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1. Introduction

In the literature, many topologists have focused their research in the direction
of investigating different types of continuous functions in topological spaces. gp-
closed sets and their properties were introduced by H. Maki et al. [6]. Gentry
and Hoyle [5] studied somewhat continuous functions in topological spaces and
continued by [1], [2], [3], [4], [8], [10].

This paper deals with the study of new weaker class of functions called some-
what gp-continuous and some characterizations and somewhat gp-open and some-
what gp-closed functions. Lastly, somewhat gp-irresolute maps are defined and
discussed some of their basic properties.

2. Preliminaries

Throughout this paper (P, τ), (Q, σ) and (R, µ) (or simply P, Q and R) always
mean topological spaces on which no separation axioms are assumed unless explic-
itly stated.

Definition 2.1. [6] S is gp-closed, if pcl(S) ⊂ U whenever S ⊂ U and U is open
in P.

We have referred the following research papers [1], [5] and [9] for the properties
of somewhat gpr-continuous (sw.gpr-c), somewhat continuous(sw.c) and somewhat-
open(sw-O) and gp-continuous and gp-irresolute maps respectively.

3. Somewhat gp-continuous Functions

This section contains a new weaker forms of functions called somewhat gp-
continuous functions and their properties.

Definition 3.1. A function k : (P, τ) → (Q, σ) is somewhat gp-continuous (sw.gp-
c) if for each M ∈ σ and k−1(M) ̸= ϕ, there exists N ∈ gp-O(P) with N ⊂ k−1(M).

Example 3.1. Let P = Q = {m1,m2}, τ = {P, ϕ} and σ = {Q, ϕ, {m1}}. Let
k : P → Q be a function defined as k(m1) = m2 and k(m2) = m1. Consider,
M = {m1} ∈ σ with m1 ̸= ϕ, there exists N = {m2} with k−1({m1}) = {m2} ̸= ϕ
and {m2} ⊂ K−1({m1}) and so k is sw.gp-c.

Theorem 3.1. Every sw.c function is sw.gp-c.
Proof. Let k : P → Q be sw.c and M ∈ O(Q) with k−1(M) ̸= ϕ. Since k is sw.c,
∃ N ∈ O(P ) with N ̸= ϕ and N ⊂ k−1(M). Since every open set is gp-open, then
N ⊂ k−1(M) and so k is sw.gp-c.

Example 3.2. Let P = Q = {m1,m2,m3}, τ = {P, ϕ, {m1}, {m2,m3}}, σ =
{Q, ϕ, {m1}}. Then k : P → Q defined as k(m1) = m3, k(m2) = m1, k(m3) = m2.
Then k is sw.gp-c but not sw.c. The open set M = {m1} ∈ σ, then there does not
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exist any open set M such that M ⊂ k−1({m1}) = {m2}.
Theorem 3.2. Every sw.gp-c function is sw.gpr-c.
Proof. Proof is obvious.

Theorem 3.3. Let k1 : (P, τ) → (Q, σ) be sw.gp-c and k2 : (Q, σ) → (R, η) be
continuous. Then k2 ◦ k1 : P → R is sw.gp-c.
Proof. Let M ∈ η with k−1

1 (M) ̸= ϕ. As M ∈ η and k2is continuous, k
−1
2 (m) ∈ σ.

As k1 is sw.gp-c, there exists N ∈ gp-O(Q) with N ̸= ϕ and N ⊂ k−1
1 (k−1

2 (M)).
That is N ⊂ (k2 ◦ k1)−1(M) and so k2 ◦ k1 is sw.gp-c.

Remark 3.1. Composition of two sw.gp-c functions need not be sw.gp-c.

Example 3.3. Let P = Q = R = {m1,m2,m3}. Let τ = {P, ϕ, {m2,m3}},
σ = {Q, ϕ, {m1}, {m2,m3}} and η = {R, ϕ, {m1}, {m1,m2}}. Let k1 : P → Q
defined as k1(m1) = m3, k1(m2) = m1, k1(m3) = m2. Then, k1 is sw.gp-c. Let
k2 : Q → R be the identity function and k2 is sw.gp-c. But, the composition
k2 ◦ k1 : P → R is not sw.gp-c. Consider the open set M = {m1,m2} ∈ η, then
k−1
1 (k−1

2 (M)) = {m2,m3}. Thus, there does not exists any N ∈ gp-O(P) with
N ⊂ k−1

1 (M).

Corollary 3.1. Let k1 : P → Q be sw.gp-c and k2 : Q → R be pre-continuous.
Then k2 ◦ k1 : P → Q is sw.gp-c.

Corollary 3.2. Let k1 : P → Q be sw.gp-c and k2 : Q → R be pre-irresolute. Then
k2 ◦ k1 : P → Q is sw.gp-c.

Definition 3.2. Let M1 ⊂ P . Then M is dense in P, if there exists no proper
gp-closed set C1 in P with M1 ⊂ C1 ⊂ P .

Theorem 3.4. The following properties are equivalent for a surjective function
k : P → Q:
(i) k is sw.gp-c
(ii) If A ∈ C(Q) with k−1(A) ̸= P , then there exists a proper gp-closed set D of P
such that k−1(A) ⊂ D.
(iii) If M is gp-dense set of P, then k(M) is dense set of Q.
Proof. (i) → (ii) Let A ∈ C(Q) with k−1(A) ̸= P , so Q \ A ∈ O(Q) with
k−1(Q \A) = P \ k−1(A) ̸= ϕ. From (i), there exists V ∈ gp-O(P) such that V ̸= ϕ
and V ⊂ k−1(Q \ A) = P \ k−1(A), k−1(A) ⊂ P \ V and P \ V ∈ gp-C(P). Thus
(ii) holds.
(ii) → (iii) Let M be gp-dense set in P. We have to show that k(M) is dense in Q.
Assume that M is not gp-dense in Q, then exists a proper closed set A in Q with
k(M) ⊂ A ⊂ Q, so k−1(A) ̸= P . From (ii), there exists a proper gp-closed set D
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such that k−1(A) = D with M ⊂ k−1(A) ⊂ D ⊂ P , which is contradiction to the
assumption. Thus k(M) is dense in Q.
(iii) → (ii) Let the property (ii) is not true, that is ∃ A ∈ C(Y ) with k−1(A) ̸= P .
But there does not exists proper gp-closed set D with k−1(A) ⊂ D, implies that
k−1(A) is gp-dense in P. From (iii), k(k−1(A)) = A must be dense in Q, which is
contradiction to the assumption.
(ii) → (i) Let U ∈ O(Q) with k−1(U) ̸= ϕ. Then Q \ U ∈ C(Q) and k−1(Q \
U) = P \ k−1(U) ̸= P . From (ii), there exists a proper gp-closed set D such that
k−1(Q \ U) ⊂ D, that is k−1(U) ⊂ P \D where P \D ∈ gp-O(P) and P \D ̸= ϕ.

Theorem 3.5. Let A ∈ O(P ) and k : (A, τA) → (Q, σ) be sw.gp-c with k(A) is
dense in Q. Then any extension K of k is sw.gp-c.
Proof. Let U ∈ O(Q) with k−1(U) ̸= ϕ. As k(A) ⊂ Q which is dense and
U ∩ k(A) ̸= ϕ. Thus K−1(U) ∩ A ̸= ϕ and so k−1(U) ∩ A ̸= ϕ. From hypothesis,
there exists V ∈ gp-O(P) with V ̸= ϕ and V ⊂ k−1(U) ⊂ K−1(U) and so K is
sw.gp-c.

Theorem 3.6. Let k : P → Q be any function with P = A1 ∪ B1, where A1, B1 ∈
O(P ). The restriction functions k|A1 and k|B1 are sw.gp-c, then k is sw.gp-c.
Proof. Let U ∈ O(Q) with k−1(U) ̸= ϕ. Then k−1

|A1
(U) ̸= ϕ or k−1

|B1
(U) ̸= ϕ or both

k−1
|A1

(U), k−1
|B1

(U) ̸= ϕ.

Case I. Let k−1
|A1

(U) ̸= ϕ. As k is sw.gp-c, there exists V ∈ gp-O(A) with V ̸= ϕ

and V ⊂ (k|A1)
−1(U) ⊂ k−1(U). As V ∈ gp-O(A) and V ∈ O(P ), then V ∈ gp-

O(P). Hence k is sw.gp-c.
Case II. Let (k|B1)

−1(U) ̸= ϕ. Rest of the proof is similar to case I.
Case III. Let (k|A1)

−1(U) ̸= ϕ and (k|B1)
−1(U) ̸= ϕ. Follows from case I and case

II.
Hence we can observe that k is sw.gp-c.

Definition 3.3. A space P is said to be gp-separable, if there exists a countable
subset B1 of P which is gp-dense in P.

Theorem 3.7. Let k be sw.gp-c from P onto Q with P is gp-separable. Then Q is
separable.
Proof. Let k : P → Q be sw.gp-c with P is gp-separable. Then, there exists a
countable subset B1 of P, which is gp-dense in P. From Theorem 3.4, k(B1) is dense
in Q. As B1 is countable, k(B1) is also countable, which is dense in Q. Hence Q is
separable.
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4. Weakly Equivalent Topologies

Definition 4.1. [5] If P is a set and τ and σ are topologies on P. Then τ is said
to be weakly equivalent to σ provided if U ∈ τ and U ̸= ϕ, there exists V ∈ O(P )
such that V ̸= ϕ and V ⊂ U and if U ∈ σ and U ̸= ϕ. Then there exists V ∈ O(P )
such that V ̸= ϕ and V ⊂ U .

Definition 4.2. If P is a set and τ and σ are topologies on X. Then τ is said to
be gp-weakly equivalent (gp-w.e) to σ provided if U ∈ τ and U ̸= ϕ, there exists
V ∈ gp−O(P ) such that V ̸= ϕ and V ⊂ U and if U ∈ σ and U ̸= ϕ. Then there
exists V ∈ gp−O(P ) such that V ̸= ϕ and V ⊂ U .

Theorem 4.1. Let k : (P, τ) → (Q, σ) be sw-c and τ ∗ be a topology for P, which
is gp-w.e to τ . Then k : (P, τ ∗) → (Q, σ) is sw.gp-c.
Proof. Let U ∈ O(Q) with k−1(U) ̸= ϕ. As k is sw.gp-c, there exists V ∈ O(P )
with V ̸= ϕ and V ⊂ k−1(U). Since V is open and V ̸= ϕ, then τ is gp-w.e
to τ ∗. From definition 4.2, there exists W ∈ gp-O(P, τ ∗) such that W ̸= ϕ and
W ⊂ V ⊂ k−1(U). So V ⊂ k−1(U). Hence k : (P, τ ∗) → (Q, σ) is sw.gp-c.

Theorem 4.2. Let k : (P, τ) → (Q, σ) be sw.gp-c surjective function and σ∗ be a
topology for Q, which is gp-w.e to σ. Then k : (P, τ) → (Q, σ∗) is sw.gp-c.
Proof. Let U ∈ O(Q, σ∗) with k−1(U) ̸= ϕ, then U ̸= ϕ. As σ and σ∗ are weakly
equivalent, there exists W ∈ O(Q) such that W ̸= ϕ and W ⊂ U . Since W ∈ O(Q)
with W ̸= ϕ, implies k−1(W ) ̸= ϕ. From hypothesis, k is sw.gp-c, so V ∈ gp-O(P)
with V ̸= ϕ and V ⊂ k−1(W ). So W ⊂ U , implies that k−1(W ) ⊂ k−1(U). Thus,
V ⊂ k−1(U) and hence k : (P, τ) → (Q, σ∗) is sw.gp-c.

5. Somewhat gp-open Function

Definition 5.1. A function k : P → Q is said to be somewhat gp-open (sw.gp-O)
provided that for U ∈ τ and U ̸= ϕ, there exists V ∈ gp-O(Q) such that V ̸= ϕ and
V ⊂ k(U).

Example 5.1. Let P = Q = {m1,m2}. Let τ = {P, ϕ, {m1}} and σ = {Q, ϕ}.
Let the function k : P → Q be k(m1) = m2 and k(m2) = m1. Then k is sw.gp-O.

Theorem 5.1. Every sw-O is sw.gp-O.
Proof. Proof follows from the fact that every open set is gp-open in X.

Example 5.2. From the example 5.1, k is sw.gp-O but k is not sw-O. Since, there
does not exists any open V ̸= ϕ in Q with V ⊂ k(U).

Theorem 5.2. The following properties holds for a bijective function k : P → Q:
(i) k is sw.gp-O
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(ii) If A ⊂ C(P ) with k(A) ̸= Q, there exists D ∈ gp-C(Q) such that D ̸= Q and
k(A) ⊂ D.
Proof. (i) → (ii): Let A ⊂ C(P ) with k(A) ̸= Q. Then P \ A ∈ O(Q) and
P \ A ̸= ϕ. As k is sw-gp-O, V ∈ gp-O(Q) with V ̸= ϕ such that V ⊂ k(P \ A).
Put D = Q \ V , then D ∈ gp-C(Q). Now, we have to prove that D ̸= ϕ.
Assume that D = ϕ, then V = ϕ which is a contradiction. Since V ⊂ k(P \A), we
get D = Q \ V , that is D ⊃ Q \ (k(P \ A)) = k(A).
(ii) → (i) Let U ∈ O(P ) with U ̸= ϕ. Let A = P \ U , then A ∈ C(P ). We have
k(P \ U) = k(A) = Q \ k(U), then k(A) ̸= ϕ. From (ii), D ∈ gp-C(Q) such that
D ̸= Q and k(A) ⊂ D. Let V = Q \D. Then V ∈ gp-O(Q) with V ̸= ϕ. Further,
V = Q \D ⊂ Q \ k(A) = Q \ [Q \ k(U)] = k(U).

Theorem 5.3. Let k : P → Q be sw.gp-O and M ∈ O(P ). Then (k/M) :
(M, τ/M) → (Q, σ) is also sw.gp-O.
Proof. Let U ∈ τ/M with U ̸= ϕ. Since U ∈ O(M) and M ∈ O(P ), then
U ∈ O(P ). As k is sw.gp-O, we have V ∈ gp-O(Q) with V ̸= ϕ and V ⊂ k(U).
Thus for any U ∈ O((M, τ/M)), there exists V ∈ gp-O(Q) such that V ̸= ϕ and
V ⊂ (k/M)(U). Thus k/M is sw.gp-O.

Theorem 5.4. Let k : P → Q be any function with P = A1 ∪ B1, where
A1, B1 ∈ O(P ) such that k/A1 and k/B1 are sw.gp-O. Then k is also sw-gp-O.
Proof. Let U ∈ O(Q) with U ̸= ϕ. Since P = A1 ∪ B1, then either A1 ∩ U ̸= ϕ
or B1 ∩ U ̸= ϕ or both A1 ∩ U ̸= ϕ and B1 ∩ U ̸= ϕ. As U ∈ O(P ), then
U ∩ A1 ∈ O(P, τ/A1) and U ∩B1 ∈ O(P, τ/B1).
Case I. Suppose U ∩ A1 ̸= ϕ, then U ∩ A1 ∈ O(P, τ/A1). As k/A1 is sw.gp-O,
there exists V ∈ gp-O(Q) such that V ̸= ϕ and V ⊂ k(U ∩A1) ⊂ k(U) and so k is
sw.gp-O.
Case II. Suppose U ∩B1 ̸= ϕ and rest of the proof is similar to case I.
Case III. Suppose U ∩ A1 ̸= ϕ and U ∩ B1 ̸= ϕ. Then k is obviously sw.gp-O
follows from case I and case II.

Theorem 5.5. Let k1 : P → Q be an open and k2 : Q → R be sw.gp-O. Then
k2 ◦ k1 : P → R is sw.gp-O.
Proof. Let U ∈ O(P ) with U ̸= ϕ. As k1 is open, k1(U) is open with k1(U) ̸= ϕ.
Thus k1(U) ∈ O(Q) with k1(U) ̸= ϕ. Since k2 is sw.gp-O, k1(U) ∈ O(Q) with
k1(U) ̸= ϕ. Thus there exists V ∈ gp-O(R) such that V ⊂ k2(k1(U)). Thus k2 ◦ k1
is sw.gp-O.

Theorem 5.6. Let k be sw.gp-O and A is gp-dense set in Q. Then k−1(A) is dense
set of P.
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Proof. Suppose A is gp-dense set in Q. If k−1(A) is not dense in P, then B ∈ C(P )
with k−1(A) ⊂ B ⊂ P . As k is sw.gp-O and P \ B ∈ O(P ), there exists C ∈ gp-
O(Q) with C ̸= ϕ such that C ⊂ k(P \B). Thus C ⊂ k(P \B) ⊂ k(k−1(Q \A)) ⊂
Q \ A, that is A ⊂ Q \ C ⊂ Q. But Q \ C ∈ gp-C(Q) and A ⊂ Q \ C ⊂ Q, thus
A is not gp-dense in Q, which is a contradiction to assumption. Hence k−1(A) is
dense in P.

6. Somewhat gp-irresolute Functions

Definition 6.1. A function k : P → Q is said to be somewhat gp-irresolute(sw.gp-
I) if for each U1 ∈ gp-O(Q) and k−1(U1) ̸= ϕ, there exists V1 ∈ gp-O(P) with
V1 ̸= ϕ such that V1 ⊂ k−1(U1).

Example 6.2. Let P = Q = {m1,m2,m3}, τ = {P, ϕ, {m1}} and σ = {Q, ϕ, {m1},
{m2,m3}}. Define k : P → Q as k(m1) = m1, k(m2) = m3, k(m3) = m2. Let
U1 = {m1,m2} ∈ gp-O(Q) and V1 = {m1} ∈ gp-O(P) such that V1 = {m1} ⊂
k−1({m1,m2}) = {m1,m3}). Then, k is sw.gp-I.

Theorem 6.1. The following properties holds for a surjective function k : P → Q:
(i) k is sw.gp-I
(ii) If A ∈ gp-C(Q) with k−1(A) ̸= P , then there is a proper gp-closed set D in P
such that k−1(A) ⊂ D.
(iii) If M is gp-dense subset in P, then k(M) is gp-dense subset in Q.
Proof. (i) → (ii): Let A ∈ gp-C(Q) with k−1(A) ̸= P . Then Q \ A ∈ gp-O(Q)
with k−1(Q \ A) = P \ k−1(A) ̸= ϕ. From (i), V1 ∈ gp-O(P) such that V1 ̸= ϕ and
V1 ⊂ k−1(Q \A) = P \ k−1(A), that is k−1(A) ⊂ P \ V1 and P \ V1 = D which is a
proper gp-closed in P.
(ii) → (i): Let U1 ∈ gp-O(Q) with k−1(U1) ̸= ϕ. Then Q \ U1 ∈ gp-C(Q) and
k−1(Q \ U1) = P \ k−1(U1) ̸= P . From (ii), there is a proper gp-closed set D such
that k−1(Q \ U1) ⊂ D, that is P \ D ⊂ k−1(U1), where P \ D ∈ gp-O(P) with
P \D ̸= ϕ.
(ii) → (iii): Let M be gp-dense set in P. On the contrary assume that k(M) is not
gp-dense in Q. Then there exists a proper gp-closed set A in Q with k(M) ⊂ A ⊂ Q,
so k−1(A) ̸= P . From (ii), D ∈ gp-C(P) such that M ⊂ k−1(A) ⊂ D ⊂ P , which
is contradiction to the fact that M is gp-dense in P.
(iii) → (ii): Let the property (ii) is not true. Then ∃ A ∈ gp-C(Q) such that
k−1(A) ̸= P . But, there exists no proper gp-closed set D such that k−1(A) ⊂ D,
that is k−1(A) is gp-dense in P. From (iii), k(k−1(A)) = A must be gp-dense in Q,
which is a contradiction.

Theorem 6.2. Let k be any function with P = A1 ∪ B1, where A1, B1 ∈ O(P ). If
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k/A1 : (A1, τ/A1) → (Q, σ) and k/B1 : (B1, τ/B1) → (Q, σ) are sw.gp-I then k is
sw.gp-I.
Proof. Let U1 ∈ gp-O(Q) with k−1(U1) ̸= ϕ. Then (k/A1)

−1(U1) ̸= ϕ or
(k/B1)

−1(U1) ̸= ϕ or both (k/A1)
−1(U1) ̸= ϕ and (k/B1)

−1(U1) ̸= ϕ.
Case I. Suppose (k/A1)

−1(U1) ̸= ϕ. Since k/A1 is sw.gp-I, V1 ∈ gp-O(A1) such
that V1 ̸= ϕ and V1 ⊂ (k/A1)

−1(U1) ⊂ k−1(U1). As V1 ∈ gp-O(A1) and A1 ∈ O(P ),
then V1 ∈ gp-O(P). Thus k is sw.gp-I.
Case II. Suppose (k/B1)

−1(U1) ̸= ϕ. The rest of the proof follows as case I.
Case III. Let (k/A1)

−1(U1) ̸= ϕ and (k/B1)
−1(U1) ̸= ϕ. The rest of the proof

follows from case I and case II.

Theorem 6.3. Let k : P → Q be sw.gp-I surjective function and σ∗ be the topology
on Q which is equivalent to τ . Then k(P, τ) → (Q, σ∗) is sw.gp-I.
Proof. Similar to Theorem 4.2.

Theorem 6.4. Let k : P → Q be sw.gp-I surjective function and τ ∗ be the topology
on P, which is gp-equivalent to τ . Then k : (P, τ ∗) → (Q, σ) is sw.gp-I.
Proof. Similar to Theorem 4.1.

7. Conclusion
The concept of sets and continuous functions are broadly developed and appli-

cable in many fields like particle physics, computational topology, quantum physics.
By generalizing the properties of generalizations of closed sets, new separation ax-
ioms and continuous functions which have been founded and they are very much
useful in the study of digital topology. Thus, the study of somewhat gp-continuous
functions provides many applications in digital topology and computer graphics.
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