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Abstract: In the present paper, we focus on reexamination of unified three step
iteration scheme in more general infinite-dimensional manifolds i.e. in geodesic
CAT (0) spaces for asymptotically non-expansive mappings. The findings hold true
for both asymptotically non-expansive type mappings and asymptotically quasi
nonexpansive mappings. Since, numerous iteration schemes have been introducing
for so long and also claimed new and different from other which shows huge lack-
ing of existing iteration based literature. It is to be noted that there are several
iteration schemes which are claimed to be different and unique but is special case
of some existing scheme. Our results improve the existing iteration scheme based
literature.
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1. Introduction and Preliminaries
A metric space (C, d), that is geodesically connected with the property that

every geodesic triangle in C is at least as thin as its comparison triangle in the
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Euclidean plane is a CAT (0) space. If a metric space (C, d) is locally a CAT (0)
space, it is said to have curvature ≤ 0. In this case (C, d) is said to be non-positively
curved. Any complete, simply connected Riemannian manifold having non-positive
sectional curvature is a CAT (0) space [13]. Other examples are R-tress, pre-Hilbert
spaces (see [10]) and many others. For more discussion on CAT (0) spaces, one can
consult [3].

Kirk [14] poineered fixed point theory in CAT (0) spaces and established some
theorems for nonexpansive mappings. In 2008, Kirk and Panyanak [15] employed
the Lim [18] concept of ∆−convergence to show CAT (0) space results that involve
weak convergence under some appropriate conditions ∆−convergence theorems for
the Picard, Mann and Ishikawa iterations were also established for nonexpansive
mappings by Dhompongsa and Panyanak [7]. Recent research by Nanjaras and
Panyanak [20] extend Suzuki’s results on fixed point theorems and convergence
theorem for asymptotically nonexpansive mappings in CAT (0) spaces. In this
paper, inspired by the above results, we prove strong convergence theorems of the
Noor iterative schemes for asymptotically nonexpansive mappings in the CAT (0)
space setting. Our findings extend and improve some results revealed in [7, 20, 28]
and many others.
The following definitions are required:

Definition 1.1. Let C be a CAT (0) space and Cs be its nonempty subset. A
mapping ℘ : Cs → Cs is said to be asymptotically nonexpansive if there exists a
sequence {κn} of positive numbers with limn→∞ κn = 1 such that

d(℘n(m∗), ℘n(j)) ≤ κnd(m, j),

for all n ≥ 1 and m, j ∈ C.
A point m ∈ C is said to a fixed point of ℘ if m = ℘m. We will use P℘ to

represent the collection of fixed points of ℘. Kirk [16] provided the proof that fixed
point exists for asymptotically nonexpansive mappings in CAT (0) spaces as the
following statement.

Theorem 1.2. [16] Let Cs be a nonempty bounded closed and convex subset of a
complete CAT (0) space C and ℘ : Cs → Cs be asymptotically nonexpansive. Then
℘ has a fixed point.

We gather some fundamental concepts and necessary outcomes in order to make
our presentation self contained. A geodesic path joining m ∈ C and j ∈ C in a metric
space (C, d), is a map α : [0, r] ⊂ R to C such that α(0) = m, α(r) = j and for all
s, t ∈ [0, r], d(α(s), α(t)) = |s− t|. Particularly, the mapping α is an isometry and
d(m, j) = r. For more details about geodesic path, see [3, 14, 15]. The image of α
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is called a geodesic segment. Any two arbitrary points in the space (C, d) that are
connected by a geodesic path is said to be geodesic space, and if there is exactly one
geodesic joining m and j for each m, j ∈ C then C is said to be uniquely geodesic and
this unique geodesic segment is denoted by [m, j]. Whenever such a segment exists
uniquely. We represent the point z ∈ [m, j] for any m, j ∈ C by z = (1− β)m⊕ βj,
where 0 ≤ β ≤ 1 if d(m, z) = βd(m, j) and d(z, j) = (1− β)d(m, j). A subset C1

of C is said to be convex if C1 contains every geodesic segment connecting any two
of its points.
A geodesic triangle ∆(m1,m2,m3) in a geodesic space (C, d) consists of three points
m1,m2,m3 in C and a geodesic segment between each pair of vertices. A comparison
triangle of a geodesic triangle ∆(m1,m2,m3) in (C, d) is a triangle ∆( m1,m2,m3) :=
∆(m1, m2,m3) in the Euclidean space R2 where dR2(mi, mj) = d(mi,mj) for each
i, j ∈ {1, 2, 3}.
A geodesic space C is a CAT (0) space if for each geodesic triangle ∆(m1,m2,m3)
in C and its comparison triangle ∆ : ∆(m1, m2,m3) in R2, the CAT (0) inequality:

d(m, j) ≤ dR2(m, j).

is satisfied by all m, j ∈ ∆ and comparison points m, j ∈ ∆. If m,m1 and m2 are
points of CAT (0) space and m0 is the midpoint of the segment [m1, m2], then the
CAT (0) inequality implies

d(m,m0)
2 ≤ 1

2
d(m,m1)

2 +
1

2
d(m,m2)

2 − 1

4
d(m1,m2)

2.

The aforementioned disparity, known as the (CN ) inequality, and was proposed by
Bruhat and Tits [4].
Let {mn} be a bounded sequence in a closed convex subset C1 of CAT (0) space C.
For m ∈ C, we set:

r(m, {mn} = lim sup
n→∞

d(m,mn).

The asymptotic radius r({mn}) is given by

r({mn}) = inf{r(m,mn) : m ∈ C},

and the asymptotic center A({mn}) of {mn} is defined as:

A({mn}) = {m ∈ C : r(m,mn) = r({mn})}.

If C be a complete CAT (0) space, then A({mn}) contains exactly one point (see
Proposition 5 of [6]).
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Definition 1.3. ([15], [18]) A sequence {mn} in a CAT (0) space C is said to
∆−converge to m ∈ C if m is the unique asymptotic center of {mnk} for every
subsequence {mnk} of {mn}. In this case we write ∆− limn→∞mn = m.

We now collect some relevant facts followed previous research results about
CAT (0) spaces which will be used in the proofs of our main results.

Lemma 1.4. [15] In a complete CAT (0) space, every bounded sequence admits a
∆-convergent subsequence.

Lemma 1.5. [8] Let Cs be closed convex subset of a complete CAT (0) space C and
if {mn} is a bounded sequence in Cs, then the asymptotic center of {mn} is in Cs.

Lemma 1.6. [8] Let C be a complete CAT (0) space and Cs be its closed convex
subset and let ℘ : Cs → C be an asymptotically nonexpansive mapping. If {mn} is a
bounded sequence in Cs such that lim

n→∞
d(mn, ℘mn) = 0 and ∆− lim

n→∞
mn = m. Then

m = ℘m.

Lemma 1.7. [7] Let C be a CAT (0) space. For m, j ∈ C and ρ ∈ [0, 1], there
exists a unique l ∈ [m, j] such that

d(m, l) = ρ d(m, j) and d(j, l) = (1− ρ)d(m, j).

We use the notation (1− ρ)m⊕ ρj for the unique point l of the above lemma.

Lemma 1.8. For m, j, l ∈ C and ρ ∈ [0, 1] we have

d((1− ρ)m⊕ ρj, l) ≤ (1− ρ)d(m, l) + ρd(j, l).

Lemma 1.9. For m, j, l ∈ C and ρ ∈ [0, 1] we have

d((1− ρ)m⊕ ρj, l)2 ≤ (1− ρ)d2(m, l) + ρd2(j, l)− ρ(1− ρ)d2(m, j).

Inspired and motivated by the results of existing three step iteration schemes,
Nisha et al. [25] introduced a new iteration scheme namely, Standard three-step
iteration scheme which is an unification of many existing iteration schemes and
defined as follows :
for any m0 ∈ C,

ln = a0nmn + a1n℘mn + a2njn + a3n℘jn;

jn = b0nmn + b1n℘mn + b2nln + b3n℘ln;

mn+1 = c0nmn + c1n℘mn + c2njn + c3n℘jn + c4nln + c5n℘ln,

(1.1)

where sequence {ain}, {bin} for i = 0, 1, 2, 3 and {cin} for i = 0, 1, 2, 3, 4, 5 are
sequences in [0,1] such that one of the following condition holds such that

∑3
i=0 a

i
n ≤
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1,
∑3

i=0 b
i
n ≤ 1,

∑5
i=0 c

i
n ≤ 1.

For x1 ∈ C, the Standard three-step iteration scheme in the framework of CAT (0)
spaces is defined as

ln = a0nmn ⊕ a1n℘mn ⊕ a2njn ⊕ a3n℘jn;

jn = b0nmn ⊕ b1n℘mn ⊕ b2nln ⊕ b3n℘ln;

mn+1 = c0nmn ⊕ c1n℘mn ⊕ c2njn ⊕ c3n℘jn ⊕ c4nln ⊕ c5n℘ln,

(1.2)

where sequence {ain}, {bin} for i = 0, 1, 2, 3 and {cin} for i = 0, 1, 2, 3, 4, 5 are
sequences in [0,1] such that one of the following condition holds such that

∑3
i=0 a

i
n ≤

1,
∑3

i=0 b
i
n ≤ 1,

∑5
i=0 c

i
n ≤ 1.

Now, we are in the position of iteration scheme analysis.

Remark. For distinct values of ain, bin, cin, for i = 0, 1, 2; c4n and c5n we have
well-known distinct iteration schemes. On substituting

(B1) a2n = a3n = b2n = b1n = c2n = c1n = c4n = c4n = 0, a0n = (1 − a1n), b
0
n = (1 − a3n),

b0n = (1− b3n) in the nv iteration, we obtain the Noor iterative scheme [21].

(B2) a2n = a3n = b2n = b0n = b1n = c2n = b3n = c4n = c4n = 0, a0n = (1− a1n), b
2
n = (1− a3n)

and c2n = (1− b3n) in the nv iteration, we obtain the SP iterative scheme [22].

(B3) a2n = a3n = b2n = b0n = b1n = c0n = c2n = b3n = c4n = c4n = 0, a2n = (1 − a1n),
b1n = (1 − a3n) and c1n = 1 in the nv iteration, we obtain the Picard − S
iterative scheme [11].

(B4) a0n = a1n = a2n = a3n = b2n = a3n = c0n = c1n = c4n = c4n = 0 and a0n = (1 − a1n),
b1n = (1−a3n) and c2n = (1−b3n) in the nv iteration, we obtain the CR iterative
scheme [5].

(B5) a0n = a1n = b2n = b0n = c0n = c2n = c4n = c4n = 0, b0n = (1 − b1n), b
1
n = (1 − a3n) in

the nv iteration, we obtain the Abbas and Nazir iterative scheme [1].

(B6) a2n = a3n = b0n = b1n = c1n = c2n = b3n = c4n = 0, a0n = (1− a1n), b
2
n = (1− a3n) and

σ2
η = (1− b3n) in the nv iteration, we obtain the P iterative scheme [24].

(B7) a2n = a3n = b0n = b2n = c1n = c2n = c0n = c4n = 0, a0n = (1− a1n), b
1
n = (1− a3n) and

σ2
η = (1− b3n) in the nv iteration, we obtain the D iterative scheme [9].

(B8) a2n = a3n = a0n = a1n = b2n = a3n = b0n = b1n = b3n = c2n = c4n = 0, c0n = (1 − c1n) in
the nv iteration, we obtain the Mann iterative scheme [19].
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(B9) a2n = a3n = a0n = a1n = b2n = a3n = c1n = c2n = c4n = c4n = 0, b0n = (1 − b1n) and
c0n = (1 − b3n) in the nv iteration, we obtain the Ishikawa iterative scheme
[12].

The following Lemma is a consequence of Lemma 2.9 of [17] which will be used
to prove our main results.

Lemma 1.10. Let C be a complete CAT (0) space and let m∗ ∈ C. Suppose {ϕn} is
a sequence in [s, t] for some s, t ∈ (0, 1) and{mn}, {jn} are sequences in C such that
lim sup
n→∞

d(mn,m
∗) ≤ r, lim sup

n→∞
d(jn,m

∗) ≤ r, and lim
n→∞

d((1 − ϕn)mn ⊕ ϕnjn,m
∗) = r

for some r ≥ 0. Then
lim
n→∞

d(mn, jn) = 0.

In this paper, we prove that the sequence {mn} in Standard three-step iteration
scheme described by (1) ∆-converges to a fixed point of ℘. This result is an analog of
a result on weak and strong convergence theorem for asymptotically nonexpansive
mapping in CAT (0) spaces. In this process, the results of Panyanak [7], Nanjaras
and Panyanak [20], Xu and Noor [28] and many others are extended and improved.

2. ∆− Convergence Theorems
We initially write the lemma in the context of CAT (0) spaces before proving

our main results:

Lemma 2.1. [29] Let {ϕn} and {φn} be sequences of nonnegative real numbers
satisfying the inequality

ϕn+1 ≤ (1 + φn)ϕn, n ≥ 1.

If
∑∞

n=1 φn < +∞, then limn→∞ ϕn exists.

Lemma 2.2. Let C1 be a nonempty closed bounded convex subset of a complete
CAT (0) space C and let ℘ : C1 → C1 be an asymptotically nonexpansive mapping

with {κn} satisfying κn ≥ 1 and
∑∞

n=1

(
−κn − 1

2

)
< +∞. Let {mn} be a sequence

generated by three-step iteration scheme. For a given m1 ∈ C, consider the sequence
{mn}, {jn} and {ln} defined by

ln = a0nmn ⊕ a1n℘
nmn ⊕ a2njn ⊕ a3n℘

njn;

jn = b0nmn ⊕ b1n℘
nmn ⊕ b2nln ⊕ b3n℘

nln;

mn+1 = c0nmn ⊕ c1n℘
nmn ⊕ c2njn ⊕ c3n℘

njn ⊕ c4nln ⊕ c5n℘
nln,

(2.1)

where
∑3

i=0 a
i
n ≤ 1,

∑3
i=0 b

i
n ≤ 1,

∑5
i=0 c

i
n ≤ 1. Then lim

n→∞
d(mn,m

∗) exists for all



Fixed Point Approximation using Unified Iteration Scheme ... 141

m∗ ∈ P℘.
Proof. We first note that P℘ is nonempty. It is given that ℘ is asymptotically
nonexpansive mapping then by Theorem 1.2. For each m∗ ∈ f℘, we have

d(ln,m
∗) = d(a0nmn ⊕ a1n℘

nmn ⊕ a2njn ⊕ a3n℘
njn,m

∗)

≤ a0nd(mn,m
∗) + a1nd(℘

nmn,m
∗) + a2nd(jn,m

∗) + a3nd(℘
njn,m

∗)

≤ a0nd(mn,m
∗) + a1nκnd(mn,m

∗) + a2nd(jn,m
∗) + a3nκnd(jn,m

∗)

≤ (1 + κn)(d(mn,m
∗) + d(jn,m

∗)).

Also,

d(jn,m
∗) = d(b0nmn ⊕ b1n℘

nmn ⊕ b2nln ⊕ b3n℘
nln,m

∗)

≤ b0nd(mn,m
∗) + b1nd(℘

nmn,m
∗) + b2nd(ln,m

∗) + d1nd(℘
nln,m

∗)

≤ b0nd(mn,m
∗) + b1nκnd(mn,m

∗) + b2nd(ln,m
∗) + b3nκnd(ln,m

∗)

≤ (1 + κn)(d(mn,m
∗) + d(ln,m

∗)).

Using the value of d(ln,m
∗), we have

d(jn,m
∗) ≤ (1 + κn)d(mn,m

∗) + (1 + κn)
2(d(mn,m

∗) + d(jn,m
∗))

≤ (1 + κn + (1 + κn)
2)d(mn,m

∗) + (1 + κn)
2d(jn,m

∗)

≤ (2 + 3κn + κ2
n)d(mn,m

∗) + (1 + 2κn + κ2
n)d(jn,m

∗)

d(jn,m
∗) ≤

[
κn + 1

−κn

]
d(mn,m

∗).

Now,

d(mn+1,m
∗) = (c0nmn ⊕ c1n℘

nmn ⊕ c2njn ⊕ c3n℘
njn ⊕ c4nln ⊕ c5n℘

nln,m
∗)

≤ c0nd(mn,m
∗) + c1nd(℘

nmn,m
∗) + c2nd(jn,m

∗) + c3nd(℘
njn,m

∗) + c4nd(ln,m
∗)

+ c5nd(℘
nln,m

∗)

≤ (c0n + c1nκn)d(mn,m
∗) + (c2n + c3nκn)d(jn,m

∗) + (c4n + c5nκn)d(ln,m
∗).

≤ (1 + κn)d(mn,m
∗) + (1 + κn)d(jn,m

∗) + (1 + κn)d(ln,m
∗).

≤ (1 + κn)(d(mn,m
∗) + d(jn,m

∗) + d(ln,m
∗)).

Since,

d(jn,m
∗) ≤

[
κn + 1

−κn

]
d(mn,m

∗)

and

d(ln,m
∗) ≤

[
κn + 1

−κn

]
d(mn,m

∗)
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we have

d(mn+1,m
∗) ≤

(
1 +

[
−2κn − 1

κn

])
d(mn,m

∗)

Since {κn} is bounded, there exists M > 0 such that

d(mn+1,m
∗) ≤ (1 +M(−κn −

1

2
))d(mn,m

∗).

Lemma 2.3. Let Cs,C, ℘, {κn, {ain}, {bin}, {cin}, {mn}, {jn}, {ln} are as in Lemma
2.2

(i) If 0 < lim infn→∞ ain ≤ lim supn→∞ ain < 1, then

lim
n→∞

d(℘njn,mn) = 0.

(ii) If 0 < lim infn→∞ cin ≤ lim supn→∞ cin < 1, and lim infn→∞ ain > 0 then

lim
n→∞

d(℘nln,mn) = 0.

Proof. We can achieve the desired result using Lemma 1.9 and the proof of Lemma
2.2 in [28] with ρ = 2 and ω(γ) = γ(1− γ) for γ ∈ [0, 1].

Lemma 2.4. Let C1 be a nonempty closed bounded convex subset of a complete
CAT (0) space C and let ℘ : C1 → C1 be an asymptotically nonexpansive mapping

with {κn} satisfying κn ≥ 1 and
∑∞

n=1

(
− κn − 1

2

)
< +∞ and κnb2na

2
n

(1−κnb1n)
and (1 +

κn)(c
4
n + c2nb

2
n) are null sequences. Let {ain}, {bin} for i = 0, 1, 2, 3 and {cin} for

i = 0, 1, 2, 3, 4, 5 be real sequences in [0, 1] satisfying

(i) If 0 < lim infn→∞ ain ≤ lim supn→∞ ain < 1.

(ii) If 0 < lim infn→∞ bin ≤ lim supn→∞ bin < 1.

For a given m1 ∈ C, consider the sequence {mn}, {jn} and {ln} defined by
ln = a0nmn ⊕ a1n℘

nmn ⊕ a2njn ⊕ a3n℘
njn;

jn = b0nmn ⊕ b1n℘
nmn ⊕ b2nln ⊕ b3n℘

nln;

mn+1 = c0nmn ⊕ c1n℘
nmn ⊕ c2njn ⊕ c3n℘

njn ⊕ c4nln ⊕ c5n℘
nln,

(2.2)
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where
∑3

i=0 a
i
n ≤ 1,

∑3
i=0 b

i
n ≤ 1,

∑5
i=0 c

i
n ≤ 1. Then lim

n→∞
d(℘mn,mn) = 0.

Proof. From Lemma 2.3, we have

lim
n→∞

d(℘njn,mn) = 0

and

lim
n→∞

d(℘nln,mn) = 0.

Thus

d(℘nmn,mn) ≤ d(℘nmn, ℘
njn) + d(℘njn,mn)

≤ κnd(mn, jn) + d(℘njn,mn)

= κnd(mn, b
0
nmn ⊕ b1n℘

nmn ⊕ b2nln ⊕ b3n℘
nln) + d(℘njn,mn)

d(℘nmn,mn) = κnb
1
nd(mn, ℘

nmn) + κnb
2
nd(mn, ln) + κnb

3
nd(mn, ℘

nln) + d(℘njn,mn),

= κnb
1
nd(mn, ℘

nmn) + κnb
2
n

[
d(mn, a

0
nmn ⊕ a1n℘

nmn ⊕ a2njn ⊕ a3n℘
njn)

]
+ κnb

3
nd(mn, ℘

nln) + d(℘njn,mn)

= κnb
1
nd(mn, ℘

nmn) + κnb
2
na

1
nd(mn, ℘

nmn) + κnb
2
na

2
nd(mn, jn)

+ κnb
2
na

3
nd(mn, ℘

njn) + κnb
3
nd(mn, ℘

nln) + d(℘njn,mn)

for n → +∞, we have

d(℘nmn,mn) = κnb
1
nd(mn, ℘

nmn) + κnb
2
na

2
nd(mn, jn)

d(℘nmn,mn) =
κnb

2
na

2
n

(1− κnb1n)
d(mn, jn) → 0 as n → +∞.

so as

d(mn+1, ℘
nmn+1) ≤ d(mn+1,mn) + d(℘nmn+1, ℘

nmn) + d(℘nmn,mn)

≤ d(mn+1,mn) + κnd(mn+1,mn) + d(℘nmn,mn)

≤ (1 + κn)d(c
0
nmn ⊕ c1n℘

nmn ⊕ c2njn ⊕ c3n℘
njn ⊕ c4nln ⊕ c5n℘

nln,mn)

+ d(℘nmn,mn)

≤ (1 + κn)

[
c1nd(℘

nmn,mn) + c2nd(jn,mn) + c3nd(℘
njn,mn) + c4nd(ln,mn)

+ c5nd(℘
nln,mn)

]
+ d(℘nmn,mn)
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for n → +∞, we have

d(mn+1, ℘
nmn+1) = (1 + κn)

[
c2n(d(jn,mn) + c4nd(ln,mn)

]
= (1 + κn)

[
c2nb

1
nd(℘

nmn,mn) + b3nd(℘
nln,mn)) + (c4n + c2nb

2
n)d(ln,mn)

]
for n → +∞, d(mn+1, ℘

nmn+1) → 0.

Theorem 2.5. Let C1 be a nonempty closed convex subset of a complete CAT (0)
space C and Let ℘ : C1 → C1 be an asymptotically nonexpansive mapping with {κn}

satisfying κn ≥ 1. Also,
∑∞

n=1

(
−κn− 1

2

)
< +∞ and κnb2na

2
n

(1−κnb1n)
and (1+κn)(c

4
n+c2nb

2
n)

are null sequences. The sequences {ain}, {bin} and {cin} real sequences satisfies the
conditions defined in Lemma 2.3 and Lemma 2.4. Then the sequence {mn} ∆-
converges to a fixed point of ℘.
Proof. Lemma 2.4 guarantees that {mn} is a bounded sequence and

lim
n→∞

d(mn, ℘mn) = 0.

Let Wω({mn}) =: ∪A({m′
n}), is union of all subsequence {m′

n} over {mn}. To show
the ∆-convergence of {mn} to a fixed point of ℘, we show thatWω({(mn}) ⊂ P℘ and
Wω({mn}) is a singleton set. To show that Wω({(mn}) ⊂ P℘ let m′ ∈ Wω({(mn}).
Then, there exists a subsequence {m′

n} of {mn} such that A({mn}) = m′. By
Lemma 1.4 and Lemma 1.5, there exists a subsequence {m′′

n} of {m′
n} such that

∆− lim
n→∞

m′′
n = m′′ ∈ C. Since lim

n→∞
d(m′′

n, ℘m
′′
n) = 0, then m′′ ∈ P℘. Lets claim that

m′′ = m′. On contrary, since m′′ ∈ P℘, by Lemma 2.2 lim
n→∞

mn,m
′′ exists. Due to

the uniqueness of asymptotic centers,

lim sup
n→∞

d(m′′
n,m

′′) < lim sup
n→∞

d(m′′
n,m

′)

≤ lim sup
n→∞

d(m′
n,m

′)

< lim sup
n→∞

d(m′
n,m

′′)

= lim sup
n→∞

d(mn,m
′′)

= lim sup
n→∞

d(m′′
n,m

′′),

which is a contradiction. Hence m′′ = m′. To assert that Wω({(mn}) is a singleton
set, let {m′

n} be a subsequence of {mn}. Owing to Lemmas 1.4 and 1.5, a subse-
quence {m′′

n} of {m′
n} exists there such that ∆− lim

n→∞
m′′

n = m′′. Let A({m′
n}) = m′
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and A({mn}) = m. Previously, we have shown that m′′ = m′. So it is enough to
show m′′ = m. If m′′ ̸= m. Taking into consideration of Lemma 2.2, lim

n→∞
d(mn,m

′′)

exists, then by uniqueness of asymptotic centers

lim sup
n→∞

d(m′′
n,m

′′) < lim sup
n→∞

d(m′′
n,m)

≤ lim sup
n→∞

d(mn,m)

< lim sup
n→∞

d(mn,m
′′)

= lim sup
n→∞

d(m′′
n,m

′′)

which is a contradiction. Hence P℘ is nonempty and m′′
n ∆- converges to a fixed

point of ℘ so that conclusion is drawn.
We have the following corollary of the previous theorem in light of Theorem 3.1.
We may also obtain strong convergence theorems for completely continuous asymp-
totically nonexpansive mappings by employing the same concepts and methods. So
without providing any proof, we might claim the following conclusive results.

Theorem 2.6. Let C be a complete CAT (0) space and C1 be its nonempty closed
convex subset. A mapping ℘ : C1 → C1 be an a completely continuous asymptoti-

cally nonexpansive mapping with {κn} satisfying κn ≥ 1. Also,
∑∞

n=1

(
−κn− 1

2

)
<

+∞ and κnb2na
2
n

(1−κnb1n)
and (1 + κn)(c

4
n + c2nb

2
n) are null sequences. The sequences {ain},

{bin} and {cin} real sequences satisfies the conditions defined in Lemma 2.3 and
Lemma 2.4. Then the sequence {mn} converges strongly to a fixed point of ℘.

3. Conclusion
It is obvious that the recently adopted general three-step iteration scheme is an

unified version of numerous existing iteration schemes. We reexamined standard
three step iteration scheme [25] in geodesic CAT (0) for the purpose of extending
and improving the results given by Dhompongsa and Panyanak [7], Nanjaras and
Panyanak [20], Xu and Noor [28].
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