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Abstract: It is exciting to study and establish relationships between the physical
properties and the molecular structure of chemicals and there is a scope for defining
new topological indices. This paper aims to introduce a new topological index for
graphs called Chelo index. The Chelo index of a graph G is the sum of five times
order of G and two times the number of geodesics of length 3 minus the number of
geodesics between peripheral vertices. We compute Chelo index for some standard
graphs and observe the correlation between some physical properties and Chelo
index for low alkanes. Also, we establish a formulae for computing the number of
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graph geodesics in a graph and the Chelo index using the adjacency matrix.
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2020 Mathematics Subject Classification: 05C12.

1. Introduction
We follow the text-book of Harary [4] for basic definitions and notions in graph

theory. The non-standard will be given in this paper as and when required.
Let G = (V,E) be a graph (finite, simple, connected and undirected). The order

and size of G are respectively, |V | and |E|. The distance between two vertices u
and v in G, denoted by d(u, v) is the number of edges in a shortest path (also called
a graph geodesic) connecting them. The diameter of G, denoted by d(G), is the
length of the longest graph geodesic in G. The number of geodesics of length k in
G is denoted by Γk(G) or simply Γk. For two vertices u and v in G, g(u, v) denotes
the number of geodesics whose end vertices are u and v. The number of geodesics
in G is denoted by f(G) or simply f , and fi denotes the number of geodesics of
length i in G. Clearly, f1 = |E| and for a graph of diameter d, we have,

f(G) =
d∑

i=1

fi (1)

It is easy to see that ∑
{u,v}⊂V

g(u, v) = f(G) (2)

The eccentricity of a vertex v in G is the maximum distance between v and any
other vertex in G. A vertex with maximum eccentricity in G is called a peripheral
vertex in G. So, vertices whose eccentricities are equal to d(G) are peripheral
vertices of G. The set of all peripheral vertices of G is denoted by PV (G).

The topological indices play significant roles in the research related to drug
development. There are many topological indices defined for graphs. Wiener in-
dex (see [16]) and Harary Index (see [17]) are some interesting topological indices
defined based on graph distance. The Wiener index W (G) of a connected graph
G is defined to be the sum of distances between all vertex pairs in G. The Wiener
index is substantially used in theoretical chemistry for the design of quantitative
structure–property relations (mainly with physico-chemical properties) and quan-
titative structure–activity relations including biological activities of the respective
chemical compounds. For new topological indices, we suggest the reader to refer
the papers [7], [9-12].
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Rajendra et al. [13] have recently introduced the concept of peripheral geodesic
index. The peripheral geodesic index Pg(G) of a graph G is defined as the number
of geodesics between peripheral vertices of G i.e.,

Pg(G) =
∑

{u,v}⊂PV (G)

g(u, v), (3)

where PV (G) is the set of all peripheral vertices of G. The following computations
can be found in [13]: For a cycle Cn on n vertices,

Pg(Cn) =


n(n− 1)

2
, if n is odd;

n2

2
, if n is even.

(4)

For a complete graph Kn on n vertices,

Pg(Kn) =
n(n− 1)

2
(5)

For the complete bipartite graph Km,n,

Pg(Km,n) =
1

2
mn(m+ n). (6)

For a tree T with k ≥ 2 pendant vertices,

Pg(T ) =
k(k − 1)

2
(7)

From (7), it follows that, for a path Pn on n ≥ 2 vertices, Pg(Pn) = 1; and for a
star K1,n on n+ 1 vertices,

Pg(K1,n) =
n(n− 1)

2
(8)

Let Wd(n,m) denotes the windmill graph constructed for n ≥ 2 and m ≥ 2 by
joining m copies of the complete graph Kn at a shared common vertex v. Then

Pg(Wd(n,m)) =
m(n− 1)(n− 2)

2
+

m(m− 1)(n− 1)2

2
(9)

Hence, for the friendship graph Fk on 2k + 1 vertices,

Pg(Fk) = k(2k − 1) (10)
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For the wheel graph Wn on n ≥ 4 vertices,

Pg(Wn) =
n(n− 1)

2
(11)

In section 2, we introduce a new topological index for graphs called Chelo
index. In section 3, we compute Chelo index for some standard graphs. Further,
we establish formulae for computing the number of graph geodesics in a graph and
the Chelo index using the adjacency matrix. In section 4, a QSPR analysis has
been carried for some physical properties of lower alkanes with Chelo indices of
their molecular graphs.

2. Chelo Index - Definition and Example

Definition 2.1. The Chelo index Ch(G) of a graph G = (V,E) is defined by

Ch(G) = 5 |V |+ 2Γ3 −
∑

{u,v}⊂PV (G)

g(u, v) (12)

Using (3), we can write

Ch(G) = 5 |V |+ 2Γ3 − Pg(G) (13)

That is, the Chelo index of G is the sum of five times order of G and two times the
number of geodesics of length 3 minus the number of geodesics between peripheral
vertices.

Observation. If k denotes the number of peripheral vertices in a graph G, then
we have

(
k
2

)
pairs of peripheral vertices and there is at least one path between each

pair and hence, we have,
(
k
2

)
≤ Pg(G) ≤ f(G) and hence

5 |V |+ 2Γ3 − f(G) ≤ Ch(G) ≤ 5 |V |+ 2P3 −
(
k

2

)
,

where P3 is the number of paths of length 3 in G.

Example 2.2. We compute the Chelo index of hydrogen-depleted molecular graph
G of 1-Ethyl-2-methylcyclobutane C7H14 (see Figure 1).

Here, PV (G) = {a, f, h}. We have g(a, f) = 2, g(a, h) = 1, and g(f, h) = 1.
The number of geodesics of length 3 is Γ3 = 7. The peripheral geodesic index of G
is

Pg(G) = g(a, f) + g(a, h) + g(f, h) = 2 + 1 + 1 = 4.
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Figure 1: 1-Ethyl-2-methylcyclobutane C7H14 and the corresponding hydrogen -
depleted molecular graph G.

The Chelo index of G is

Ch(G) = 5|V |+ 2T3 − Pg(G) = 5 ∗ 7 + 2 ∗ 7− 4 = 45.

3. Results

Proposition 3.1. If G is a graph with PV (G) = V (G), then

Ch(G) = 5 |V |+ 2Γ3 − f(G) (14)

Proof. If PV (G) = V (G), then Pg(G) = f(G) and from (13), we have Ch(G) =
5 |V |+ 2Γ3 − f(G).

Proposition 3.2. If G is a graph of diameter ≤ 2, then

Ch(G) = 5 |V | − Pg(G) (15)

Proof. If G is a graph of diameter ≤ 2, then there is no geodesic of length 3 in G
and so Γ3(Kn) = 0. Hence, from (13), we have Ch(G) = 5 |V | − Pg(G).

Corollary 3.3.

1. For a complete graph Kn on n vertices,

Ch(Kn) = 5n− n(n− 1)

2
(16)
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2. For the complete bipartite graph Km,n,

Ch(Km,n) = 5(m+ n)− 1

2
mn(m+ n). (17)

3. For a star K1,n on n+ 1 vertices,

Ch(K1,n) = 5(n+ 1)− n(n− 1)

2
(18)

4. For the windmill graph Wd(n,m) (constructed for n ≥ 2 and m ≥ 2 by
joining m copies of the complete graph Kn at a shared common vertex),

Ch(Wd(n,m)) = 5 [m(n− 1) + 1]− m(n− 1)(n− 2)

2
+

m(m− 1)(n− 1)2

2
.

(19)

5. For the friendship graph Fk on 2k + 1 vertices,

Ch(Fk) = 5(2k + 1)− k(2k − 1). (20)

6. For the wheel graph Wn on n ≥ 4 vertices,

Ch(Wn) = 5n− n(n− 1)

2
(21)

Proof. We have d(Kn) = 1, d(Km,n) = 2, d(K1,n) = 2, d(Wd(n,m)) = 2, d(Fk) =

2, and d(Wn) =

{
1, if n = 4;

2, if n ≥ 5.

Hence, using (5), (6), (8), (9), (10) and (11) in (15), we get (16), (17), (18), (19),
(20) and (21), respectively.

Proposition 3.4. For a cycle Cn on n vertices,

Ch(Cn) =



12, if n = 3;

28, if n = 4;

35, if n = 5;

7n− n(n− 1)

2
, if n > 5 and n is odd;

7n− n2

2
, if n > 5 and n is even.

(22)
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Proof. We have

Γ3(Cn) =

{
0, if n = 3, 4, 5;

n, otherwise.
(23)

Now, using (4) and (23) in (15), we get (22).

Proposition 3.5. For a tree T with n vertices and k ≥ 2 pendant vertices,

Ch(T ) = 5n+ 2P3 −
k(k − 1)

2
, (24)

where P3 is the number of paths of length 3 in T .
Proof. Since there is one and only one path between any two vertices in a tree,
Γ3 = P3. Hence, using (7) in (15), we get (24).

Corollary 3.6. For a path Pn on n ≥ 2 vertices, Ch(Pn) = 7(n− 1).
Proof. There are 2 pendant vertices in Pn and the number of paths of length 3 is
P3 = n− 3. Hence, from (24), we have

Ch(Pn) = 5n+ 2(n− 3)− 1 = 7(n− 1).

3.1. Computation of Chelo index using adjacency matrix
Let G be a graph of diameter d with n vertices v1, . . . , vn. Let A = (a

(1)
ij ) be

the adjacency matrix of the graph G, where

a
(1)
ij =

{
1, if vi ∼ vj;

0, otherwise.

We consider the following powers of A: A2, . . . , Ad, where d is the diameter of G.
We denote the (i, j)-th element of At (2 ≤ t ≤ d), by a

(t)
ij , where

a
(t)
ij =

n∑
k=1

a
(t−1)
ik a

(1)
kj .

We know that a
(t)
ij is the number of distinct edge sequences between vi and vj

of length t. Let gij be the first non-zero entry in the sequence a
(1)
ij , a

(2)
ij , . . . , a

(d)
ij .

Clearly, gij is the the number of geodesics between vi and vj, i.e., g(vi, vj) = gij.

Let us define ϕ
(t)
ij , (1 ≤ t ≤ d) as follows:

ϕ
(t)
ij =

{
1, if a

(1)
ij = a

(2)
ij = · · · = a

(t−1)
ij = 0 and a

(t)
ij ̸= 0;

0, otherwise.
(25)
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Then

gij = a
(1)
ij · ϕ(1)

ij + a
(2)
ij · ϕ(2)

ij + · · ·+ a
(d)
ij · ϕ(d)

ij =
d∑

t=1

a
(t)
ij · ϕ(t)

ij (26)

Suppose thatG has k peripheral vertices. Without loss of generality we may assume
that v1, . . . , vk are the peripheral vertices of G. Then,

Pg(G) =
∑

1≤i<j≤k

gij (27)

Using (26) in (27), we get

Pg(G) =
∑

1≤i<j≤k

d∑
t=1

a
(t)
ij · ϕ(t)

ij (28)

Also, the number of geodesics of length 3 in G is

Γ3(G) =
∑

1≤i<j≤n

a
(3)
ij · ϕ(3)

ij (29)

Now, from (13), we have

Ch(G) = 5n+ 2
∑

1≤i<j≤n

a
(3)
ij · ϕ(3)

ij −
∑

1≤i<j≤k

d∑
t=1

a
(t)
ij · ϕ(t)

ij (30)

Thus, we have,

Theorem 3.7. Let G be a (connected) graph of diameter d with n ≥ 2 vertices

v1, . . . , vn and k peripheral vertices v1, . . . , vk. Let A = (a
(1)
ij ) be the adjacency

matrix of G and (i, j)-th element of At (2 ≤ t ≤ d), is denoted by a
(t)
ij . Then

Ch(G) = 5n+ 2
∑

1≤i<j≤n

a
(3)
ij · ϕ(3)

ij −
∑

1≤i<j≤k

d∑
t=1

a
(t)
ij · ϕ(t)

ij ,

where ϕ
(t)
ij , (1 ≤ t ≤ d) is given by

ϕ
(t)
ij =

{
1, if a

(1)
ij = a

(2)
ij = · · · = a

(t−1)
ij = 0 and a

(t)
ij ̸= 0;

0, otherwise.
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4. A QSPR Analysis
In this section, we carry a correlation and regression analysis for the physical

properties - boiling points, molar volumes, molar refractions, heats of vaporization,
critical temperatures, critical pressures and surface tensions of lower alkanes with
Chelo indices of their molecular graphs. Table 1 gives the Chelo index Ch(G)
of molecular graphs and experimental values for the physical properties - boiling
points (bp) ◦C, molar volumes (mv) cm3, molar refractions (mr) cm3, heats of
vaporization (hv) kJ , critical temperatures (ct) ◦C, critical pressures (cp) atm,
and surface tensions(st) dyne cm−1 of considered alkanes. The values given in the
columns 3 to 9 in the Table 1 are taken from Seybold et al. [14] and Needham et
al. [8] (the same values can be found in [15, 17]).

Table 1: Chelo index of molecular graphs, boiling points, molar volumes, molar
refractions, heats of vaporization, critical temperatures, critical pressures and sur-
face tensions of considered alkanes

Alkane Ch(G) bp
◦C

mv
cm3

mr
cm3

hv
kJ

ct
◦C

cp
atm

st
dyn cm−1

Pentane 28 36.1 115.2 25.27 26.4 196.6 33.3 16
2-Methylbutane 26 27.9 116.4 25.29 24.6 187.8 32.9 15
Hexane 35 68.7 130.7 29.91 31.6 234.7 29.9 18.42
2-Methylpentane 33 60.3 131.9 29.95 29.9 224.9 30 17.38
3-Methylpentane 37 63.3 129.7 29.8 30.3 231.2 30.8 18.12
2,2-Dimethylbutane 30 49.7 132.7 29.93 27.7 216.2 30.7 16.3
2,3-Dimethylbutane 32 58 130.2 29.81 29.1 227.1 31 17.37
Heptane 42 98.4 146.5 34.55 36.6 267 27 20.26
2-Methylhexane 40 90.1 147.7 34.59 34.8 257.9 27.2 19.29
3-Methylhexane 44 91.9 145.8 34.46 35.1 262.4 28.1 19.79
3-Ethylhexane 44 93.5 143.5 34.28 35.2 267.6 28.6 20.44
2,2-Dimethylpentane 37 79.2 148.7 34.62 32.4 247.7 28.4 18.02
2,3-Dimethylpentane 44 89.8 144.2 34.32 34.2 264.6 29.2 19.96
2,4-Dimethylpentane 37 80.5 148.9 34.62 32.9 247.1 27.4 18.15
3,3-Dimethylpentane 46 86.1 144.5 34.33 33 263 30 19.59
2,3,3-Trimethylbutane 37 80.9 145.2 34.37 32 258.3 29.8 18.76
Octane 49 125.7 162.6 39.19 41.5 296.2 24.64 21.76
2-Methylheptane 47 117.6 163.7 39.23 39.7 288 24.8 20.6
3-Methylheptane 51 118.9 161.8 39.1 39.8 292 25.6 21.17
4-Methylheptane 51 117.7 162.1 39.12 39.7 290 25.6 21
4-Ethylhexane 51 118.5 160.1 38.94 39.4 292 25.74 21.51
2,2-Dimethylhexane 44 106.8 164.3 39.25 37.3 279 25.6 19.6
2,3-Dimethylhexane 51 115.6 160.4 38.98 38.8 293 26.6 20.99
2,4-Dimethylhexane 49 109.4 163.1 39.13 37.8 282 25.8 20.05
2,5-Dimethylhexane 44 109.1 164.7 39.26 37.9 279 25 19.73
3,3-Dimethylhexane 53 112 160.9 39.01 37.9 290.8 27.2 20.63
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3,4-Dimethylhexane 55 117.7 158.8 38.85 39 298 27.4 21.62
3-Ethyl-2-methylpentane 50 115.7 158.8 38.84 38.5 295 27.4 21.52
3-Ethyl-3-methylpentane 55 118.3 157 38.72 38 305 28.9 21.99
2,2,3-Trimethylpentane 50 109.8 159.5 38.92 36.9 294 28.2 20.67
2,2,4-Trimethylpentane 40 99.2 165.1 39.26 36.1 271.2 25.5 18.77
2,3,3-Trimethylpentane 55 114.8 157.3 38.76 37.2 303 29 21.56
2,3,4-Trimethylpentane 50 113.5 158.9 38.87 37.6 295 27.6 21.14
Nonane 56 150.8 178.7 43.84 46.4 322 22.74 22.92
2-Methyloctane 54 143.3 179.8 43.88 44.7 315 23.6 21.88
3-Methyloctane 58 144.2 178 43.73 44.8 318 23.7 22.34
4-Methyloctane 58 142.5 178.2 43.77 44.8 318.3 23.06 22.34
3-Ethylheptane 58 143 176.4 43.64 44.8 318 23.98 22.81
4-Ethylheptane 60 141.2 175.7 43.49 44.8 318.3 23.98 22.81
2,2-Dimethylheptane 51 132.7 180.5 43.91 42.3 302 22.8 20.8
2,3-Dimethylheptane 58 140.5 176.7 43.63 43.8 315 23.79 22.34
2,4-Dimethylheptane 56 133.5 179.1 43.74 42.9 306 22.7 21.3
2,5-Dimethylheptane 56 136 179.4 43.85 42.9 307.8 22.7 21.3
2,6-Dimethylheptane 51 135.2 180.9 43.93 42.8 306 23.7 20.83
3,3-Dimethylheptane 60 137.3 176.9 43.69 42.7 314 24.19 22.01
3,4-Dimethylheptane 62 140.6 175.3 43.55 43.8 322.7 24.77 22.8
3,5-Dimethylheptane 60 136 177.4 43.64 43 312.3 23.59 21.77
4,4-Dimethylheptane 60 135.2 176.9 43.6 42.7 317.8 24.18 22.01
3-Ethyl-2-methylhexane 57 138 175.4 43.66 43.8 322.7 24.77 22.8
4-Ethyl-2-methylhexane 55 133.8 177.4 43.65 43 330.3 25.56 21.77
3-Ethyl-3-methylhexane 62 140.6 173.1 43.27 43 327.2 25.66 23.22
3-Ethyl-4-methylhexane 62 140.46 172.8 43.37 44 312.3 23.59 23.27
2,2,3-Trimethylhexane 57 133.6 175.9 43.62 41.9 318.1 25.07 21.86
2,2,4-Trimethylhexane 53 126.5 179.2 43.76 40.6 301 23.39 20.51
2,2,5-Trimethylhexane 47 124.1 181.3 43.94 40.2 296.6 22.41 20.04
2,3,3-Trimethylhexane 62 137.7 173.8 43.43 42.2 326.1 25.56 22.41
2,3,4-Trimethylhexane 62 139 173.5 43.39 42.9 324.2 25.46 22.8
2,3,5-Trimethylpentane 55 131.3 177.7 43.65 41.4 309.4 23.49 21.27
2,4,4-Trimethylhexane 58 130.6 177.2 43.66 40.8 309.1 23.79 21.17
3,3,4-Trimethylhexane 66 140.5 172.1 43.34 42.3 330.6 26.45 23.27
3,3-Diethylpentane 63 146.2 170.2 43.11 43.4 342.8 26.94 23.75
2,2-Dimethyl-3-ethylpentane 59 133.8 174.5 43.46 42 338.6 25.96 22.38
2,3-Dimethyl-3-ethylpentane 59 142 170.1 42.95 42.6 322.6 26.94 23.87
2,4-Dimethyl-3-ethylpentane 55 136.7 173.8 43.4 42.9 324.2 25.46 22.8
2,2,3,3-Tetramethylpentane 63 140.3 169.5 43.21 41 334.5 27.04 23.38
2,2,3,4-Tetramethylpentane 55 133 173.6 43.44 41 319.6 25.66 21.98
2,2,4,4-Tetramethylpentane 42 122.3 178.3 43.87 38.1 301.6 24.58 20.37
2,3,3,4-Tetramethylpentane 63 141.6 169.9 43.2 41.8 334.5 26.85 23.31

Regression Models

Using the Table 1, the correlation coefficient r and its square r2 are computed
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and tabulated in Table 2 for the physical properties and Chelo index.

Table 2: r and r2 for Chelo Index

Physical Properties r r2

bp 0.937177708 0.878302056
mv 0.833630383 0.694939615
mr 0.885502823 0.784115249
hv 0.911242566 0.830363014
ct 0.954199301 0.910496306
cp 0.670423775 0.449468038
st 0.957426302 0.916665124

We have tested the following linear regression model

P = A+B · Ch

where P = Physical property and Ch = Chelo index, and obtained the following
models:

bp = −24.95707358 + 2.781403189 · Ch

mv = 90.41478652 + 1.435331744 · Ch

mr = 16.41176731 + 0.458782557 · Ch

hv = 15.25848718 + 0.468818224 · Ch

ct = 119.3706907 + 3.425882038 · Ch

st = 11.24998733 + 0.190913293 · Ch

5. Conclusion
Table 2 reveals that the Chelo index is an useful tool in predicting the physical

properties - boiling points, heats of vaporization, critical temperatures, and surface
tensions of low alkanes. Further, Chelo index has good correlations with the phys-
ical properties - molar volumes and molar refractions. Though Chelo index has a
positive correlation (r = 0.670423775) with critical pressures, it may not be useful
in predicting the critical pressures of low alkanes because r2 = 0.449468038.
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