14)(23),(123),(132),(124),(142),(134)$, (143), (234), (243)\}

We have 10 subgroups of A_{4}, those are $K_{1}=\{I\}, K_{2}=\{I,(12)(34)\}, K_{3}=$ $\left\{I, \quad\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right)\right\}, K_{4}=\left\{I,\left(\begin{array}{ll}1 & 4\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\right\}, L_{5}=\left\{I,\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\}, \quad L_{6}=$ $\left\{I,\left(\begin{array}{lll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 4\end{array}\right)\right\}, L_{7}=\left\{I,\left(\begin{array}{lll}1 & 3 & 4\end{array}\right)\left(\begin{array}{lll}1 & 4 & 3\end{array}\right)\right\}, L_{8}=\left\{I,\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)\left(\begin{array}{lll}2 & 4 & 3\end{array}\right)\right\}, M_{9}=$ $\{I,(12)(34),(13)(24),(14)(23)\}$ and A_{4} itself.

Figure 4

The diagram of subgroup lattice of A_{4} is depicted above. By observing the diagram we compute the no. of fuzzy subgroups in A_{4}. If $Q_{1}(\mu)=A_{4}, A_{4}$ has 1 fuzzy subgroup, namely

$$
\mu_{1}(x)=\theta_{1} \forall x \in A_{4}
$$

If $Q_{1}(\mu)=M_{9}$, there is 1 fuzzy subgroup of A_{4} i.e.

$$
\mu_{2}(x)= \begin{cases}\theta_{1}, & x \in M_{9} \\ \theta_{2}, & x \in A_{4} \backslash M_{9}\end{cases}
$$

If $Q_{1}(\mu)=K_{2}$, there are 2 chains, namely $K_{2}<A_{4}, K_{2}<M_{9}<A_{4}$. Hence A_{4} has 2 fuzzy subgroups with $Q_{1}=K_{2}$, namely

$$
\mu_{3}(x)= \begin{cases}\theta_{1}, & x \in K_{2}, \\ \theta_{2}, & x \in A_{4} \backslash K_{2},\end{cases}
$$

and

$$
\mu_{4}(x)= \begin{cases}\theta_{1}, & x \in K_{2}, \\ \theta_{2}, & x \in M_{9} \backslash K_{2}, \\ \theta_{3}, & x \in A_{4} \backslash M_{9} .\end{cases}
$$

Also we have 2 F.S. for $Q_{1}(\mu)=K_{3}, Q_{1}(\mu)=K_{4}$. If $Q_{1}(\mu)=L_{5}, A_{4}$ has 1 fuzzy subgroup, namely

$$
\mu_{9}(x)= \begin{cases}\theta_{1}, & x \in L_{5}, \\ \theta_{2}, & x \in A_{4} \backslash L_{5} .\end{cases}
$$

Also there is 1 fuzzy subgroup each for $Q_{1}(\mu)=L_{6}, Q_{1}(\mu)=L_{7}, Q_{1}(\mu)=L_{8}$ For $Q_{1}(\mu)=\{I\}$, we have $1+1+2 \times 3+1+1+1+1=12$ fuzzy subgroups. So total number of fuzzy subgroups $=2 \times 12=24$.

3.6. Constructing fuzzy normal subgroups of A_{4}

We have three normal subgroups of A_{4}, those are $K_{1}=\{I\}, K_{2}=V=\{I,(12)(34),(13)(24),(14)(23)\}$ and A_{4} itself. The diagram of normal subgroup lattice of A_{4} is as shown below.

Figure 5

Now we calculate the no. of fuzzy normal subgroups in A_{4}. If $Q_{1}(\mu)=A_{4}$, there is 1 fuzzy normal subgroup of A_{4} namely

$$
\mu_{1}(x)=\theta_{1} \forall x \in A_{4}
$$

If $Q_{1}(\mu)=V$, there is 1 fuzzy normal subgroup of A_{4} with $Q_{1}(\mu)=V$ i.e.

$$
\mu_{2}(x)= \begin{cases}\theta_{1}, & x \in V, \\ \theta_{2}, & x \in A_{4} \backslash V .\end{cases}
$$

For $Q_{1}(\mu)=\{I\}$ we have two fuzzy normal subgroups of $A_{4} . A_{4}$ has $2 \times(1+1)=$ 4 fuzzy normal subgroups.

4. Conclusion

In this paper, we have found the number of Fuzzy subgroups and Fuzzy normal Subgroups of S_{2}, S_{3} and A_{4}. We conclude this paper by giving two open problems about the above results.

Problem 1: Determine the number of fuzzy subgroups of $D_{8} \times C_{2^{n}}, n \geq 1$ by the equivalence relation given by Sulaiman and Abd Ghafur.

Problem 2: Solve the problem of classifying Fuzzy subgroups of $C_{4} \times S_{n}, n \leq 5$ by the same equivalence relation.

Acknowledgment

The reviewers are invited for their valuable comments to increase the degree of excellence of the paper.

References

[1] Abdulhakeem O. and Usman I. D., Counting Distinct Fuzzy Subgroup of Some Alternating Groups, Dutse Journal of Pure And Applied Sciences, Vol. 4, No. 2, (2018).
[2] Darabi H., Saeedi F. and Farrokh M. D. G., The number of Fuzzy Subgroups of some Non-abelian Groups.
[3] Jain A., Fuzzy Subgroups and Certain Equivalence Relations, Iranian Journal of Fuzzy system, Vol. 3, No. 2 (2006), 75-91.
[4] Lazlo F., Structure and Construction of fuzzy subgroup of a group, Fuzzy set and System, 51 (1992), 105-109.
[5] Murali V. and Makamba B. B., On an equivalence of fuzzy subgroup I, Fuzzy Sets And Systems, 123 (2001), 259-264.
[6] Murali V. and Makamba B. B., On an equivalence of fuzzy subgroup II, Fuzzy Sets and Systems, 136 (2003), 93-104.
[7] Rosenfeld A., Fuzzy groups, Journal of Mathematics Anal. And App., 35 (1971), 512-517.
[8] Singh M., Theory of Fuzzy Structures and Applications (Fuzzification of Mathematical Notions), Lambert Academic Publishing, 2010.
[9] Sulaiman R., Constructing Fuzzy Subgroups of Symmetric Groups S4, International Journal of Algebra, Vol. 6, No. 1 (2012), 23-28.
[10] Sulaiman R. and Ahmad Abd Ghafur, The number of fuzzy subgroup of group defined by a presentation, International Journal of Algebra, 5 no. 8 (2011), 375-382.
[11] Tarnauceanu M., classifying fuzzy subgroups for a class of finite p-groups, (2011).
[12] Tarnauceanu M., classifying fuzzy normal subgroups of finite groups, Iranian Journal of Fuzzy System, Vol. 12, No. 2 (2015), 107-115.
[13] Tarnauceanu M., The number of fuzzy subgroups of finite cyclic groups and Delanoy numbers, European Journal of Combinatorics, 30 (2009), 283-286.
[14] Tarnauceanu M. and Bentea L., On the number of fuzzy subgroups of finite abelian groups, Fuzzy Sets and Systems, 159 (2008), 1084-1096.
[15] Zadeh L. A., Fuzzy Sets, Inform. and Control, 8 (1965), 338-353.
[16] Zhang Y. and Zou K., A note on equivalence On fuzzy subgroups, Fuzzy Sets and Systems, 95 (1992), 243-247.

