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Abstract: S-metric space is a relatively new concept in the literature and currently
there is much attention being given to the generalization of S-metric spaces and
fixed point theory in these spaces. Recently, the concept of S-Menger spaces was
introduced in the literature as a generalization of both S-metric spaces and Menger
spaces. Combinations of Banach and Kannan type contractions are very much
important to find fixed point results and there are very few works on S-metric
spaces that includes both of these type contractions. In this paper, we present a
fixed point result in S-Menger spaces that includes both Banach type contractions
and Kannan type contractions. We have also deduced some corollaries from our
result and provided examples to validate our work.
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1. Introduction

The study of fixed point result originated in the literature due to Banach [3] for
contractive type mappings. Since then, the theory has been extended in various
directions. Some researchers have generalized contractive conditions, while the
others have focused on the underlying space for the improvement of the theory. [6,
8, 12, 15, 27] and [28] are some examples of generalization of the space. In [11]
Kannan introduced another type of contraction, commonly known as Kannan type
contraction, which has also been an area of active research in fixed point theory.

Recently D⋆-metric spaces [28] had been used as a generalization of D-metric
spaces [6]. Mustafa and Sims [15] proposed a generalization of metric spaces which
is known as G-metric spaces. In [27] Sedghi et al. introduced the notion of S-metric
spaces as a generalized version of bothG-metric spaces andD⋆-metric spaces. Some
of the recent works dealing with these spaces may be noted in [1, 4, 7, 9, 13, 16,
17, 19, 20, 21, 25, 26, 29] and [31].

Probabilistic generalization of metric spaces was proposed by K. Menger [12]
in 1942 which was further extended by Schweizer and Sklar [23]. With the help of
t-norm this spaces was further extended to Menger spaces. A comprehensive study
of this spaces may be noted in [10] and [24]. The generalization of this space and
the study of fixed points in this space continue to be an active area of research.
Some recent references may be noted in [2, 14, 18].

Recently, in [22] S-Menger spaces were introduced as a probabilistic general-
ization of S-metric spaces by the present authors. Some basic properties of these
spaces were discussed and a fixed point theorem was proved in that paper. In the
present paper we have proved a fixed point result using combinations of Banach and
Kannan type contraction in S-Menger spaces with the help of Ψ-function. Some
corollaries has been deduced and examples are provided in support of our result.

2. Definitions and Mathematical Preliminaries

In this section, we have provided some preliminary definitions and lemmas along
with some examples that are necessary for our main theorem.

Definition 2.1. S-metric Space [27]
Let X be a nonempty set. An S-metric on X is a function S : X3 → [0,∞) that
satisfies the following conditions, for each x, y, z, a ∈ X,

(i) S(x, y, z) ≥ 0,

(ii) S(x, y, z) = 0 if and only if x = y = z,
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(iii) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
The pair (X,S) is called an S-metric space.

Definition 2.2. [10, 24] A mapping F : R → R+ is called a distribution function
if it is non-decreasing and left continuous with inf

t∈R
F (t) = 0 and sup

t∈R
F (t) = 1,

where R is the set of real numbers and R+ denotes the set of non-negative real
numbers.

Definition 2.3. t-norm [10, 24]
A t-norm is a function T : [0, 1] × [0, 1] → [0, 1] which satisfies the following
conditions

(i) T (1, a) = a,

(ii) T (a, b) = T (b, a),

(iii) T (c, d) ≥ T (a, b) whenever c ≥ a and d ≥ b,

(iv) T (T (a, b), c) = T (a, T (b, c)).

Definition 2.4. n-th order t-norm [30]
A mapping T : [0, 1]n → [0, 1] is called n-th order t-norm if the following conditions
are satisfied:

(i) T (0, 0, 0, ..., 0, ) = 0, T (a, 1, 1, ...., 1) = a, for all a ∈ [0, 1],

(ii) T (a1, a2, a3, ......, an) = T (a2, a1, a3, ......, an) = T (a2, a3, a1, ......, an)
..... = T (a2, a3, a4, ......, an, a1),

(iii) ai ≥ bi, i = 1, 2, 3...., n implies T (a1, a2, a3, ......, an) ≥ T (b1, b2, b3, ......, bn)

(iv) T (T (a1, a2, a3, ......, an), b2, b3, ......, bn)
= T (a1, T (a2, a3, ......, an, b2), b3, ......, bn)
= T (a1, a2, T (a3, a4......, an, b2, b3), b4....., bn)
..................................................
= T (a1, a2, a3, ......, an−1, T (an, b2, b3, ......, bn)).

When n = 2, 3 then we have binary t-norm and 3-rd order t-norm respectively.

Definition 2.5. Menger space [10, 24]
A Menger space is a triplet (X,F,∆) where X is a non empty set, F is a function
defined on X ×X to the set of distribution functions and ∆ is a t-norm, such that
the following are satisfied:
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(i) Fx,y(0) = 0 for all x, y ∈ X,

(ii) Fx,y(s) = 1 for all s > 0 and x, y ∈ X if and only if x = y,

(iii) Fx,y(s) = Fy,x(s) for all x, y ∈ X, s > 0 and

(iv) Fx,y(u+ v) ≥ ∆(Fx,z(u), Fz,y(v)) for all u, v ≥ 0 and x, y, z ∈ X.

Now we go through the definition of S-Menger space, which was introduced by
the present authors in [22].

Definition 2.6. S-Menger space [22]
The 3-tuple (X,F, T ) is said to be S-Menger space if X is a non-empty set, F is a
functions defined on X3 to the set of distribution function and T is a continuous
third order t-norm such that the following conditions are satisfied:

(i) Fx,y,z(0) = 0 for all x, y, z ∈ X,

(ii) Fx,x,y(t) < 1 for t > 0 with x ̸= y,

(iii) Fx,y,z(t) = 1 for all t > 0, if and only if x = y = z,

(iv) Fx,y,z(t) ≥ T (Fx,x,a(t1), Fy,y,a(t2), Fz,z,a(t3)),
where t = t1 + t2 + t3 and t, t1, t2, t3 > 0, for all x, y, z, a ∈ X.

Example 2.7. Let X = {x1, x2, x3, x4}, T (a, b, c)= min {a, b, c}, that is T is the
3rd order minimum t-norm and Fx,y,z(t) be defined as,

(a) Fx1,x2,x3(t) = Fx2,x1,x3(t) = Fx2,x4,x1(t) = Fx4,x2,x1(t) =


0, if t ≤ 0,
0.65, if 0 < t ≤ 5,
1, if t > 5.

(b) Fx1,x2,x4(t) = Fx2,x1,x4(t) = Fx1,x4,x2(t)

= Fx4,x1,x2(t) = Fx3,x4,x2(t) = Fx4,x3,x2(t) =


0, if t ≤ 0,
0.60, if 0 < t ≤ 5,
1, if t > 5.

(c) Fx1,x3,x2(t) = Fx3,x1,x2(t) = Fx2,x3,x4(t) = Fx3,x2,x4(t) =


0, if t ≤ 0,
0.55, if 0 < t ≤ 5,
1, if t > 5.

(d) Fx1,x3,x4(t) = Fx3,x1,x4(t) = Fx1,x4,x3(t) = Fx4,x1,x3(t) =


0, if t ≤ 0,
0.75, if 0 < t ≤ 5,
1, if t > 5.
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(e) Fx2,x3,x1(t) = Fx3,x2,x1(t) = Fx2,x4,x3(t) = Fx4,x2,x3(t) =


0, if t ≤ 0,
0.70, if 0 < t ≤ 5,
1, if t > 5.

(f) Fx3,x4,x1(t) = Fx4,x3,x1(t) =


0, if t ≤ 0,
0.80, if 0 < t ≤ 5,
1, if t > 5.

(g) Fx1,x1,x2(t) = Fx2,x2,x1(t) =


0, if t ≤ 0,
0.50, if 0 < t ≤ 5,
1, if t > 5.

(h) Fx1,x1,x3(t) = Fx3,x3,x1(t) =


0, if t ≤ 0,
0.55, if 0 < t ≤ 2,
1, if t > 2.

(i) Fx1,x1,x4(t) = Fx4,x4,x1(t) =


0, if t ≤ 0,
0.70, if 0 < t ≤ 4,
1, if t > 4.

(j) Fx2,x2,x3(t) = Fx3,x3,x2(t) =


0, if t ≤ 0,
0.50, if 0 < t < 7,
1, if t ≥ 7.

(k) Fx2,x2,x4(t) = Fx4,x4,x2(t) =


0, if t ≤ 0,
0.50, if 0 < t < 6,
1, if t ≥ 6.

(l) Fx3,x3,x4(t) = Fx4,x4,x3(t) =


0, if t ≤ 0,
0.55, if 0 < t ≤ 3,
1, if t > 3.

For any x, y ∈ X we see that Fx,x,y(t) = Fy,y,x(t) < 1, where x ̸= y. If x = y
then Fx,x,x(t) = 1 for all x ∈ X, t > 0. We can verified that (X,F, T ) is a S-Menger
space.

Some more examples of S-Menger space :

Example 2.8. Let X = R, Fx,y,z(t) be defined as

Fx,y,z(t) =
t

t+|y−z|+|z−x| ,

for all x, y, z ∈ X, t ≥ 0 and ∆ = 3rd order minimum t-norm. Then (X,F,∆) is
an S-Menger space.

Example 2.9. Let X = Rn and ∥.∥ a norm on X, Fx,y,z(t) be defined as

Fx,y,z(t) =
t

t+∥y+z−2x∥+∥y−z∥ ,

for all x, y, z ∈ X, t ≥ 0 and ∆ = 3rd order minimum t-norm. Then (X,F,∆) is
an S-Menger space.
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Definition 2.10. Let (X,F, T ) be an S-Menger space. A sequence {xn} ⊂ X is
said to be converge to some point x ∈ X if given ϵ > 0, λ > 0 we find a positive
integer Nϵ,λ such that for all n > Nϵ,λ

Fxn,xn,x(ϵ) ≥ 1− λ. (2.1)

Definition 2.11. Let (X,F, T ) be an S-Menger space. A sequence {xn} is said to
be Cauchy sequence if Fxn,xn,xn+p(t) → 1 as n→ ∞ for p = 1, 2, 3.... for each t > 0.

Definition 2.12. Let (X,F, T ) be an S-Menger space. A sequence {xn} is said to
be G-Cauchy sequence in X if given ϵ > 0, λ > 0 there exists a positive integer Nϵ,λ

such that
Fxn,xn,xm(ϵ) ≥ 1− λ, for all m,n > Nϵ,λ. (2.2)

Definition 2.13. An S-Menger space (X,F, T ) is said to be complete if every
Cauchy sequence is convergent in X.

We now propose some lemmas in S-Menger spaces which will be needed for our
main theorem.

Lemma 2.14. In every S-Menger space (X,F, T ), where T is a continuous third
order t-norm we have Fx,x,y(t) = Fy,y,x(t) for x, y ∈ X and for all t > 0.
Proof. From definition of S-Menger space we can write, for all t > 0 and x, y ∈ X.

Fx,x,y(t) ≥ T (Fx,x,x(ϵ), Fx,x,x(ϵ), Fy,y,x(t− 2ϵ)).
= T (1, 1, Fy,y,x(t− 2ϵ)).

Taking limit ϵ→ 0, we have,
Fx,x,y(t) ≥ T (1, 1, Fy,y,x(t)).
Fx,x,y(t) ≥ Fy,y,x(t)). (2.3)

Similarly we can prove,
Fy,y,x(t) ≥ Fx,x,y(t)). (2.4)

From the relations (2.3) and (2.4) we can write,
Therefore, Fx,x,y(t) = Fy,y,x(t), for all t > 0 and x, y ∈ X.

Lemma 2.15. Let (X,F, T ) be an S-Menger space where T is a continuous third
order t-norm. If the sequence {xn} in X converges to x, then {xn} is a Cauchy
sequence.
Proof. Since lim

n→∞
xn = x, then for each λ ∈ (0, 1) there exist n0 ∈ N , for all t > 0

and n,m = n+ p ≥ n0 ∈ N where p is the positive integer, such that,
Fxn,xn,x(t) ≥ 1− λ

and
Fxm,xm,x(t) ≥ 1− λ.

Using triangular inequality we have,
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Fxn,xn,xm(t) ≥ T (Fxn,xn,x(ϵ), Fxn,xn,x(ϵ), Fxm,xm,x(t− 2ϵ)).
Taking limit ϵ→ 0 and n→ ∞ we get,

Fxn,xn,xm(t) → 1.

Therefore, {xn} is a Cauchy sequence.

Lemma 2.16. Let (X,F, T ) be an S-Menger space and T is continuous third or-
der t-norm. If t is a continuity point of Fx,x,y(.) and sequence {xn} and {yn} are
sequences in X, converging to x, y (respectively) then,

lim
n→∞

Fxn,xn,yn(t) = Fx,x,y(t).

Proof. Let x, y ∈ X, t > 0 continuity point of Fx,x,y(.) and {xn}, {yn} are se-
quences in X, converging to x, y (respectively). Then for every 0 < ϵ < t

4
, we can

write,
Fxn,xn,yn(t) ≥ T (Fxn,xn,x(ϵ), Fxn,xn,x(ϵ), Fyn,yn,x(t− 2ϵ)),

≥ T (Fxn,xn,x(ϵ), Fxn,xn,x(ϵ), T (Fyn,yn,y(ϵ), Fyn,yn,y(ϵ), Fx,x,y(t− 4ϵ))).
For n→ ∞ we obtain,

lim
n→∞

Fxn,xn,yn(t) ≥ T (1, 1, T (1, 1, Fx,x,y(t− 4ϵ))) ≥ Fx,x,y(t− 4ϵ). (2.5)

Again we have,
Fx,x,y(t+ 4ϵ) ≥ T (Fx,x,xn(ϵ), Fx,x,xn(ϵ), Fy,y,xn(t+ 2ϵ)),

≥ T (Fx,x,xn(ϵ), Fx,x,xn(ϵ), T (Fy,y,yn(ϵ), Fy,y,yn(ϵ), Fxn,xn,yn(t))).
For n→ ∞ we can write,

Fx,x,y(t+ 4ϵ) ≥ T (1, 1, T (1, 1, lim
n→∞

Fxn,xn,yn(t))) ≥ lim
n→∞

Fxn,xn,yn(t). (2.6)

From the relations (2.5) and (2.6) we have,
Fx,x,y(t− 4ϵ) ≤ lim

n→∞
Fxn,xn,yn(t) ≤ Fx,x,y(t+ 4ϵ).

Since t is a continuity point of Fx,x,y(.), the result follows.

Lemma 2.17. The limit of convergent sequence in an S-Menger space (X,F, T ),
where T is a continuous third order t-norm, is unique.
Proof. Let the sequence {xn} converges to x and y in the S-Menger space
(X,F, T ).
Therefore, for all t > 0,

lim
n→∞

Fx,x,xn(t) = 1,

and
lim
n→∞

Fy,y,xn(t) = 1.

Now for every t1, t2, t3, t > 0 with t = t1 + t2 + t3 we have, as n→ ∞,
Fx,x,xn(t1) → 1
Fx,x,xn(t2) → 1
Fy,y,xn(t3) → 1.

The conclusion follows from the definition of S-Menger space that is,
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Fx,x,y(t) = Fx,x,y(t1 + t2 + t3) ≥ T (Fx,x,xn(t1), Fx,x,xn(t2), Fy,y,xn(t3)).
Taking limit n→ ∞, we have from above inequality,

Fx,x,y(t) ≥ T (1, 1, 1) = 1.
Therefore, x = y, hence the proof of the lemma is completed.

Lemma 2.18. Let (X,F, T ) be an S-Menger space with continuous third order
t-norm T . Then Fx,x,y(t) is non-decreasing with respect to t, for all x, y ∈ X.
Proof. From the definition of S-Menger space we can write,

Fx,x,y(t) ≥ T (Fx,x,a(t1), Fx,x,a(t2), Fy,y,a(t3)),
where t, t1, t2, t3 > 0 with t = t1 + t2 + t3, and x, y, a ∈ X.
If we take a = x, then we get from the inequality,

Fx,x,y(t) ≥ T (Fx,x,x(t1), Fx,x,x(t2), Fy,y,x(t3)),
Fx,x,y(t) ≥ T (1, 1, Fy,y,x(t3)).

So, Fx,x,y(t) ≥ Fy,y,x(t3), [where t > t3]
Therefore, F is non-decreasing with respect to t > 0 .
We now give the definition of Ψ-functions. This type of functions will be used in
our result.

Definition 2.19. Ψ-function [5]
A function ψ : [0, 1]4 → [0, 1] is said to be a Ψ-function if

(i) ψ(0, 0, 0, 0) = 0, and ψ(1, 1, 1, 1) = 1

(ii) ψ -is monotone increasing and continuous,

(iii) ψ(x, x, x, x) > x for all 0 < x < 1.

An example of this type of Ψ-function is
ψ(x1, x2, x3, x4) =

a
√
x1+b

√
x2+c

√
x3+d

√
x4

a+b+c+d
where a, b, c and d are positive real numbers.

3. Main Results
We now present our main theorem, which utilizes the Ψ-function.

Theorem 3.1. Let (X,F, T ) be a complete S-Menger space where T is minimum
third ordered t-norm and f : X → X be a mapping satisfying the following condi-
tions:
there are k ∈ (0, 1) and ψ ∈ Ψ, such that,

Ffx,fy,fz(t) ≥ ψ(Fx,y,z(
t
k
), Fx,x,fx(

t
k
), Fy,y,fy(

t
k
), Fz,z,fz(

t
k
)) (3.1)

for all x, y, z ∈ X, t > 0 and
Fx,x,fz(t) > 0,∀x, z ∈ X and for all t > 0.

Then f has a unique fixed point.
Proof. Let x0 be any arbitrary point in X. Now we define the sequence {xn} in X
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by xn = fxn−1, n ∈ N, where N is the set of natural numbers. We are supposing
xn ̸= xn−1,∀n ∈ N, otherwise existence of a fixed point is obvious.
Taking, x = xn−1, y = xn−1 and z = xn we can write from (3.1),
Ffxn−1,fxn−1,fxn(t) ≥ ψ(Fxn−1,xn−1,xn(

t
k
), Fxn−1,xn−1,fxn−1(

t
k
), Fxn−1,xn−1,fxn−1(

t
k
),

Fxn,xn,fxn(
t
k
)),

So,
Fxn,xn,xn+1(t) ≥ ψ(Fxn−1,xn−1,xn(

t
k ), Fxn−1,xn−1,xn(

t
k ), Fxn−1,xn−1,xn(

t
k ), Fxn,xn,xn+1(

t
k )).(3.2)

We claim that, Fxn,xn,xn+1(
t
k
) ≥ Fxn−1,xn−1,xn(

t
k
), for all t > 0 and n≥1.

If not, let for some t1 > 0, n ≥ 1, Fxn,xn,xn+1(
t1
k
) ̸= 1 and

Fxn,xn,xn+1(
t1
k
) < Fxn−1,xn−1,xn(

t1
k
).

Then we can write from (3.2),
Fxn,xn,xn+1(t1) ≥ ψ(Fxn,xn,xn+1(

t1
k
), Fxn,xn,xn+1(

t1
k
), Fxn,xn,xn+1(

t1
k
), Fxn,xn,xn+1(

t1
k
).

> Fxn,xn,xn+1(
t1
k
) [ by the properties of ψ function].

≥ Fxn,xn,xn+1(t1), which is a contradiction, as 0 < k < 1.
Therefore, for all t > 0 and n≥1,
Fxn,xn,xn+1(

t
k
) ≥ Fxn−1,xn−1,xn(

t
k
). (3.3)

Now for t > 0, using (3.3) in (3.2) we can get,
Fxn,xn,xn+1(t) ≥ ψ(Fxn−1,xn−1,xn(

t
k
), Fxn−1,xn−1,xn(

t
k
), Fxn−1,xn−1,xn(

t
k
), Fxn−1,xn−1,xn(

t
k
)).

> Fxn−1,xn−1,xn(
t
k
)).

By repeated use of above inequality we can get, for all t > 0,
Fxn,xn,xn+1(t) ≥ (Fxn−1,xn−1,xn(

t
k
)

≥ (Fxn−2,xn−2,xn−1(
t
k2
)

...................
≥ (Fx0,x0,x1(

t
kn
). (3.4)

Now for t > 0 and n→ ∞ we have from (3.4),
lim
n→∞

Fxn,xn,xn+1(t) = 1. (3.5)

We now claim that {xn} is a Cauchy sequence. If not then there exists ϵ > 0, λ > 0
and subsequences {xm(r)} and {xn(r)} such that n(r) > m(r) > r with r > N1 [
where N1 is a positive integer], we have

Fxm(r),xm(r),xn(r)
(ϵ) < 1− λ. (3.6)

Fxm(r),xm(r),xn(r)−1
(ϵ) ≥ 1− λ. (3.7)

From (3.6) we can write,
1− λ > Fxm(r),xm(r),xn(r)

(ϵ) = Ffxm(r)−1,fxm(r)−1,fxn(r)−1
(ϵ)

≥ ψ(Fxm(r)−1,xm(r)−1,xn(r)−1
( ϵ
k
), Fxm(r)−1,xm(r)−1,xm(r)

( ϵ
k
),

Fxm(r)−1,xm(r)−1,xm(r)
( ϵ
k
), Fxn(r)−1,xn(r)−1,xn(r)

( ϵ
k
). (3.8)

By (3.5) for 0 < λ1 < λ < 1, it is possible to find a positive integer N2 such that
for all r > N2,

Fxm(r)−1,xm(r)−1,xm(r)
( ϵ
k
) ≥ 1− λ1. (3.9)
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Fxn(r)−1,xn(r)−1,xn(r)
( ϵ
k
) ≥ 1− λ1. (3.10)

As 0 < k < 1, we have ϵ
k
> ϵ and make a choice of positive numbers β1 and β2

such that ϵ
k
≥ ϵ+ β1 + β2.

Now,
Fxm(r)−1,xm(r)−1,xn(r)−1

( ϵ
k
) ≥ Fxm(r)−1,xm(r)−1,xn(r)−1

(β1 + β2 + ϵ)
≥ T (Fxm(r)−1,xm(r)−1,xm(r)

(β1), Fxm(r)−1,xm(r)−1,xm(r)
(β2),

Fxn(r)−1,xn(r)−1,xm(r)
(ϵ))

= T (Fxm(r)−1,xm(r)−1,xm(r)
(β1), Fxm(r)−1,xm(r)−1,xm(r)

(β2),
Fxm(r),xm(r),xn(r)−1

(ϵ)). (3.11)
Let 0 < λ2 < λ < 1 be chosen. Then by (3.5) there exists a positive integer N3

such that for all r > N3,
Fxm(r)−1,xm(r)−1,xm(r)

(β1) ≥ 1− λ2. (3.12)
Fxm(r)−1,xm(r)−1,xm(r)

(β2) ≥ 1− λ2. (3.13)
Using (3.7), (3.12) and (3.13) in (3.11) for all r > max {N1, N2, N3},

Fxm(r)−1,xm(r)−1,xn(r)−1
( ϵ
k
) ≥ T (1− λ2, 1− λ2, 1− λ).

As 0 < λ2 < λ < 1 and T is min. t-norm, we have,
T (1− λ2, 1− λ2, 1− λ) = 1− λ.

∴ Fxm(r)−1,xm(r)−1,xn(r)−1
( ϵ
k
) ≥ 1− λ. (3.14)

Using (3.9), (3.10) and (3.14) in (3.8) we get,
1− λ > Fxm(r),xm(r),xn(r)

(ϵ) ≥ ψ(1− λ, 1− λ1, 1− λ1, 1− λ1),
≥ ψ(1−λ, 1−λ, 1−λ, 1−λ) [ since 0 < λ1 < λ < 1],
> 1− λ [by the properties of ψ]

which is a contradiction.
Hence {xn} is a Cauchy sequence.

Since (X,F, T ) be a complete S-Menger space, so lim
n→∞

xn = u for some u ∈ X.

We now show that fu = u.
First we show that Fu,u,fu(t) = 1 for every continuity point t > 0 of Fu,u,fu(.).

Indeed, let us suppose that for some continuity point t > 0 of Fu,u,fu(.) we have,
Fu,u,fu(t) < 1. Then 0 < Fu,u,fu(t) < 1. Putting x = xn, y = xn and z = u in
inequality (3.1) we can write,

Ffxn,fxn,fu(t) ≥ ψ(Fxn,xn,u(
t
k
), Fxn,xn,fxn(

t
k
), Fxn,xn,fxn(

t
k
), Fu,u,fu(

t
k
)),

Fxn+1,xn+1,fu(t) ≥ ψ(Fxn,xn,u(
t
k
), Fxn,xn,xn+1(

t
k
), Fxn,xn,xn+1(

t
k
), Fu,u,fu(

t
k
)).

Limiting n→ ∞ both the side of the above inequality we get,
Fu,u,fu(t) ≥ ψ(Fu,u,u(

t
k
), Fu,u,u(

t
k
), Fu,u,u(

t
k
), Fu,u,fu(

t
k
)).

Fu,u,fu(t) ≥ ψ(1, 1, 1, Fu,u,fu(
t
k
))

≥ ψ(Fu,u,fu(
t
k
), Fu,u,fu(

t
k
), Fu,u,fu(

t
k
), Fu,u,fu(

t
k
))

> Fu,u,fu(
t
k
) [by the properties of ψ]

≥ Fu,u,fu(t), which is a contradiction, as 0 < k < 1.
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Hence, Fu,u,fu(t) = 1 for every continuity point t > 0 of Fu,u,fu(.). As the set
of discontinuity points of Fu,u,fu is at most countable, the equality Fu,u,fu(t) = 1
actually holds for all t > 0. This implies fu = u.

For uniqueness, if possible let u and v be two distinct fixed points of f .
Then Fu,u,v(t) < 1 for some t > 0, and

Fu,u,v(t) = Ffu,fu,fv(t)
≥ ψ(Fu,u,v(

t
k
), Fu,u,fu(

t
k
), Fu,u,fu(

t
k
), Fv,v,fv(

t
k
))

≥ ψ(Fu,u,v(
t
k
), Fu,u,u(

t
k
), Fu,u,u(

t
k
), Fv,v,v(

t
k
))

≥ ψ(Fu,u,v(
t
k
), 1, 1, 1)

≥ ψ(Fu,u,v(
t
k
), Fu,u,v(

t
k
), Fu,u,v(

t
k
), Fu,u,v(

t
k
))

> Fu,u,v(
t
k
) [by the properties of ψ]

≥ Fu,u,v(t), again we arrived at a contradiction, as 0 < k < 1.
Therefore, v = u. By this proof of the theorem is completed.

From theorem 3.1. we get the following corollaries.

Corollary 3.2. Let (X,S, T ) be a complete S-Menger space where T is minimum
third ordered t-norm and f : X → X be a self mapping satisfying the following
conditions :
there is k ∈ (0, 1) such that,

Ffx,fx,fy(t) ≥ ψ(Fx,x,y(
t
k
), Fx,x,fx(

t
k
), Fy,y,fy(

t
k
)) (3.15)

for all x, y ∈ X, t > 0, where ψ is a Ψ-function and
Fx,x,fy(t) > 0,∀x, y ∈ X and for all t > 0.

Then f has a unique fixed point.

Corollary 3.3. Let (X,S, T ) be a complete S-Menger space where T is minimum
third ordered t-norm and f : X → X be a self mapping satisfying the following
conditions :
there is k ∈ (0, 1) such that,

Ffx,fx,fy(t) ≥ ψ(Fx,x,y(
t
k
), Fy,y,fy(

t
k
)) (3.16)

for all x, y ∈ X, t > 0, where ψ is a Ψ-function and
Fx,x,fy(t) > 0,∀x, y ∈ X and for all t > 0.

Then f has a unique fixed point.

Now we give some examples which validate Theorem 3.1.

Example 3.4. Let X = [0, 1], F be defined as Fx,y,z(t)=e
− |x−y|+|y−z|+|z−x|

t where
all x, y, z ∈ X, t > 0, T (a, b, c) =min {a, b, c} then (X,F, T ) is a complete S-
Menger space. Let us take the self mapping f : X → X, defined by fx = x

7
.

Then taking 2
3
< k < 1 and ψ(x1, x2, x3, x4) =

min{x1,x2}+(x3)
1
2×(x4)

1
4

2
, f satisfies all

the conditions of Theorem: 3.1 and we have x = 0 is the unique fixed point of f .
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Example 3.5. Let X = [0, 1], F be defined as Fx,y,z(t)=e
− |x−z|+|y−z|

t where all
x, y, z ∈ X, t > 0, T (a, b, c) =min {a, b, c} then (X,F, T ) is a complete S-Menger
space. Let us take the self mapping f : X → X, defined by fx = x

25
. Then

taking 1
6
< k < 1 and ψ(x1, x2, x3, x4) =

min{x1,x2}+(x3)
1
2×(x4)

1
4

2
, f satisfies all the

conditions of Theorem: 3.1 and we have x = 0 is the unique fixed point of f .

4. Conclusion
S-Metric spaces and their extension, S-Menger spaces are relatively new con-

cepts, which were introduced by the present authors. In this study, we have proved
a fixed point theorem in S-Menger spaces, which extends and generalizes some ex-
isting fixed point results in the literature. Our result can also be applied to other
spaces such as b-metric spaces, intuitionistic fuzzy metric spaces, Menger spaces,
as well as non-linear programming and game theory. We have used the minimum
t-norm to establish our result and it leads us to further investigate which types of
t-norms can replace the minimum t-norm in our main theorem. This theorem is
also an example of the use of Ψ-function in finding fixed point results.
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