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Abstract: In this paper, we compute the distance energy, degree sum energy,
degree exponent energy and degree sum exponent distance energy of Cocktail party
graph.
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1. Introduction and Preliminaries
The concept of energy of a graphs was introduced by I. Gutman in the year 1978.

Let G be a Simple graph with p vertices and q edges. Let D = [dij] be the distance
matrix of the graph. The eigen values ρ1, ρ2, . . . , ρp of D, assumed in non increasing
order, are the eigen values of the graph G. The distance energy ED(G) [4] of G
is defined to be the sum of the absolute values of the eigen values of the distance
matrix of G. Let K2p be a complete graph with 2p vertices p = 1, 2, 3, . . . , n.
We delete the edge joining the vertices i and p + i,1 ≤ i ≤ p, i.e., we delete
p independent edges, i.e., we delete a perfect matching fromK2p. The resulting
graph, denoted by CP2p has order 2p and has 2p(p − 1) edges and is regular of
degree 2p − 2. Such a graph is referred to as a ”cocktail party graph”. The
degree sum energy [10] EDS(G) is the sum of the absolute values of the eigen

values of the degree sum matrix, DS(G)=

{
di + dj, if i ̸= j

0, i = j
γ1, γ2, . . . , γp are
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the eigenvalues of degree sum matrix of G. A degree exponent matrix DE(G)

of a graph G, DE(G) = [deij] =

{
d
dj
i , if i ̸= j
0, i = j

. β1, β2, . . . , βp are called degree

exponent eigenvalues of G. The sum of the absolute values of the degree exponent
eigenvalues of G is called the degree exponent energy [15] of G. The degree sum
exponent distance matrix MXdist(G) of a graph G is a square matrix whose (i, j)th

entry is (di + dj)
dij whenever i ̸= j otherwise it is zero where di is the degree of i

th

vertex of G and dij = d(vi, vj) is distance between vi and vj . α1, α2, . . . , αp are the
corresponding eigen values of degree sum exponent distance matrix. The degree
sum exponent distance energy [12] is the sum of the absolute values of the eigen
values of the degree sum exponent distance matrix of G.

2. Main Results

Lemma 2.1. [5] Let M,N,P and Q be matrices with M invertible then

[
M N
P Q

]
=
∣∣M ∣∣ ∣∣Q− PM−1N

∣∣
Lemma 2.2. [5] Let M,N,P and Q be matrices.Let S=

[
M N
P Q

]
if M and P

commutes then
∣∣S∣∣ = ∣∣MQ− PN

∣∣.
Lemma 2.3. [19] If A(Kp) is the adjacency matrix of Kp and the spectrum of
A(Kp) are p-1 and (−1)p−1 then A2(Kp) = (p− 2)A(Kp) + (p− 1)Ip.

Theorem 2.4. Let CP2p be the Cocktail party graph then

Sp(D(CP2p)) =

[
−2 2p 0
p 1 p− 1

]
and ED(CP2p) = 4p.

Proof. Let CP2p be the cocktail party graph then it has 2p vertices 2p(p−1) edges
and regular of degree 2p− 2.
Let ρ = {ρ1, ρ2, ..., ρ2p} be the eigen values of distance matrix of CP2p.

Then the distance matrix of CP2p is D(CP2p) =

[
A(Kp) A(Kp) + 2Ip

A(Kp) + 2Ip A(Kp)

]
and its Characteristic polynomial is

∣∣∣∣ ρIp − A(Kp) −(A(Kp) + 2Ip)
−(A(Kp) + 2Ip) ρIp − A(Kp)

∣∣∣∣
∣∣ρI2p −D(CP2p)

∣∣ = (ρIp − A(Kp))
2 − (A(Kp) + 2Ip)

2

= ρ2I2p − 2ρA(Kp)− 4A(Kp)− 4I2p

= (2ρ+ 4)

[
(ρ2 − 4)I2p
(2ρ+ 4)

− A(Kp)

]
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By lemma 2.3 we get,∣∣ρI2p −D(CP2p)
∣∣ = (2ρ+ 4)

[
(ρ2 − 4)

(2ρ+ 4)
− (p− 1)

]
(2ρ+ 4)

[
(ρ2 − 4)

(2ρ+ 4)
+ 1

]p−1

= (ρ2 − 4− 2ρp− 4p+ 2ρ+ 4)(ρ2 − 4 + 2ρ+ 4)p−1.

= (ρ+ 2)(ρ− 2p)(ρ)p−1(ρ+ 2)p−1

= (ρ+ 2)p(ρ)p−1(ρ− 2p).

Therefore spectrum of D(CP2p) =

[
−2 2p 0
p 1 p− 1

]
and ED(CP2p) = 4p.

Theorem 2.5. If CP2p is cocktail party graph then degree sum energy of CP2p is
16p2 − 24p+ 8.
Proof. Let γ = {γ1, γ2, ..., γ2p} be the eigen values of degree sum matrix of CP2p.
Then DS(CP2p) =

[
(4p− 4)A(K2p)

]
.

By lemma 2.3 we get the Characteristic polynomial is
(γ − (2p− 1)(4p− 4))(γ + (4p− 4))2p−1 .

Hence Sp(DS(CP2p)) =

[
8p2 − 12p+ 4 −(4p− 4)

1 2p− 1

]
and EDS(CP2p) = 16p2 − 24p+ 8.

Theorem 2.6. If CP2p is cocktail party graph then

Sp(DE(CP2p)) =

[
(2p− 1)r r

1 2p− 1

]
,

and DEE(CP2p) = 2r(2p− 1) where r = (2p− 2)2p−2

Proof. Consider the cocktail party graph and the eigen value of degree exponent
matrix are CP2p and β respectively.
Then the degree exponent matrix of CP2p is DE(CP2p) =

[
(2p− 2)2p−2A(K2p)

]
.

DE(CP2p) =
[
rA(K2p)

]
,where r = (2p− 2)2p−2.

By lemma 2.3 we get
∣∣βI2p −DE(CP2p)

∣∣=(β − r(2p− 1))(β + r)2p−1

and DEE(CP2p) = 2r(2p− 1) where r = (2p− 2)2p−2.

Theorem 2.7. Let CP2p be cocktail party graph then

Sp(MXdist(CP2p)) =

[
−(4p− 4)2 (4p− 4)(6p− 6) (4p− 4)(4p− 6)

p 1 p− 1

]
and EMXdist

(CP2p) = 32p(p− 1)2.
Proof. Let CP2p be cocktail party graph then the degree sum exponent distance
matrix

MXdist(CP2p) =

[
(4p− 4)A(Kp) (4p− 4)A(Kp) + (4p− 4)2Ip

(4p− 4)A(Kp) + (4p− 4)2Ip (4p− 4)A(Kp)

]
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∣∣αI2p −MXdist(CP2p)
∣∣ = (4p−4)

∣∣∣∣ αIp − A(Kp) −(A(Kp) + (4p− 4)Ip)
−(A(Kp) + (4p− 4)Ip) αIp − A(Kp)

∣∣∣∣
= (4p− 4) [(αIp − A(Kp))

2 − ((4p− 4)Ip + A(Kp))
2]

= (4p−4) [(αIp)
2 − 2αA(Kp) + A2(Kp))− ((4p− 4)Ip)

2 + 2(4p− 4)A(Kp) + A2(Kp))]
= (4p− 4) [(αIp)

2 − 2αA(Kp)− ((4p− 4)Ip)
2 − 2(4p− 4)A(Kp))]

= (4p− 4) [(α− (4p− 4))Ip)
2 − (2α + 8p− 8)A(Kp)]

= (4p− 4)(2α + 8p− 8)
[
(α−(4p−4)Ip)2

(2α+8p−8)
− A(Kp)

]
= (4p− 4)[(α2 − 16p2 + 32p− 16− 2αp+ 2α− 8p2 + 8p+ 8p− 8)

(α2 − 16p2 + 32p− 16 + 2α + 8p− 8)p−1]
= (4p− 4) [(α2 − 24p2 + 48p− 2αp+ 2α− 24)(α2 − 16p2 + 40p+ 2α− 24)p−1]
= (4p− 4) [(α− (4− 4p))(α− (6p− 6))(α− (4− 4p))p−1(α− (4p− 6))p−1]
Therefore characteristic polynomial is
(α + (4p− 4)2)p(α− (4p− 4)(4p− 6))p−1(α− (4p− 4)(6p− 6)),

and Sp(MXdist(CP2p)) =

[
−(4p− 4)2 (4p− 4)(6p− 6) (4p− 4)(4p− 6)

p 1 p− 1

]
Hence EMXdist

(CP2p) = 32p(p− 1)2.
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