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Abstract: For a graph G of order n, the general Randi¢ matrix GR(G) = [g;] is a
symmetric matrix of order n in which g¢;; = (d;d;)®, a € R if the vertices v; and v;
are adjacent in GG and 0, otherwise, where d; is the degree of vertex v;. The general
Randi¢ energy Eqr(G) of G is the sum of the absolute values of the eigenvalues of
GR(G). In this paper, we compute the general Randi¢ energy of the line graph of
regular graph and the graph obtained by duplication of graph elements for regular
graph. We also investigate general Randi¢ equienergetic graphs.
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1. Introduction

We begin with a simple connected graph G with the vertex set V(G) and the
edge set F(G). Let d; be the degree of a vertex v;, for i = 1,2, ...,n. The adjacency
matrix A(G) = [a;] of a graph G is a square matrix of order n, where

| 1 ; if vertices v; and v; are adjacent
i 0 ; otherwise
’

Let A1, Mg, ..., A, are eigenvalues of A(G), then they all real numbers with their
sum is zero as A(G) is a symmetric matrix. The set of eigenvalues with their
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multiplicities is known as spectrum of a graph and it is denoted by Spec(G). The
concept of graph energy was introduced by Gutman [8]. According to him energy
of graph £(G) is defined as

E(G) = A

The number of positive, negative and zero eigenvalues of graph G be denoted by
nt,n~ and n® respectively. A brief account of spectra of graph and graph energy
can be found in Balakrishnan [2], Cvetkovi¢ et al. [6] and Li et al. [15].

In 1975, Randié¢ [20] has defined Randi¢ index as

R="> (did))2,

i~j

where the summation is taken over all pairs of adjacent vertices v; and v;. A brief
account on Randi¢ index can be found in [9, 13, 14, 21].

In 1998, Bollobéds and Erdos [3] have generalized the concept of Randi¢ index
by replacing —% power with any real number and named it as general Randi¢ index
which is denoted and defined as

Ra = RQ(G) = Z(didj)a,a cR
i~
In 2010, Bozkurt et al. [4, 5] pointed out that the Randi¢ index is purposeful to
produce a graph matrix of order n named as Randi¢ matrix R(G) = [r;;] , where
{ (didj)_% ; if v; and v; are adjacent,
Tij =

0 ; otherwise

The connection between the Randi¢ matrix and the Randi¢ index is obvious:
The sum of all elements of R(G) is equal to 2R.

Let R(G) be the Randi¢ matrix with gy, po, ..., i, are eigenvalues of matrix
R(G) then the Randi¢ energy [4, 5] is defined as the sum of absolute values of
Randi¢ eigenvalues of graph G which is denoted as RE(G). That is,

RE =RE(G) =Y |ui|
=1

A detailed discussion on the Randié¢ energy can be found in [1, 10, 22].
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In [7], Gu et al. have introduced a concept of general Randi¢ matrix and general
Randi¢ energy. The general Randi¢ matrix GR(G) of a graph G is a square matrix
which is defined by GR(G) = [g;5], where

(d;d;)* ; if vertices v; and v; are adjacent
Gij = . ,where a € R
0 ; otherwise
For a = —%, the above matrix reduces to Randi¢ matrix, for a = 1, it reduces

to second Zagreb matrix [17] and for « = 0 it reduces to adjacency matrix. The
general Randi¢ energy is defined as the sum of absolute values of eigenvalues of

GR(G).
Ecr(G) = Z | i

where p;’s are eigen values of the general Randi¢ matrix of graph . The general
Randié¢ polynomial and general Randi¢ energy of some standard graph families
computed by Ramane and Gudodagi [19]. Some more results related to bounds on
general Randié¢ energy can be found in [7, 16].

Two non-isomorphic graphs G; and GG, of the same order are said to be equiener-
getic graphs if £(G1) = £(G2). Ramane et al. [18] have constructed infinitely many
pairs of equienergetic graphs. In the context of equienergetic graphs, we define gen-
eral Randi¢ equienergetic graphs in which two non-isomorphic graphs are said to
be general Randié¢ equienergetic if they have same general Randié¢ energy.

In this paper, we are going to prove some results on general Randi¢ energy using
some graph operations and also find some families of general Randi¢ equienergetic
graphs.

Proposition 1.1. [12] Let M, N, P, () € R™" be matrices, Q) is invertible and
M N
s=[r g
then, det(S) = det(Q) - det[M — NQ ™' P]
2. General Randi¢ Energy of Line Graph

Definition 2.1. [11] The line graph L(G) of graph G has the edges of G as its
vertices which are adjacent in L(G) if and only if the corresponding edges are
adjacent in G. Also, L*(G) = L(L(Q)).

The following result relates the general Randi¢ energy of graph GG and its line graph.
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Theorem 2.2. Let G be an r-reqular graph and Ay, Ao, ..., \,, are eigenvalues of G
with no eigenvalues between (2 — r,r — 2) except zero for each i =1,2,....,n, then

Ecr(L(G)) = (2r —2)** [E(G) + (r —2)(nT +n’ —n~ + n)]

Proof. Let G be a r-regular simple and connected graph then its line graph L(G)

nr

is a graph on % vertices and degree of each vertex is 2r — 2. Therefore, general

Randi¢ matrix of L(G) is given by
GR(L(G)) = (2r — 2)*A(L(Q))

where A(L(G)) is adjacency matrix of graph L(G). Since, we know that [23], if
A1, A9, ..oy A, are the eigenvalues of a r-regular graph G, then the eigenvalues of
L(G)are \;+r—2,i=1,2,3,...,n and —2, @ times.

(2r —2)2 (N +7r —2) —2(2r — 2)2a)

Therefore, Spec(GR(L(G))) = ( (r=2)
1 n(r—

Also, |\;| > (r — 2), except zero for each i = 1,2, ..., n, then
N +r7 =2 ;if \; >0
r—2 ;if A =0

Hence, Eqr(L(G))

n(r—2)

n 2
=(2r =23 [Ni+r -2+ @2r -2 Y -2
=1 =1

=2 =22 D) (Nl +r =2+ ) (Nl —r+2)+ D (r—2) +n(r— 2)]

LA>0 A<0 A=0
= (2r —2)* Z|/\i|+2|)\i|+(r—2){21+21—Zl}+n(r—2)]
LA>0 A<0 Ai>0 Ai=0 Ai<0

= (2r —2)* [S(G) +(r—2)(nt4+n’ —n" + n)}

Corollary 2.3. Let G1 and Gy be any 2-reqular equienergetic graphs, then L(Gy)
and L(Gs) are general Randié equienergetic graphs.

Proof. Let G; and G5 be any 2-regular equienergetic graphs, then from Theorem
2.2, Eqr(L(G;)) = 2**E(G;), for i = 1,2. Hence, L(G;) and L(G) are general
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Randi¢ equienergetic graphs.

Corollary 2.4. Let Gy and G5 be any r-reqular equienergetic graphs of same
order with no eigenvalues lies in (2 — r,r — 2) except zero. Let nf, n{, ny and
ny, n9, ny are number of positive, zero and negative eigenvalues of Gy and Gy
respectively, then L(Gy) and L(G3) are general Randi¢ equienergetic graphs if and
only if nf +n —ny =ng +nY—ny.

Proof. Follows from Theorem 2.2.

Theorem 2.5. Let G be an r-reqular graph and i, Xo, ..., \, are eigenvalues of G
with no eigenvalues lies in (6 — 3r,3r — 6) except zero, then

Ecr(L*(G)) = (4r — 6)** [E(G) + (3r — 6)(n* +n® —n7) + n(r — 2)*]
Proof. Let G be an r-regular, simple and connected graph, then its iterated line
graph L*(G) is a graph on w vertices and degree of each vertex is 4r — 6.
Therefore, general Randi¢ matrix of L?(G) can be written as

GR(L*(@)) = (4r — 6)* A(L*(@))

where A(L*(G)) is adjacency matrix of graph L?(G). Since, we know that [18],
if A1, Ao, ..., A, are the eigenvalues of a r-regular graph G, then the eigenvalues of
L*(G) are A +3r — 6,0 = 1,2,3,...,n, 2r — 6, "2 times and —2, "2 times,
Therefore, Spec(GR(L*(@G)))

n(r—2) n(r—2)
1 2 2

((4r —6)%2*(\; +3r —6) (4r —6)**(2r —6) (4r — 6)2‘1(—2)>

So, Eqr(L*(G))

n(r 2) n(r—2)

_§:| 6)%(\; + 3r — 6) L#§:|4r— )2 ( r—ww%ij\@r—wmpaﬂ

=1
Also, |\;| > (3r — 6), except zero for each i = 1,2,...,n. So,
N +3r =6 ;if A >0

‘)\Z+37”—6’: |)\Z|—3T+6 ,lf)\l<0
3r—6  cif\=0
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Hence, Eqr(L?*(Q))

= (47 — 6)* [Z(\/\A +3r—6)+ Z(W —3r+6)+ Z(Br—6)

Ai>0 <0 =0

= (4r — 6)% [ZlAi|+Z|)\i|+(3r—6) <21+21—Z1> —l—n(r—2)2]

Ai>0 Ai<0 Ai>0 Ai=0 Ai<0

= (4r —6)** [E(G) + Br —6)(n" +n” —n") + n(r — 2)°]

Corollary 2.6. Let Gy and Gy be any 2-reqular equienergetic graphs, then L*(G)
and L*(Gs) are general Randié equienergetic graphs.

Proof. Let G; and G5 be any 2-regular equienergetic graphs, then from Theorem
2.5, Eqr(L?*(G;)) = 22*&(G;), for i = 1,2. Hence, L*(G,) and L*(G;) are general
Randi¢ equienergetic graphs.

Corollary 2.7. Let Gi and G5 be any r-reqular equienergetic graphs of same
order with no eigenvalues lies in (6 — 3r,3r — 6) except zero. Let nf, nl, ny and
ny, nY, my are number of positive, zero and negative eigenvalues of Gy and Go
respectively, then L*(G1) and L*(Gy) are general Randié equienergetic graphs if
and only if n{ +nd —ny =ng +nd —n,.

Proof. Follows from Theorem 2.5.

3. General Randi¢ Energy of Graphs Obtained by Duplication of Graph
Elements
Definition 3.1. [24] Let G be a graph with vertex set V(G) = {v1,va, ..., 0.}, then

duplication of a vertex vy by a new edge e = v'v" in a graph G produces a new

graph Gy such that N(v') = {vp,v"} and N(v") = {vg,v'}.

Theorem 3.2. Let G be an r-reqular graph with eigenvalues Ay, Aa, - -+, A, and Gy
be the graph obtained from G by duplicating each vertex of G by a new edge, then
Egr(Gh)

=220+ Y /[(r+2)20N + 22002 + 22002(r +2)20(2 = \)+ Y _[(r+2)* N +2%]

A <2 Ai>2

Proof. Let G be an r-regular graph with vy, vs, - v, are vertices of a graph
G. Now, we duplicate all the vertices of the given graph together by the edges
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ey, e, , e, respectively, such that e; = vjvy, ey = vivl, --- | e, = v/v!! to obtain

graph G, then the general Randi¢ matrix of G is given by

(T + 2>2aA(G) Bn><2n
I, @ 22> A(K>)

where A(G) is the adjacency matrix of given graph G and B

200 +2)]* [2(r +2)) 0 0 0 0
B 0 0 200 +2)]* [20r+2)]* .- 0 0
0 0 0 0 RO+ R0+

The characteristic polynomial of GR(G1) is given by ¢(G1 : x)

zl, — (r+2)**A(G) B ‘
BT I, ® (2l — 22 A(Ky))

= I ® (vl = 22 A(K))| |a, = (r + 2)**A(G) = B(I, ® (¢l — 2**A(Ky))) "' B" |
= (2% = 2'"2l, — (r +2)*A(G) — B((xl, — 2*“A(Ky)) ' @ I;1) BT

2 da\n
= (22 -2 -

= |(2* — 2*) (21, — (r +2)**A(GQ)) — B((zly + 2**A(K,)) ® I,,) BT|

xl, — (r+2)**A(G) - B ( ! —(xl, + 2°A(Ky)) ® In) BT

Take v = [2(r + 2)]* then, B((z1y + 22*A(K>)) ® I,,) BT

x 22 0 0 0 01 [y 0 0

22 4 0 0 0 0|y 0 0
3800:8800””2%“ 0 010 ~ 0
00T 1o o 22 o 0 0|0~ 0
000077 g o o o x 22| 0 0 ~
0 0 0 22 x| |0 0 7]
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v 0 0
[(z+2%)y (z+2%)y e 0 0 g X : 8
0 0 0 0 7
= . . _ . . O vy -0
2 2
0 0 (x +2**)y (x4 2°%)y 00 - ~
00 7]
2(x + 22%)y 0 0 0 |
0 2(x + 2%) 0 0
— 0 0 2(x + 2%)y 0
0 0 0 2(x + 2%)y? |

= 2(z + 2°M)[2(r + 2)]**I,,
by continuing proof of theorem

H(Gy: ) = |(2® — 22 (x],, — (r 4+ 2)**A(G)) — 2(x + 22¥)[2(r + 2)]*“L,|
= (2 4+ 22*)"|(z — 2°*)(z I, — (r +2)*A(G)) — 22>t (r +2)%°L,|

If A, Ag, ..., Ay, are eigenvalues of A(G), then

$(Gr:x) = (z+22)" [] [ — 2((r +2)* N +22) = 22(r + 2)**(2 — ;)]

=1

So, the roots of above characteristic polynomial are given by

r = —2%%(n times),

[(r +2)2N; + 229) & /[(r + 2)2°N; + 2292 + 22972 1 2)20(2 — ;)

Tr =

2
for each © = 1,2,--- ,n. Now, we have two possibilities for the calculation of
positive eigenvalues,
[(7 +2)%%N; + 22 < V/[(r + 2)20)\; + 2202 4 22042(p - 2)20(2 — \) 5 if \; < 2

(7 +2)%9N; + 22] > V/[(r + 2)29); + 2202 4 22042(p 4 2)20(2 — \,) 5 if \; > 2
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Hence, Eqr(Gh)

3n n
= il =) |2
=1 =1

T [(r +2)%00; + 220) £ /[(r + 2)20N; + 220]2 4 22042(p  2)20(2 — )\))
+)° :
=1

=220 4 Z
<2

VI 270 20 AR 4 272~ A) — [+ 2)% 0 + 2%
2

?“—|—2 QQA +22a +\/ 7,+2 2a/\ +22a] +22a+2(7a+2)2a(2_)\>
2

[(r +2)22X; + 222 + /[(r + 2)%0X; + 2202 + 220+2(r 4 2)22(2 — ;)
2

>

Ai>2

N [(T + 2)2a)\i + 22(1] _ \/[(T 4 2)204)\2. + 2204]2 + 2204+2(T + 2)204(2 _ )\2)]
2

=220+ Y V[(r+2)%0\ + 220]2 4 22042(r £ 2)20(2 — N;) + > [(r +2)*N; + 2%
Ai<2 Ai>2

Definition 3.3. [24] Let G be a graph with vertex set V(G) = {vy, va, ..., v, }, then
duplication of an edge e = v;v; by a vertex v’ in a graph G produces a new graph
G4 such that N(v') = {v;,v;}.

Theorem 3.4. Let G be an r-regular graph order n and size m with eigenvalues
AL, Agy -+, A and Gy be the graph obtained from G by duplicating each edge of G
by a new vertex, then

EGR G1 Z \/ 27’ 4a)\2 + 4(47”)20‘()\ + 7’)

=1

Proof. Let G be an r-regular graph with vy, vo, - - - , v, be the vertices and eq, ea, - - - , €,
be the edges of G. Now, duplicate all the edges ey, es, -+ , e, by considering the
new vertices €/, €}, - - - , e/ respectively to obtained a graph G;. The general Randié
matrix of G is given by

(2r)**A(G)  (4r)*X(G)

GR(Gy) = [
(4 X(@)" 0,
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where A(G) and X(G) are adjacency matrix and incidence matrix of given graph
G respectively. The characteristic polynomial of above matrix is given by

o(G1:x) = |xlhim — GR(GY)|

xl, — (2r)*A(G) (4r)*X(G)
(4r)>X(G)T xly,

= |al,| |1, — (2r)**A(G) — (4r)*X(G) (1) (4r)* X (G)T|

:l’m

T, — (212 A(G) — i(élr)?‘“X(G)X(G)T

=g ‘:1:2[71 —z(2r)*A(G) — (4r)**(A + rIn)}
Now, if Ay, A, -+, A\, are eigenvalues of A(G), then characteristic polynomial is
given by

n

oGy :x)=2""" H (2% — z(2r)**N; — (4r)** (N + 1))

=1

The roots of above characteristic polynomial are given by

(2r)29N; £/ (2r)29)? + 4 - (4r)22(\; + 1)
2

x = 0(m — ntimes), x =

For each i = 1,2,--- ,n. Also, (2r)2*\; < /(2r)4%)2? + 4 - (4r)22(); + r). Hence,

(2r)29N; £ 1/(2r)2eX2 + 4 - (4r)22 (), + 1)
2

Ear(Gh) :Z”:

< ((27“)20‘/\1- +/2r)eNZ 4 (42 (N £ 1)

2

VR T P (1) - <2T>M>
* 2

=3 Jeryext + 4 @y + 1)
=1
6. Conclusion

We have obtained the general Randi¢ energy of various regular graphs. Some
new classes of general Randi¢ equienergetic graphs are also investigated.
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