## CHELO INDEX FOR GRAPHS

R. Rajendra, P. Siva Kota Reddy*, C. N. Harshavardhana**, S. V. Aishwarya*** and B. M. Chandrashekara***<br>Department of Mathematics, Field Marshal K. M. Cariappa College, Mangalore University, Madikeri - 571201, INDIA<br>E-mail : rrajendrar@gmail.com<br>*Department of Mathematics, JSS Science and Technology University, Mysuru - 570 006, INDIA<br>Email : pskreddy@jssstuniv.in, pskreddy@sjce.ac.in<br>**Department of Mathematics, Government First Grade College for Women, Holenarasipur - 573211, INDIA<br>E-mail : cnhmaths@gmail.com<br>*** Department of Mathematics, Dr. G. Shankar Government Women's First Grade College and Post Graduate Study Centre Ajjarkadu, Udupi - 576101, INDIA<br>E-mail : aishwaryasv246@gmail.com, chandrualur@gmail.com

(Received: Jan. 03, 2023 Accepted: Mar. 24, 2023 Published: Apr. 30, 2023)


#### Abstract

It is exciting to study and establish relationships between the physical properties and the molecular structure of chemicals and there is a scope for defining new topological indices. This paper aims to introduce a new topological index for graphs called Chelo index. The Chelo index of a graph $G$ is the sum of five times order of $G$ and two times the number of geodesics of length 3 minus the number of geodesics between peripheral vertices. We compute Chelo index for some standard graphs and observe the correlation between some physical properties and Chelo index for low alkanes. Also, we establish a formulae for computing the number of


graph geodesics in a graph and the Chelo index using the adjacency matrix.
Keywords and Phrases: Adjacency matrix, Graph geodesic, Topological index. 2020 Mathematics Subject Classification: 05C12.

## 1. Introduction

We follow the text-book of Harary [4] for basic definitions and notions in graph theory. The non-standard will be given in this paper as and when required.

Let $G=(V, E)$ be a graph (finite, simple, connected and undirected). The order and size of $G$ are respectively, $|V|$ and $|E|$. The distance between two vertices $u$ and $v$ in $G$, denoted by $d(u, v)$ is the number of edges in a shortest path (also called a graph geodesic) connecting them. The diameter of $G$, denoted by $d(G)$, is the length of the longest graph geodesic in $G$. The number of geodesics of length $k$ in $G$ is denoted by $\Gamma_{k}(G)$ or simply $\Gamma_{k}$. For two vertices $u$ and $v$ in $G, g(u, v)$ denotes the number of geodesics whose end vertices are $u$ and $v$. The number of geodesics in $G$ is denoted by $f(G)$ or simply $f$, and $f_{i}$ denotes the number of geodesics of length $i$ in $G$. Clearly, $f_{1}=|E|$ and for a graph of diameter $d$, we have,

$$
\begin{equation*}
f(G)=\sum_{i=1}^{d} f_{i} \tag{1}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\sum_{\{u, v\} \subset V} g(u, v)=f(G) \tag{2}
\end{equation*}
$$

The eccentricity of a vertex $v$ in $G$ is the maximum distance between $v$ and any other vertex in $G$. A vertex with maximum eccentricity in $G$ is called a peripheral vertex in $G$. So, vertices whose eccentricities are equal to $d(G)$ are peripheral vertices of $G$. The set of all peripheral vertices of $G$ is denoted by $P V(G)$.

The topological indices play significant roles in the research related to drug development. There are many topological indices defined for graphs. Wiener index (see [16]) and Harary Index (see [17]) are some interesting topological indices defined based on graph distance. The Wiener index $W(G)$ of a connected graph $G$ is defined to be the sum of distances between all vertex pairs in $G$. The Wiener index is substantially used in theoretical chemistry for the design of quantitative structure-property relations (mainly with physico-chemical properties) and quantitative structure-activity relations including biological activities of the respective chemical compounds. For new topological indices, we suggest the reader to refer the papers [7], [9-12].

Rajendra et al. [13] have recently introduced the concept of peripheral geodesic index. The peripheral geodesic index $\operatorname{Pg}(G)$ of a graph $G$ is defined as the number of geodesics between peripheral vertices of $G$ i.e.,

$$
\begin{equation*}
P g(G)=\sum_{\{u, v\} \subset P V(G)} g(u, v), \tag{3}
\end{equation*}
$$

where $P V(G)$ is the set of all peripheral vertices of $G$. The following computations can be found in [13]: For a cycle $C_{n}$ on $n$ vertices,

$$
\operatorname{Pg}\left(C_{n}\right)= \begin{cases}\frac{n(n-1)}{2}, & \text { if } n \text { is odd }  \tag{4}\\ \frac{n^{2}}{2}, & \text { if } n \text { is even. }\end{cases}
$$

For a complete graph $K_{n}$ on $n$ vertices,

$$
\begin{equation*}
\operatorname{Pg}\left(K_{n}\right)=\frac{n(n-1)}{2} \tag{5}
\end{equation*}
$$

For the complete bipartite graph $K_{m, n}$,

$$
\begin{equation*}
P g\left(K_{m, n}\right)=\frac{1}{2} m n(m+n) . \tag{6}
\end{equation*}
$$

For a tree $T$ with $k \geq 2$ pendant vertices,

$$
\begin{equation*}
\operatorname{Pg}(T)=\frac{k(k-1)}{2} \tag{7}
\end{equation*}
$$

From (7), it follows that, for a path $P_{n}$ on $n \geq 2$ vertices, $\operatorname{Pg}\left(P_{n}\right)=1$; and for a star $K_{1, n}$ on $n+1$ vertices,

$$
\begin{equation*}
P g\left(K_{1, n}\right)=\frac{n(n-1)}{2} \tag{8}
\end{equation*}
$$

Let $W d(n, m)$ denotes the windmill graph constructed for $n \geq 2$ and $m \geq 2$ by joining $m$ copies of the complete graph $K_{n}$ at a shared common vertex $v$. Then

$$
\begin{equation*}
\operatorname{Pg}(W d(n, m))=\frac{m(n-1)(n-2)}{2}+\frac{m(m-1)(n-1)^{2}}{2} \tag{9}
\end{equation*}
$$

Hence, for the friendship graph $F_{k}$ on $2 k+1$ vertices,

$$
\begin{equation*}
P g\left(F_{k}\right)=k(2 k-1) \tag{10}
\end{equation*}
$$

For the wheel graph $W_{n}$ on $n \geq 4$ vertices,

$$
\begin{equation*}
P g\left(W_{n}\right)=\frac{n(n-1)}{2} \tag{11}
\end{equation*}
$$

In section 2, we introduce a new topological index for graphs called Chelo index. In section 3, we compute Chelo index for some standard graphs. Further, we establish formulae for computing the number of graph geodesics in a graph and the Chelo index using the adjacency matrix. In section 4, a QSPR analysis has been carried for some physical properties of lower alkanes with Chelo indices of their molecular graphs.

## 2. Chelo Index - Definition and Example

Definition 2.1. The Chelo index $C h(G)$ of a graph $G=(V, E)$ is defined by

$$
\begin{equation*}
C h(G)=5|V|+2 \Gamma_{3}-\sum_{\{u, v\} \subset P V(G)} g(u, v) \tag{12}
\end{equation*}
$$

Using (3), we can write

$$
\begin{equation*}
C h(G)=5|V|+2 \Gamma_{3}-P g(G) \tag{13}
\end{equation*}
$$

That is, the Chelo index of $G$ is the sum of five times order of $G$ and two times the number of geodesics of length 3 minus the number of geodesics between peripheral vertices.

Observation. If $k$ denotes the number of peripheral vertices in a graph $G$, then we have $\binom{k}{2}$ pairs of peripheral vertices and there is at least one path between each pair and hence, we have, $\binom{k}{2} \leq P g(G) \leq f(G)$ and hence

$$
5|V|+2 \Gamma_{3}-f(G) \leq C h(G) \leq 5|V|+2 \mathcal{P}_{3}-\binom{k}{2}
$$

where $\mathcal{P}_{3}$ is the number of paths of length 3 in $G$.
Example 2.2. We compute the Chelo index of hydrogen-depleted molecular graph $G$ of 1-Ethyl-2-methylcyclobutane $C_{7} H_{14}$ (see Figure 1).

Here, $P V(G)=\{a, f, h\}$. We have $g(a, f)=2, g(a, h)=1$, and $g(f, h)=1$. The number of geodesics of length 3 is $\Gamma_{3}=7$. The peripheral geodesic index of $G$ is

$$
P g(G)=g(a, f)+g(a, h)+g(f, h)=2+1+1=4
$$




G

Figure 1: 1-Ethyl-2-methylcyclobutane $C_{7} H_{14}$ and the corresponding hydrogen depleted molecular graph $G$.

The Chelo index of $G$ is

$$
C h(G)=5|V|+2 T_{3}-P g(G)=5 * 7+2 * 7-4=45 .
$$

## 3. Results

Proposition 3.1. If $G$ is a graph with $P V(G)=V(G)$, then

$$
\begin{equation*}
C h(G)=5|V|+2 \Gamma_{3}-f(G) \tag{14}
\end{equation*}
$$

Proof. If $P V(G)=V(G)$, then $\operatorname{Pg}(G)=f(G)$ and from (13), we have $C h(G)=$ $5|V|+2 \Gamma_{3}-f(G)$.
Proposition 3.2. If $G$ is a graph of diameter $\leq 2$, then

$$
\begin{equation*}
C h(G)=5|V|-P g(G) \tag{15}
\end{equation*}
$$

Proof. If $G$ is a graph of diameter $\leq 2$, then there is no geodesic of length 3 in $G$ and so $\Gamma_{3}\left(K_{n}\right)=0$. Hence, from (13), we have $C h(G)=5|V|-P g(G)$.

## Corollary 3.3.

1. For a complete graph $K_{n}$ on $n$ vertices,

$$
\begin{equation*}
C h\left(K_{n}\right)=5 n-\frac{n(n-1)}{2} \tag{16}
\end{equation*}
$$

2. For the complete bipartite graph $K_{m, n}$,

$$
\begin{equation*}
C h\left(K_{m, n}\right)=5(m+n)-\frac{1}{2} m n(m+n) \tag{17}
\end{equation*}
$$

3. For a star $K_{1, n}$ on $n+1$ vertices,

$$
\begin{equation*}
C h\left(K_{1, n}\right)=5(n+1)-\frac{n(n-1)}{2} \tag{18}
\end{equation*}
$$

4. For the windmill graph $W d(n, m)$ (constructed for $n \geq 2$ and $m \geq 2$ by joining $m$ copies of the complete graph $K_{n}$ at a shared common vertex),

$$
\begin{equation*}
C h(W d(n, m))=5[m(n-1)+1]-\frac{m(n-1)(n-2)}{2}+\frac{m(m-1)(n-1)^{2}}{2} \tag{19}
\end{equation*}
$$

5. For the friendship graph $F_{k}$ on $2 k+1$ vertices,

$$
\begin{equation*}
C h\left(F_{k}\right)=5(2 k+1)-k(2 k-1) \tag{20}
\end{equation*}
$$

6. For the wheel graph $W_{n}$ on $n \geq 4$ vertices,

$$
\begin{equation*}
C h\left(W_{n}\right)=5 n-\frac{n(n-1)}{2} \tag{21}
\end{equation*}
$$

Proof. We have $d\left(K_{n}\right)=1, d\left(K_{m, n}\right)=2, d\left(K_{1, n}\right)=2, d(W d(n, m))=2, d\left(F_{k}\right)=$ 2 , and $d\left(W_{n}\right)= \begin{cases}1, & \text { if } n=4 ; \\ 2, & \text { if } n \geq 5\end{cases}$
Hence, using (5), (6), (8), (9), (10) and (11) in (15), we get (16), (17), (18), (19), (20) and (21), respectively.

Proposition 3.4. For a cycle $C_{n}$ on $n$ vertices,

$$
C h\left(C_{n}\right)= \begin{cases}12, & \text { if } n=3  \tag{22}\\ 28, & \text { if } n=4 \\ 35, & \text { if } n=5 \\ 7 n-\frac{n(n-1)}{2}, & \text { if } n>5 \text { and } n \text { is odd } \\ 7 n-\frac{n^{2}}{2}, & \text { if } n>5 \text { and } n \text { is even. }\end{cases}
$$

Proof. We have

$$
\Gamma_{3}\left(C_{n}\right)= \begin{cases}0, & \text { if } n=3,4,5  \tag{23}\\ n, & \text { otherwise }\end{cases}
$$

Now, using (4) and (23) in (15), we get (22).
Proposition 3.5. For a tree $T$ with $n$ vertices and $k \geq 2$ pendant vertices,

$$
\begin{equation*}
C h(T)=5 n+2 \mathcal{P}_{3}-\frac{k(k-1)}{2}, \tag{24}
\end{equation*}
$$

where $\mathcal{P}_{3}$ is the number of paths of length 3 in $T$.
Proof. Since there is one and only one path between any two vertices in a tree, $\Gamma_{3}=\mathcal{P}_{3}$. Hence, using (7) in (15), we get (24).
Corollary 3.6. For a path $P_{n}$ on $n \geq 2$ vertices, $C h\left(P_{n}\right)=7(n-1)$.
Proof. There are 2 pendant vertices in $P_{n}$ and the number of paths of length 3 is $\mathcal{P}_{3}=n-3$. Hence, from (24), we have

$$
C h\left(P_{n}\right)=5 n+2(n-3)-1=7(n-1) .
$$

### 3.1. Computation of Chelo index using adjacency matrix

Let $G$ be a graph of diameter $d$ with $n$ vertices $v_{1}, \ldots, v_{n}$. Let $A=\left(a_{i j}^{(1)}\right)$ be the adjacency matrix of the graph $G$, where

$$
a_{i j}^{(1)}= \begin{cases}1, & \text { if } v_{i} \sim v_{j} ; \\ 0, & \text { otherwise }\end{cases}
$$

We consider the following powers of $A: A^{2}, \ldots, A^{d}$, where $d$ is the diameter of $G$. We denote the $(i, j)$-th element of $A^{t}(2 \leq t \leq d)$, by $a_{i j}^{(t)}$, where

$$
a_{i j}^{(t)}=\sum_{k=1}^{n} a_{i k}^{(t-1)} a_{k j}^{(1)} .
$$

We know that $a_{i j}^{(t)}$ is the number of distinct edge sequences between $v_{i}$ and $v_{j}$ of length $t$. Let $g_{i j}$ be the first non-zero entry in the sequence $a_{i j}^{(1)}, a_{i j}^{(2)}, \ldots, a_{i j}^{(d)}$. Clearly, $g_{i j}$ is the the number of geodesics between $v_{i}$ and $v_{j}$, i.e., $g\left(v_{i}, v_{j}\right)=g_{i j}$.

Let us define $\phi_{i j}^{(t)},(1 \leq t \leq d)$ as follows:

$$
\phi_{i j}^{(t)}= \begin{cases}1, & \text { if } a_{i j}^{(1)}=a_{i j}^{(2)}=\cdots=a_{i j}^{(t-1)}=0 \text { and } a_{i j}^{(t)} \neq 0 ;  \tag{25}\\ 0, & \text { otherwise. }\end{cases}
$$

Then

$$
\begin{equation*}
g_{i j}=a_{i j}^{(1)} \cdot \phi_{i j}^{(1)}+a_{i j}^{(2)} \cdot \phi_{i j}^{(2)}+\cdots+a_{i j}^{(d)} \cdot \phi_{i j}^{(d)}=\sum_{t=1}^{d} a_{i j}^{(t)} \cdot \phi_{i j}^{(t)} \tag{26}
\end{equation*}
$$

Suppose that $G$ has $k$ peripheral vertices. Without loss of generality we may assume that $v_{1}, \ldots, v_{k}$ are the peripheral vertices of $G$. Then,

$$
\begin{equation*}
P g(G)=\sum_{1 \leq i<j \leq k} g_{i j} \tag{27}
\end{equation*}
$$

Using (26) in (27), we get

$$
\begin{equation*}
P g(G)=\sum_{1 \leq i<j \leq k} \sum_{t=1}^{d} a_{i j}^{(t)} \cdot \phi_{i j}^{(t)} \tag{28}
\end{equation*}
$$

Also, the number of geodesics of length 3 in $G$ is

$$
\begin{equation*}
\Gamma_{3}(G)=\sum_{1 \leq i<j \leq n} a_{i j}^{(3)} \cdot \phi_{i j}^{(3)} \tag{29}
\end{equation*}
$$

Now, from (13), we have

$$
\begin{equation*}
C h(G)=5 n+2 \sum_{1 \leq i<j \leq n} a_{i j}^{(3)} \cdot \phi_{i j}^{(3)}-\sum_{1 \leq i<j \leq k} \sum_{t=1}^{d} a_{i j}^{(t)} \cdot \phi_{i j}^{(t)} \tag{30}
\end{equation*}
$$

Thus, we have,
Theorem 3.7. Let $G$ be a (connected) graph of diameter $d$ with $n \geq 2$ vertices $v_{1}, \ldots, v_{n}$ and $k$ peripheral vertices $v_{1}, \ldots, v_{k}$. Let $A=\left(a_{i j}^{(1)}\right)$ be the adjacency matrix of $G$ and $(i, j)$-th element of $A^{t}(2 \leq t \leq d)$, is denoted by $a_{i j}^{(t)}$. Then

$$
C h(G)=5 n+2 \sum_{1 \leq i<j \leq n} a_{i j}^{(3)} \cdot \phi_{i j}^{(3)}-\sum_{1 \leq i<j \leq k} \sum_{t=1}^{d} a_{i j}^{(t)} \cdot \phi_{i j}^{(t)}
$$

where $\phi_{i j}^{(t)},(1 \leq t \leq d)$ is given by

$$
\phi_{i j}^{(t)}= \begin{cases}1, & \text { if } a_{i j}^{(1)}=a_{i j}^{(2)}=\cdots=a_{i j}^{(t-1)}=0 \text { and } a_{i j}^{(t)} \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

## 4. A QSPR Analysis

In this section, we carry a correlation and regression analysis for the physical properties - boiling points, molar volumes, molar refractions, heats of vaporization, critical temperatures, critical pressures and surface tensions of lower alkanes with Chelo indices of their molecular graphs. Table 1 gives the Chelo index $\operatorname{Ch}(G)$ of molecular graphs and experimental values for the physical properties - boiling points $(b p){ }^{\circ} \mathrm{C}$, molar volumes $(m v) \mathrm{cm}^{3}$, molar refractions $(m r) \mathrm{cm}^{3}$, heats of vaporization ( $h v$ ) $k J$, critical temperatures $(c t)^{\circ} \mathrm{C}$, critical pressures ( $c p$ ) atm, and surface tensions(st) dyne $\mathrm{cm}^{-1}$ of considered alkanes. The values given in the columns 3 to 9 in the Table 1 are taken from Seybold et al. [14] and Needham et al. [8] (the same values can be found in [15, 17]).

Table 1: Chelo index of molecular graphs, boiling points, molar volumes, molar refractions, heats of vaporization, critical temperatures, critical pressures and surface tensions of considered alkanes

| Alkane | $C h(G)$ | $\frac{b p}{{ }^{\circ} C}$ | $\frac{m v}{c m^{3}}$ | $\frac{m r}{c m^{3}}$ | $\frac{h v}{k J}$ | $\frac{c t}{{ }^{\circ} C}$ | $\frac{c p}{a t m}$ | $\frac{s t}{d y n c m^{-1}}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Pentane | 28 | 36.1 | 115.2 | 25.27 | 26.4 | 196.6 | 33.3 | 16 |
| 2-Methylbutane | 26 | 27.9 | 116.4 | 25.29 | 24.6 | 187.8 | 32.9 | 15 |
| Hexane | 35 | 68.7 | 130.7 | 29.91 | 31.6 | 234.7 | 29.9 | 18.42 |
| 2-Methylpentane | 33 | 60.3 | 131.9 | 29.95 | 29.9 | 224.9 | 30 | 17.38 |
| 3-Methylpentane | 37 | 63.3 | 129.7 | 29.8 | 30.3 | 231.2 | 30.8 | 18.12 |
| 2,2-Dimethylbutane | 30 | 49.7 | 132.7 | 29.93 | 27.7 | 216.2 | 30.7 | 16.3 |
| 2,3-Dimethylbutane | 32 | 58 | 130.2 | 29.81 | 29.1 | 227.1 | 31 | 17.37 |
| Heptane | 42 | 98.4 | 146.5 | 34.55 | 36.6 | 267 | 27 | 20.26 |
| 2-Methylhexane | 40 | 90.1 | 147.7 | 34.59 | 34.8 | 257.9 | 27.2 | 19.29 |
| 3-Methylhexane | 44 | 91.9 | 145.8 | 34.46 | 35.1 | 262.4 | 28.1 | 19.79 |
| 3-Ethylhexane | 44 | 93.5 | 143.5 | 34.28 | 35.2 | 267.6 | 28.6 | 20.44 |
| 2,2-Dimethylpentane | 37 | 79.2 | 148.7 | 34.62 | 32.4 | 247.7 | 28.4 | 18.02 |
| 2,3-Dimethylpentane | 44 | 89.8 | 144.2 | 34.32 | 34.2 | 264.6 | 29.2 | 19.96 |
| 2,4-Dimethylpentane | 37 | 80.5 | 148.9 | 34.62 | 32.9 | 247.1 | 27.4 | 18.15 |
| 3,3-Dimethylpentane | 46 | 86.1 | 144.5 | 34.33 | 33 | 263 | 30 | 19.59 |
| 2,3,3-Trimethylbutane | 37 | 80.9 | 145.2 | 34.37 | 32 | 258.3 | 29.8 | 18.76 |
| Octane | 49 | 125.7 | 162.6 | 39.19 | 41.5 | 296.2 | 24.64 | 21.76 |
| 2-Methylheptane | 47 | 117.6 | 163.7 | 39.23 | 39.7 | 288 | 24.8 | 20.6 |
| 3-Methylheptane | 51 | 118.9 | 161.8 | 39.1 | 39.8 | 292 | 25.6 | 21.17 |
| 4-Methylheptane | 51 | 117.7 | 162.1 | 39.12 | 39.7 | 290 | 25.6 | 21 |
| 4-Ethylhexane | 51 | 118.5 | 160.1 | 38.94 | 39.4 | 292 | 25.74 | 21.51 |
| 2,2-Dimethylhexane | 44 | 106.8 | 164.3 | 39.25 | 37.3 | 279 | 25.6 | 19.6 |
| 2,3-Dimethylhexane | 51 | 115.6 | 160.4 | 38.98 | 38.8 | 293 | 26.6 | 20.99 |
| 2,4-Dimethylhexane | 49 | 109.4 | 163.1 | 39.13 | 37.8 | 282 | 25.8 | 20.05 |
| 2,5-Dimethylhexane | 44 | 109.1 | 164.7 | 39.26 | 37.9 | 279 | 25 | 19.73 |
| 3,3-Dimethylhexane | 53 | 112 | 160.9 | 39.01 | 37.9 | 290.8 | 27.2 | 20.63 |


| 3,4-Dimethylhexane | 55 | 117.7 | 158.8 | 38.85 | 39 | 298 | 27.4 | 21.62 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3-Ethyl-2-methylpentane | 50 | 115.7 | 158.8 | 38.84 | 38.5 | 295 | 27.4 | 21.52 |
| 3-Ethyl-3-methylpentane | 55 | 118.3 | 157 | 38.72 | 38 | 305 | 28.9 | 21.99 |
| 2,2,3-Trimethylpentane | 50 | 109.8 | 159.5 | 38.92 | 36.9 | 294 | 28.2 | 20.67 |
| 2,2,4-Trimethylpentane | 40 | 99.2 | 165.1 | 39.26 | 36.1 | 271.2 | 25.5 | 18.77 |
| 2,3,3-Trimethylpentane | 55 | 114.8 | 157.3 | 38.76 | 37.2 | 303 | 29 | 21.56 |
| 2,3,4-Trimethylpentane | 50 | 113.5 | 158.9 | 38.87 | 37.6 | 295 | 27.6 | 21.14 |
| Nonane | 56 | 150.8 | 178.7 | 43.84 | 46.4 | 322 | 22.74 | 22.92 |
| 2-Methyloctane | 54 | 143.3 | 179.8 | 43.88 | 44.7 | 315 | 23.6 | 21.88 |
| 3-Methyloctane | 58 | 144.2 | 178 | 43.73 | 44.8 | 318 | 23.7 | 22.34 |
| 4-Methyloctane | 58 | 142.5 | 178.2 | 43.77 | 44.8 | 318.3 | 23.06 | 22.34 |
| 3-Ethylheptane | 58 | 143 | 176.4 | 43.64 | 44.8 | 318 | 23.98 | 22.81 |
| 4-Ethylheptane | 60 | 141.2 | 175.7 | 43.49 | 44.8 | 318.3 | 23.98 | 22.81 |
| 2,2-Dimethylheptane | 51 | 132.7 | 180.5 | 43.91 | 42.3 | 302 | 22.8 | 20.8 |
| 2,3-Dimethylheptane | 58 | 140.5 | 176.7 | 43.63 | 43.8 | 315 | 23.79 | 22.34 |
| 2,4-Dimethylheptane | 56 | 133.5 | 179.1 | 43.74 | 42.9 | 306 | 22.7 | 21.3 |
| 2,5-Dimethylheptane | 56 | 136 | 179.4 | 43.85 | 42.9 | 307.8 | 22.7 | 21.3 |
| 2,6-Dimethylheptane | 51 | 135.2 | 180.9 | 43.93 | 42.8 | 306 | 23.7 | 20.83 |
| 3,3-Dimethylheptane | 60 | 137.3 | 176.9 | 43.69 | 42.7 | 314 | 24.19 | 22.01 |
| 3,4-Dimethylheptane | 62 | 140.6 | 175.3 | 43.55 | 43.8 | 322.7 | 24.77 | 22.8 |
| 3,5-Dimethylheptane | 60 | 136 | 177.4 | 43.64 | 43 | 312.3 | 23.59 | 21.77 |
| 4,4-Dimethylheptane | 60 | 135.2 | 176.9 | 43.6 | 42.7 | 317.8 | 24.18 | 22.01 |
| 3-Ethyl-2-methylhexane | 57 | 138 | 175.4 | 43.66 | 43.8 | 322.7 | 24.77 | 22.8 |
| 4-Ethyl-2-methylhexane | 55 | 133.8 | 177.4 | 43.65 | 43 | 330.3 | 25.56 | 21.77 |
| 3-Ethyl-3-methylhexane | 62 | 140.6 | 173.1 | 43.27 | 43 | 327.2 | 25.66 | 23.22 |
| 3-Ethyl-4-methylhexane | 62 | 140.46 | 172.8 | 43.37 | 44 | 312.3 | 23.59 | 23.27 |
| 2,2,3-Trimethylhexane | 57 | 133.6 | 175.9 | 43.62 | 41.9 | 318.1 | 25.07 | 21.86 |
| 2,2,4-Trimethylhexane | 53 | 126.5 | 179.2 | 43.76 | 40.6 | 301 | 23.39 | 20.51 |
| 2,2,5-Trimethylhexane | 47 | 124.1 | 181.3 | 43.94 | 40.2 | 296.6 | 22.41 | 20.04 |
| 2,3,3-Trimethylhexane | 62 | 137.7 | 173.8 | 43.43 | 42.2 | 326.1 | 25.56 | 22.41 |
| 2,3,4-Trimethylhexane | 62 | 139 | 173.5 | 43.39 | 42.9 | 324.2 | 25.46 | 22.8 |
| 2,3,5-Trimethylpentane | 55 | 131.3 | 177.7 | 43.65 | 41.4 | 309.4 | 23.49 | 21.27 |
| 2,4,4-Trimethylhexane | 58 | 130.6 | 177.2 | 43.66 | 40.8 | 309.1 | 23.79 | 21.17 |
| 3,3,4-Trimethylhexane | 66 | 140.5 | 172.1 | 43.34 | 42.3 | 330.6 | 26.45 | 23.27 |
| 3,3-Diethylpentane | 63 | 146.2 | 170.2 | 43.11 | 43.4 | 342.8 | 26.94 | 23.75 |
| 2,2-Dimethyl-3-ethylpentane | 59 | 133.8 | 174.5 | 43.46 | 42 | 338.6 | 25.96 | 22.38 |
| 2,3-Dimethyl-3-ethylpentane | 59 | 142 | 170.1 | 42.95 | 42.6 | 322.6 | 26.94 | 23.87 |
| 2,4-Dimethyl-3-ethylpentane | 55 | 136.7 | 173.8 | 43.4 | 42.9 | 324.2 | 25.46 | 22.8 |
| 2,2,3,3-Tetramethylpentane | 63 | 140.3 | 169.5 | 43.21 | 41 | 334.5 | 27.04 | 23.38 |
| 2,2,3,4-Tetramethylpentane | 55 | 133 | 173.6 | 43.44 | 41 | 319.6 | 25.66 | 21.98 |
| 2,2,4,4-Tetramethylpentane | 42 | 122.3 | 178.3 | 43.87 | 38.1 | 301.6 | 24.58 | 20.37 |
| 2,3,3,4-Tetramethylpentane | 63 | 141.6 | 169.9 | 43.2 | 41.8 | 334.5 | 26.85 | 23.31 |

## Regression Models

Using the Table 1, the correlation coefficient $r$ and its square $r^{2}$ are computed
and tabulated in Table 2 for the physical properties and Chelo index.
Table 2: $r$ and $r^{2}$ for Chelo Index

| Physical Properties | $r$ | $r^{2}$ |
| :---: | :---: | :---: |
| $b p$ | 0.937177708 | 0.878302056 |
| $m v$ | 0.833630383 | 0.694939615 |
| $m r$ | 0.885502823 | 0.784115249 |
| $h v$ | 0.911242566 | 0.830363014 |
| $c t$ | 0.954199301 | 0.910496306 |
| $c p$ | 0.670423775 | 0.449468038 |
| $s t$ | 0.957426302 | 0.916665124 |

We have tested the following linear regression model

$$
P=A+B \cdot C h
$$

where $P=$ Physical property and $C h=$ Chelo index, and obtained the following models:

$$
\begin{aligned}
b p & =-24.95707358+2.781403189 \cdot C h \\
m v & =90.41478652+1.435331744 \cdot C h \\
m r & =16.41176731+0.458782557 \cdot C h \\
h v & =15.25848718+0.468818224 \cdot C h \\
c t & =119.3706907+3.425882038 \cdot C h \\
s t & =11.24998733+0.190913293 \cdot C h
\end{aligned}
$$

## 5. Conclusion

Table 2 reveals that the Chelo index is an useful tool in predicting the physical properties - boiling points, heats of vaporization, critical temperatures, and surface tensions of low alkanes. Further, Chelo index has good correlations with the physical properties - molar volumes and molar refractions. Though Chelo index has a positive correlation $(r=0.670423775)$ with critical pressures, it may not be useful in predicting the critical pressures of low alkanes because $r^{2}=0.449468038$.

## Acknowledgments

The authors gratefully thank to the Referee for the constructive comments and suggestions which definitely help to improve the readability and quality of the paper.

## References

[1] Atici M., On The Edge Geodetic Number Of A Graph, Int. J. Math. Comput. Sci., 80(7) (2003), 853-861.
[2] Bapat R. B., Graphs and matrices, Universitext, Springer, 2010.
[3] Chartrand G., Harary F., and Zhang P., On the geodetic number of a graph, Networks, 39(1) (2001), 1-6.
[4] Harary F., Graph Theory, Addison Wesley, Reading, Mass, 1972.
[5] Harary F., Loukakis E. and Tsouros C., The geodetic number of a graph, Math. Comput. Modelling, 17(11) (1993), 89-95.
[6] Hua H., On the peripheral Wiener index of graphs, Discrete Appl. Math., 258(2019), 135-142.
[7] Mahesh K. B., Rajendra R. and Reddy P. S. K., Square Root Stress Sum Index for Graphs, Proyecciones, 40(4) (2021), 927-937.
[8] Needham D. E., Wei I. C. and Seybold P. G., Molecular modeling of the physical properties of alkanes, J. Am Chem Soc., 110(1988), 4186-4194.
[9] Rajendra R., Reddy P. S. K. and Harshavardhana C. N., Tosha Index for Graphs, Proceedings of the Jangjeon Math. Soc., 24(1) (2021), 141-147.
[10] Rajendra R., Bhargava K., Shubhalakshmi D. and Reddy P. S. K., Peripheral Harary Index of Graphs, Palest. J. Math., 11(3) (2022), 323-336.
[11] Rajendra R., Reddy P. S. K., Mahesh K. B. and Harshavardhana C. N., Richness of a Vertex in a Graph, South East Asian J. Math. Math. Sci., 18(2) (2022), 149-160.
[12] Rajendra R., Reddy P. S. K. and Prabhavathi M., Computation of Wiener Index, Reciprocal Wiener index and Peripheral Wiener Index Using Adjacency Matrix, South East Asian J. Math. Math. Sci., 18(3) (2022), 275-282.
[13] Rajendra R., Reddy P. S. K., Kini Smitha G. and Smitha M., Peripheral Geodesic Index for graphs, Adv. Appl. Math. Sci., 22(1) (2022), 13-24.
[14] Seybold P. G., May M. and Bagal U. A., Molecular structure-property relationships, J. Chem Educ., 64(1987), 575-581.
[15] Sunilkumar Hosamani, Perigidad Deepa, Jamagoud Shruti, Maled Yallavva and Gavade Sharada, QSPR Analysis of Certain Degree Based Topological Indices, J. Stat. Appl. Pro., 6(2) (2017), 361-371.
[16] Wiener H., Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69(1) (1947), 17-20.
[17] Xu K., Das K. C. and Trinajstic N., The Harary Index of a Graph, SpringerVerlag, Berlin, Heidelberg, 2015.

