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Abstract: In a simple connected graph G = (V,E), a subset S of V is a defensive
alliance if every vertex v ∈ S has at most one more neighbour in V − S than it
has in S. The minimum cardinality of a defensive alliance in G is called the de-
fensive alliance number of G, denoted by a(G). A k-strong defensive alliance S is
a defensive alliance in G, in which removal of any set of at most k vertices does
not affect its defensive property. The k-strong defensive alliance number of G is
the minimum cardinality of a k-strong defensive alliance in G, denoted by ak(G).
In this paper, some properties of k-strong defensive alliances are discussed and the
k-strong defensive alliance numbers of some classes of graphs are obtained.

Keywords and Phrases: Alliances, Strong Defensive Alliances, Defensive Al-
liance Number.
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1. Introduction
The notion of alliances are introduced by Kristiansen et al. in [9]. Let G =

(V,E) be a simple connected graph and ∅ ⊂ S ⊆ V . For any v ∈ V , N(v) =
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{u ∈ V : uv ∈ E} is the open neighbourhood of v and N [v] = N(v) ∪ {v} is the
closed neighbourhood of v. For v ∈ S, the vertices of N(v) − S are the attackers
of v with respect to S and those of N [v] ∩ S are the defenders of v with respect
to S. We denote |N [v] ∩ S| by DefS(v) and |N(v) − S| by AttS(v). The set S
is said to be a defensive alliance [9] if AttS(v) ≤ DefS(v) ∀ v ∈ S. More results
on various alliances are found in [1, 2, 3, 4, 6, 7, 8, 10]. For k ≥ 0, a defensive
alliance S is said to be a k-strong defensive alliance [4] if for any l with 1 ≤ l ≤ k,
S − Sl is a defensive alliance, where Sl is any subset of S with l elements. The
minimum cardinality of a k-strong defensive alliance in a graph G is the k-strong
defensive alliance number of G, denoted by ak(G). A k-strong defensive alliance
S in G is said to be a minimal k-strong defensive alliance if no proper subset of
S is a k-strong defensive alliance in G. The maximum cardinality of a minimal
k-strong defensive alliance is the upper k-strong defensive alliance number, denoted
by Ak(G).

A set S ⊆ V is said to be a dominating set if ∪
s∈S

N [s] = V . Some recent results

on domination are found in [5, 11]. A k-strong defensive alliance S in a graph is
said to be a k-strong global defensive alliance if S is also a dominating set. The
k-strong global defensive alliance number γak(G) and the upper k-strong global
defensive alliance number γAk(G) are defined similar to ak(G) and Ak(G).

The concept of k-strong defensive alliances is applicable to analyze war like
situations. It can also be used to build strategies in the business field. Consider
a graph model of different cities and the connection between them. Suppose a
company wants to set up its manufacturing units in some of the cities so that
these units can fulfill the demands of the cities where they are set up and the
adjacent cities. Then a k-strong defensive alliance represents the cities where the
manufacturing units can be set so that company will be able to fulfill the demands
even if any k manufacturing units fail. A 0-strong defensive alliance is nothing
but a defensive alliance. Throughout the article, only simple connected graphs are
considered. The terms not defined here may be found in [12].

2. Properties of k-Strong Defensive Alliances
In this section, some properties of k-strong defensive alliances are discussed.

For any v ∈ V , |N(v)| = deg(v) is the degree of v. A vertex of degree 1 is called a
pendant vertex.

Remark 2.1. For any S ⊆ V , AttS(v) +DefS(v) = 1 + deg(v) ∀ v ∈ S.
We recall the following results for immediate references.

Theorem 2.1. [4] Let G = (V,E) be a graph of order n > 1. Then V is a 1-strong
defensive alliance in G.
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Remark 2.3. [4] Let G = (V,E) be a graph. For any defensive alliance S in G

and v ∈ S, |S| ≥
⌈
1+deg(v)

2

⌉
and hence |S| ≥

⌈
1+δ(G)

2

⌉
where δ(G) = min

v∈V
deg(v).

Theorem 2.2 proves the existence of a 1-strong defensive alliance in any graph
with n > 1. For k > 1, vertex set V need not be a k-strong defensive alliance; but
a proper subset may be a k-strong defensive alliance. For the graph G of Figure
1, S = {v1, v2, v3, v4, v5} is a 2-strong defensive alliance, while the entire vertex
set is not. However for k > 1, the existence of a k-strong defensive alliance is not
assured. For n ≥ 3, the cycle Cn does not contain k-strong defensive alliance for
k ≥ 3. The existence of a k-strong defensive alliance is assumed while discussing
the results on k-strong defensive alliance number of a graph. By definition, any
k-strong defensive alliance is also a (k − 1)-strong defensive alliance.

v1

v2

v3

v4v5

v6

v7

Figure 1: Graph G

d2

d3d4

d1

v

a1

a2

Figure 2: Graph H

Remark 2.4. Let G be a graph and k be a positive integer.

1. For any k ≥ 1, ak−1(G) ≤ ak(G) ≤ Ak(G) and Ak−1(G) ≤ Ak(G).

2. Let S be a k-strong defensive alliance. Then |S| ≥ k + 1 and hence ak(G) ≥
k + 1.

Proposition 2.5. If S and T are k-strong defensive alliances in a graph G, then
S ∪ T is a k-strong defensive alliance in G.

Lemma 2.6. Let k > 0 and G be a graph of order n ≥ k + 1. A set S ⊆ V with
|S| = k + 1 is a k-strong defensive alliance if and only if every vertex in S is a
pendant vertex.
Proof. Since G is connected, deg(x) > 0 ∀ x ∈ V . Let S ⊆ V with |S| = k + 1.
Then S is a k-strong defensive alliance if and only if for any x ∈ S, {x} is a
defensive alliance. This is true if and only if deg(x) ≤ 1. Since G is connected,
deg(x) = 1 ∀ x ∈ S.

The following theorem follows by Lemma 2.6.

Theorem 2.7. For any graph G of order at least k+1, ak(G) = k+1 if and only
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if it has at least k + 1 pendant vertices.

Theorem 2.8. For any graph G, ak(G) ≥ k +
⌈
1+δ(G)

2

⌉
.

Proof. Let S be a k-strong defensive alliance in G. By Remark 2.3, for any v ∈ S,

|S| ≥ k +
⌈
1+deg(v)

2

⌉
. Hence ak(G) ≥ k +

⌈
1+δ(G)

2

⌉
.

Corollary 2.9. For n ≥ 3, ak(Kn) = ⌈n
2
⌉+ k ∀ k ∈ {0, 1, ..., ⌊n

2
⌋}.

Proof. By Theorem 2.8, ak(Kn) ≥ ⌈n
2
⌉+ k. Further it can be easily observed that

any set of ⌈n
2
⌉+ k vertices of Kn is a k-strong defensive alliance.

Theorem 2.10. Let S be a k-strong defensive alliance and v ∈ S with deg(v) > 1.

Then DefS(v) ≥ ⌊deg(v)
2

⌋+ k + 1.
Proof. Let deg(v) = s and N(v) ∩ S = {v1, v2, . . . , vl}. Then l ≥ ⌊ s

2
⌋ and

DefS(v) = l + 1. Suppose l < ⌊ s
2
⌋ + k. Then 1 ≤ l − ⌊ s

2
⌋ + 1 ≤ k, l. Let S ′

be a set obtained by removing l − ⌊ s
2
⌋ + 1 adjacent vertices of v from S. Then

DefS′(v) = ⌊ s
2
⌋. By Remark 2.1, AttS′(v) = ⌈ s

2
⌉ + 1. Then S ′ is not a defensive

alliance which is a contradiction to the fact that S is a k-strong defensive alliance.
Thus l ≥ ⌊ s

2
⌋+ k and DefS(v) ≥ ⌊ s

2
⌋+ k + 1.

Theorem 2.11. Let k > 0 and G be a graph of order n ≥ 2. If S is a k-strong
defensive alliance in G, then deg(v) ≥ 2k − 1 for any non pendant vertex v ∈ S.
Proof. Let v ∈ S with deg(v) = s > 1. Suppose s < 2k−1. Then by Theorem 2.10,
|N(v)∩S| ≥ ⌊ s

2
⌋+k. Let N(v)∩S = {v1, v2, ..., vl}. Then ⌊ s

2
⌋+k ≤ l ≤ s ≤ 2k−2.

Since ⌈ s
2
⌉ ≤ ⌈2k−2

2
⌉ = k− 1, we get k+1 ≤ l−⌊ s

2
⌋+1 ≤ s−⌊ s

2
⌋+1 = ⌈ s

2
⌉+1 ≤ k

which is a contradiction.

Corollary 2.12. If S is a k-strong defensive alliance and v ∈ S is any non pen-
dant vertex, then |N(v) ∩ S| ≥ 2k − 1.

Theorem 2.13. Let G be a graph of order n ≥ 2 and p be the number of pendant
vertices in G. For any k ≥ p, G contains a k-strong defensive alliance only if there
exist at least k − p+ 1 vertices of degree at least 2k − 1.
Proof. Let S be a k-strong defensive alliance. Then |S| ≥ k + 1 and hence by
Theorem 2.11, S has at least k − p + 1 non pendant vertices with degree at least
2k − 1.

Theorem 2.14. Let S be a minimal k-strong defensive alliance that has at most
k pendant vertices. Then ⟨S⟩ is connected.
Proof. Let S be a minimal k-strong defensive alliance that contains at most k
pendant vertices. By (2) of Remark 2.4, S has a non pendant vertex v. Then by
Theorem 2.11, deg(v) ≥ 2k − 1. Suppose ⟨S⟩ is not connected. Let ⟨S1⟩ be the
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component of ⟨S⟩ that contains v. By Corollary 2.12, |N(v) ∩ S| ≥ 2k − 1 and
hence |N(v)∩S1| ≥ 2k− 1. Thus |S1| ≥ 2k ≥ k+1. Since AttS1(x) = AttS(x) and
DefS1(x) = DefS(x) ∀ x ∈ S1, it follows that S1 is a k-strong defensive alliance,
which contradicts the minimality of S.

Corollary 2.15. If S is a minimal k-strong defensive alliance which is not con-
nected, then |S| = k + 1. The converse holds for all k > 1.
Proof. By Theorem 2.14, S has at least k + 1 pendant vertices. Minimality of
S proves that |S| = k + 1. Conversely, suppose |S| = k + 1 where k > 1. Then
by Lemma 2.6, all the vertices of S are pendant vertices and hence ⟨S⟩ is not
connected.

Converse part of Corollary 2.15 fails in path P2 when k = 1. For the graph H
of Figure 2, S = {v, d1, d2, d3, d4} is a minimal 1-strong defensive alliance with 1
pendant vertex, which shows that there exists a k-strong defensive alliance with at
most k pendant vertices. This leads to the following.

Corollary 2.16. Let S be a minimal k-strong defensive alliance with at most k
pendant vertices. If v is a pendant vertex in S and u is the adjacent vertex of v,
then u ∈ S.

3. Bounds for k and ak(G)

Let S be a minimal k-strong defensive alliance. Then there is a subset {v1, v2,
. . . , vk+1} of S such that S − {v1, v2, . . . , vk+1} is either empty or not a defensive
alliance.

Theorem 3.1. Let G be a graph of order n ≥ 2k + 1. If there is no vertex of
degree 2k or 2k − 1, then ak(G) ≤ n− 1.
Proof. Suppose ak(G) = n. Then V is a minimal k-strong defensive alliance in G.
Then there exists a set {v1, v2, . . . , vk+1} ⊆ V such that S = V − {v1, v2, . . . , vk+1}
is not a defensive alliance. Then there exists z ∈ S such that AttS(z) > DefS(z).
For 1 ≤ i ≤ k + 1, each Si = S ∪ {vi} is a defensive alliance, which shows that
zvi ∈ E for each i. Hence DefS(z) < AttS(z) = k+1 and DefSi

(z) ≥ AttSi
(z) = k.

Thus DefS(z) = k or k − 1. Then by Remark 2.1, it follows that deg(z) = 2k or
2k − 1, which completes the proof.

Theorem 3.2. For any graph G, ak(G) = k + 1 or ak(G) ≥ 2k.
Proof. Suppose ak(G) ̸= k+1. By Theorem 2.7, G has at most k pendant vertices.
Let S be any minimal k-strong defensive alliance in G. Then by (2) of Remark
2.4, S has a non pendant vertex v. By Corollary 2.12, |N(v) ∩ S| ≥ 2k − 1. Thus
|S| ≥ 2k.

Theorem 3.3. For any graph G and k > 1, ak(G) = 2k if and only if G = K2k.
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Proof. By Corollary 2.9, ak(K2k) = 2k. Conversely, let ak(G) = 2k and S be
a minimal k-strong defensive alliance in G with |S| = 2k. Let l be the number
of pendant vertices and m be that of non pendant vertices in S respectively. Let
AttS(x) = tx ∀ x ∈ S.
Claim-1. l = 0.
Suppose l > 0. By Corollary 2.12, every non pendant vertex in S is adjacent to
every other vertex in S. Thus m ≤ 1. Since S is a minimal k-strong defensive
alliance, l ≤ k. Therefore |S| = l+m ≤ k+1 < 2k which is a contradiction. Hence
the claim holds.
Claim-2. tx = 0 ∀ x ∈ S.
Suppose tx ≥ 1 for some x ∈ S. By Corollary 2.12, |N(x)∩S| ≥ k. Let S ′ be a set
obtained by removing any k vertices of N(x)∩S from S. Then AttS′(x) = tx+k >
k = DefS′(x) which is a contradiction to the fact that S is a k-strong defensive
alliance. Hence the claim holds.
By Claim-1 and Claim-2, ⟨S⟩ = G andm = 2k. Thus by Corollary 2.12, ⟨S⟩ = K2k.

The following theorem gives a bound for k.

Theorem 3.4. Let G = (V,E) be a graph with l pendant vertices. For k ≥ l, if G

has a k-strong defensive alliance, then k ≤ ⌊△(G)+1
2

⌋, where △(G) = max
v∈V

deg(v).

Proof. Let S be any k-strong defensive alliance in G. Since G has at most k
pendant vertices, by (2) of Remark 2.4, S has a non pendant vertex v. By Theorem

2.11, 2k − 1 ≤ deg(v). Thus k ≤ ⌊deg(v)+1
2

⌋ and hence k ≤ ⌊△(G)+1
2

⌋.
Theorem 3.5. Let k > 0 and G be a graph of order n with δ(G) ≥ 2k + 1. Then

ak(G) ≤ n− ⌊ δ(G)−(2k−1)
2

⌋.
Proof. Let v ∈ V with deg(v) = δ(G) and v1, v2, ..., v⌊ δ(G)−1

2
⌋−k

∈ N(v). Let

S = V − {v, v1, ..., v⌊ δ(G)−1
2

⌋−k
}. Then AttS(x) ≤ ⌊ δ(G)−1

2
⌋ − k + 1 for each x ∈ S.

By Remark 2.1, DefS(x) ≥ 1+ δ(G)−⌊ δ(G)−1
2

⌋+ k− 1 = ⌈ δ(G)−1
2

⌉+ k+1. Thus S
is a defensive alliance with |S| ≥ k+1. Let S ′ be a set obtained by removing any l

vertices from S, where l ≤ k. Then for any z ∈ S ′, AttS′(z) ≤ ⌊ δ(G)−1
2

⌋−k+1+k =

⌊ δ(G)−1
2

⌋+ 1. By Remark 2.1, DefS′(z) ≥ ⌈ δ(G)−1
2

⌉+ 1. Therefore S ′ is a defensive

alliance. Thus S is a k-strong defensive alliance and ak(G) ≤ |S| = n−⌊ δ(G)−(2k−1)
2

⌋.
For the complete graph Kn, equality holds in Theorem 3.5 when k = ⌊n

2
⌋.

4. k-Strong Defensive Alliances in Some Classes of Graphs

The join G1 ∨ G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph
with vertex set V1 ∪ V2 and edge set E1 ∪ E2 ∪ {uv : u ∈ V1, v ∈ V2}. The
graph K1 ∨ Cn is referred as wheel on n vertices, denoted by W1,n. The vertex
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corresponding to K1 is the central vertex and the vertices corresponding to Cn are
the rim vertices of W1,n. Some results on 1-strong defensive alliance number of
W1,n, Pn, Cn are found in [4]. By Theorem 3.4, Cn and Pn do not have k-strong
defensive alliances for k > 1.

Theorem 4.1. For any n ≥ 3, a2(W1,n) = n+1 and W1,n has no k-strong defensive
alliance for k ≥ 3.
Proof. Let V be vertex set of W1,n. Then V is a 2-strong defensive alliance. For
any 2-strong defensive alliance S, note that at least one rim vertex lies in S. Let
v ∈ S be a rim vertex. Then by Theorem 2.10, N(v) ⊆ S. Hence it follows that
S = V . Thus a2(W1,n) = n+ 1. Let k ≥ 3. Since V is the only 2-strong defensive
alliance in W1,n, there can not exist any k-strong defensive alliance other than V .
Further V is also not a k-strong defensive alliance, which completes the proof.

Theorem 4.2. For m,n > 2 and 0 ≤ k ≤ min{⌈m+2
2

⌉, ⌈n+2
2
⌉}, ak(Pm ∨ Pn) =

⌊m+2
2

⌋+ ⌊n+2
2
⌋+ 2k − 4.

Proof. Let S be a k-strong defensive alliance. Let U = {ui : 1 ≤ i ≤ m} and
W = {vj : 1 ≤ j ≤ n} be vertex sets of Pm and Pn such that ui is adjacent to
ui+1 for 1 ≤ i ≤ m− 1 and vj is adjacent to vj+1 for 1 ≤ j ≤ n− 1. Note that no
subset of U and W is a k-strong defensive alliance in Pm∨Pn. Thus S∩U ̸= ∅ and
S ∩W ̸= ∅. Then by Theorem 2.10, it follows that |S ∩ U | ≥ ⌊m+2

2
⌋ + k − 2 and

|S ∩W | ≥ ⌊n+2
2
⌋+ k − 2. Thus ak(Pm + Pn) = ⌊m+2

2
⌋+ ⌊n+2

2
⌋+ 2k − 4. Equality

holds by noting that the set {u1, . . . , u⌊m+2
2

⌋+k−2, v1, . . . , v⌊n+2
2

⌋+k−2} is a k-strong

defensive alliance.
The following theorem can be proved similarly as above by using Theorem 2.10.

Theorem 4.3. Let m ≥ 1, n > 1 be any integers. Then

1. ak(Km,n) = ⌊m
2
⌋+ ⌊n

2
⌋+ 2k for m > 1 and k ≤ min{⌈m

2
⌉, ⌈n

2
⌉},

2. ak(Cm ∨Kn) = ⌊n+2
2
⌋+ ⌊m

2
⌋+ 2k − 2 for m ≥ 3, 0 ≤ k ≤ min{⌈n+2

2
⌉, ⌈m

2
⌉}.

3. ak(Pm ∨Kn) = ⌊m
2
⌋+ ⌊n+2

2
⌋+ 2k − 2, m ≥ 3, 0 ≤ k ≤ min{⌈m

2
⌉, ⌈n+2

2
⌉}.

4. ak(P2 ∨Kn) = ⌊n+1
2
⌋+ 2k for n > 1 and 0 ≤ k ≤ 1.

The Cartesian product G1×G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2) is
the graph with vertex set V1×V2 and edge set {(ui, vi)(uj, vj) : ui = uj and vivj ∈
E2, or vi = vj and uiuj ∈ E2}. The graphs of the form Pm × Pn, Pm × Cn and
Cm × Cn are called grid-like graphs.

Lemma 4.4. A 1-strong defensive alliance in Pm ×Pn contains a vertex of degree
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3.
Proof. Let u1, . . . , um be vertices of Pm and v1, . . . , vn be vertices of Pn such that
ui is adjacent to ui+1 and vj is adjacent to vj+1 for 1 ≤ i ≤ m−1 and 1 ≤ j ≤ n−1.
Choose v ∈ S. Suppose deg(v) ̸= 3, then we have following cases.
Case-1. deg(v) = 2. By Theorem 2.10, N(v) ⊆ S. Note that there is an adjacent
vertex of v with degree 3.
Case-2. deg(v) = 4. Then v = (ui, vj) for some i, j with 1 < i < m and 1 < j < n.
By Theorem 2.10, |N(v) ∩ S| ≥ 3. Then either both (ui, vj+1) and (ui, vj−1) lie in
S or both (ui+1, vj) and (ui−1, vj) lie in S. Since i and j vary over a finite set, it
follows that at least one vertex of the form (ut, vn) or (ut, v1) or (u1, vt) or (un, vt)
lies in S. The vertices of this form have degree 3.

Remark 4.5. In Case-2 of Lemma 4.4, note that S intersects every row or every
column of Pm × Pn such that at least two vertices of every column or every row
belong to S. Thus |S| ≥ min{2m, 2n}.
Theorem 4.6. For integers m,n > 1, a1(Pm × Pn) = min{2m, 2n}. Further
Pm × Pn does not contain k-strong defensive alliance for k ≥ 2.
Proof. Let u1, u2, . . . , um be the vertices of Pm with ui adjacent to ui+1 for
1 ≤ i ≤ m − 1 and v1, v2, . . . , vn be the vertices of Pn with vj adjacent to vj+1

for 1 ≤ j ≤ n − 1. Let S be a 1-strong defensive alliance in Pm × Pn. Suppose
2 ≤ deg(v) ≤ 3 ∀ v ∈ S. By Theorem 2.10, |N(v) ∩ S| ≥ 2 ∀ v ∈ S. Then it
follows that S = {(u1, vj), (um, vj), (ui, v1), (ui, vn) : 1 ≤ i ≤ m, 2 ≤ j ≤ n − 1}.
Then |S| = 2m + 2n− 4. Suppose there is a vertex u ∈ S with deg(u) = 4. Then
by Theorem 2.10, |N(u)∩S| ≥ 3. Then by Remark 4.5, |S| ≥ min{2m, 2n}. Since
S1 = {(ui, v1), (ui, v2) : 1 ≤ i ≤ m} and S2 = {(u1, vj), (u2, vj) : 1 ≤ j ≤ n} are
1-strong defensive alliances, we get a1(Pm × Pn) = min{2m, 2n, 2m + 2n − 4} =
min{2m, 2n}. For k ≥ 2, suppose S is a k-strong defensive alliance. Since S is
also a 1-strong defensive alliance, by Lemma 4.4, it contains a vertex of degree 3.
Let v ∈ S with deg(v) = 3. Then by Theorem 2.10, N(v) ⊆ S. By repeating this
argument finitely many times, it follows that S contains a vertex of degree 2, which
contradicts Theorem 2.11.

Theorem 4.7. For any integers m ≥ 3 and n ≥ 2, a1(Cm × Pn) = min{m, 2n}.
Proof. Let u1, u2, . . . , um be the vertices of Cm with ui adjacent to ui+1 for
1 ≤ i ≤ m− 1, um adjacent to u1 and v1, v2, . . . , vn be the vertices of Pn with
vj adjacent to vj+1 for 1 ≤ j ≤ n. Let S be a 1-strong defensive alliance. If S does
not contain any vertex of degree 4, then by Theorem 2.10, S must be one of the
following.
1. S = {(u1, vj), (um, vj), (ui, v1), (ui, vn) : 1 ≤ i ≤ m, 2 ≤ j ≤ n− 1}.
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2. S = {(ui, v1) : 1 ≤ i ≤ m}.
3. S = {(ui, vn) : 1 ≤ i ≤ m}.
Then |S| ≥ m. Suppose S has a vertex of degree 4. Then similar to Remark 4.5,
we get |S| ≥ min{2m, 2n}. Thus a1(Cm × Pn) ≥ min{m, 2m, 2n} = min{m, 2n}.
To achieve the equality, note that the sets S1 = {(ui, v1) : 1 ≤ i ≤ m} and
S2 = {(u1, vj), (u2, vj) : 1 ≤ j ≤ n} are 1-strong defensive alliances.

The following theorem can be proved similarly.

Theorem 4.8. For integers m,n ≥ 3, a1(Cm × Cn) = min{2m, 2n}.
Note that every vertex in Cm × Cn and Cm × Pn is of degree at most 4. Then

the proofs of following results are similar to that of Theorem 4.1.

Theorem 4.9. For m,n ≥ 3 , a2(Cm × Pn) = mn. Further there is no k-strong
defensive alliance in Cm × Pn for k ≥ 3.

Theorem 4.10. For m ≥ 3 and n > 1, a2(Cm × Cn) = mn. Further there is no
k-strong defensive alliance in Cm × Cn for k ≥ 3.

Figure 3, Figure 4 and Figure 5 illustrate minimal 1-strong defensive alliances
in grid like graphs. The vertices of both S1 and S2 are minimal 1-strong defensive
alliances in each of the graphs of Figure 3, Figure 4 and Figure 5.

S1

S2

Figure 3: P6 × P7

S1

S2

Figure 4: C4 × P6

S1

S2

Figure 5: C5 × C7

5. Conclusion

In this paper, the existence and some properties of k-strong defensive alliances
are discussed. The k-strong defensive alliance numbers are determined for some
classes of graphs. One may think to determine Ak(G), γak(G), γAk(G) for some
classes of graphs.
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