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Abstract: In this paper we have extended double Laplace-Sumudu transform for
time scales which can be applied to solve partial-integro dynamic equations and
partial dynamic equations on time scales.

Keywords and Phrases: Laplace transform, Sumudu transform, time scales,
dynamic equations.

2020 Mathematics Subject Classification: 26E70, 44A35, 26A33.

1. Introduction

Integral transforms have variety of applications as they convert differential and
integral equations to more simpler algebraic expressions that can be solved easily
2, 8, 9]. Generalization of various integral transform have done for time scales T
[4, 6, 7]. Initially for a function f : T — C Bohner and Peterson [5] have defined
Laplace transform on time scale as

LUN) = [ o) ar
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Further in 2012 Hassan Agwa, Fatma Abdelfatah Ali and Adem Kilicman [1] have
generalized Sumudu transform on time scales as

FNw =3 [ s A

to

Some classical integral transform are combined and are used to solve linear and non-
linear fractional differential equations. In [2] authors have defined double Laplace-
Sumudu Integral transform as

LSz, t)} / / e PP Bz, t)dxdt.

In this paper we have extended double Laplace-Sumudu transform for time scale
which can be applied to solve partial integro-dynamic equations on time scales.
Firstly we will recall concepts which we are going to use further.

Definition 1.1. [5] The function f: T — C is called rd-continuous if it is contin-
uous at right-dense points in T and left sided limit exists at left-dense points in T.

Definition 1.2. [5] A function f: T — C is called regressive provided
L+ pu(t)f(t) #0 forall teT"

Definition 1.3. [5] Let h > 0, ={z€ C:z# —3} is the set of Hilger

complex numbers and for z € C the Hzlger real part of z is Hep(z) == ‘ZH%

2. Main Results
In this section we extent classical definition of Laplace-Sumudu transform in-
troduced in [2] as follows.

Definition 2.1. Let Ty and Ty are time scales such that suprimum of both Ty and
Ty is oo then for fived ty € Tq, t, € Ty we define the Laplace-Sumudu transform
of an rd-continuous function f(ty,t3) : Ty x Ty — C as

%I | [t t)] = F / / tl,tz,to,to)f(tl,tz) Aty Aty

We have extended definition 1.2 in [7] as follows

Definition 2.2. The function f(t1,ts) : Ty x Ty — C is said to be of exponential
type I if there exists constants M, cy,co > 0 such that |f(t1,t2)] < M ecrtrteatz,
Further f is said to be of exponential type II if there exists constants M, ¢y, co, > 0
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such that | f(t1,t2)] < M ecge, (t1, t2, to, tp)

Theorem 2.1. [Existence Theorem| If f(t1,t2) : Ty x Ty — C is an rd-
continuous function on every finite intervals Ty N (to, A1) and Ty N (£, A2) and
1s of exponential type II, then Laplace-Sumudu tmnsform of f(t1,t2) exists for all

regressive s and Ilj provided, e, (s) > c1, e%)%z( ) > e
Proof.

%, 7, [ (1, 12)]| tl,tz,to,to) fti,ta) Aty Aty

I

/ / Dea (t o, o, 1) | f(t1, t2)| Aty Aty

/ / 0102 tl7t27t07t0) M601®02(t17t27t07t0) Ail AtQ

M o0 e@g@ t17t27t07t0)
/ / 1 6616962 (t17t27t07t6) Atl AtQ
o (T4 ms) (1 + Mz;,)

:M/ eeos(ti, to) Aty 1/00 ecze%(tg,tf)) Aty
to (1+M15) P Jy (1"‘#2%)
B M
B (3 — cl) (1 — cgp)
provided tlim ecos(t1,to) — 0 and tghi%o%?e%(b’té) — 0 with Ze,, (s) >
1, 9?6#2( ) > e

We give Laplace—Sumudu transform of some elementary functions on time scales
in tabular form.

f(ti,t2) 1 (tl, to)hm(t2,t5) | eamp(t1,t2,t0,t0) | eiamp) (t1,t2,%0,t5) | e_itaqp) (t1, 12,0, t5)
1 i I 1

"%1 5’12 [f(tl’t2):| s 7 +1 (s—a)(1—bp) (s—ia)(1—ibp) (s+ia)(1+ibp)

f(t1,t2) singgy(t1,t2,t0,t)) | cosaan(ti,ta, to,ty) | sinhags(t1,t2,to,t)) | coshags(ti,ta, to,t])

7 a+bsp s—abp (a+bsp) (s+abp)

FaZelft0t)] | mriarem | eeeaeee | Geeiaeee GEm =)

3. Basic Derivative Properties

Following derivative properties are useful for the applications of Laplace-Sumudu
transform.

Theorem 3.1. Let f(t1,t2) : Ty x Ty — C is an rd-continuous function such that

Of (t1,t2) 0 f(ty,t2)

A1 A2
f (t17t2> A tl ) f (t17t2) Alt% )
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_ an(tla t2>
AZ

are also rd-continuous then
(1) Z,70 [ (1)) = s Z,73,[f(t 1) = S, [ £ (to, 12)]
(2) LT [ (1, 1)) = 24,7, [ f(h, 12)] — L 2, [ f (1, 1))
(3) LT, [[21 (11, 12)] = 5 L0, 70, [[ (11, 12)] =5 S, [ [ (Fo, 12) ] — L2, [F2 (H0, 1)
(4) L Tu[ 250, 1)] = 5L T5 [F (b ta)]| = 5L, [F (01, 80)] = 2L [ 22 (11, 1)
Proof.

(1) "%1‘%2 [fAl (tlﬂtQH =S "%1’%2 [f(tlth)] - %2 [f(t07t2):|

6%1 ‘Sﬂtg (tlatQ):I

0'10'2 A
/to /t €72 (b1t to, 1) £ (b 2) Aty Aty

At

1 oo o0
+ s-p/to ) e"els(tl,to)egls’g%(tl,tg,to,t’o)f(tl,tg) Aty Aty
0

= 5 4,5, [[(ti,12)] — i, [f(to,12)]
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(2) %1%2 [fAZ (tb tQ)} - %D%ﬁgﬂtg [f(tlv t2)] - ]l; "%1 [f(tb t{))}

”%1 '%2 [ng (t1> tQ)}

1 o0 o0
= [ ettt t) 12 ,t2) At At
0 t

e N
/ eds(t1,to) ];/ K%A(bié)f(h,tz)) *( i(tzvto)f(thb))}ﬁb Aty
LY /to ! ?
o0 R 1 [ eo1(ta,tp)
/ 695 tl,tg M + 72/ - f(tl,tg) Atg Atl
. P p= Jy, (1 + M2;17)
S n ,t/ 1 oo
/ el (t1,to) M + 7/ ;(t2,to) f(ti,t2) Aty | Aty
to | p P Jy v

- _7/ eZs(t1,to) f(t1,ty) Aty
+ - 7/ / t17t2,t0,t0) Flt1,t2) Aty Aty
to g

= z;i’?sl S [f(t1,12)] — 2;«»2’?51 [f(t1,t0)]

(3) LT [fYi(t 1a)] = 82 L, T [f(t1, 1)) —5 Fi [ f(to, t2)] — S [f2 (0, 12)]
D%Ytz ALty b))
/ / el (b ta,to, 1) F23(11, t2) Aty Aty

1

= E/t/ %(t%to) l/too [(ees(tlato)fAl(thtz))Al — (eé‘; (tlatO)fAl(thtz))AﬁH Aty

1 oo oo -
= ];/ e;(tz,to)l A (to, t2) + s/ eZl (t1,t0) f21 (t1, t2) Aty | Aty
tg to
1 oo
- 77/ l(152,150)fA1(1t0,1t2)A7f2
P Jy O
S > (e > (oa
+—/ eezl(tg,té)[f(tg,tg) +s/ eZl (t1,to) f(ti,ta) Aty | Aty
p t6 P to
L[>~
= —I; y 66%(t2,t0)f (to,tQ)Atg

e} 52
—7/ el (ta, tg) f(to, t2) At2+g/ / el tltz,to,tg)f(tl,tg)AtlAtz
th P ty Jto

= 2, S [f(th,12)] — 5.5, [f(to, t2)] — S [12 (toiz)]
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(4) 9%1%2 [fA% (th tQ)} = z%°%1$2 [f(th tQ)} _I%%l [f(tl’ t{))} _%"%1 [fAQ (th té))}

ﬂl Lgﬂtz t17t2):|

2
/ / tlat27t07t0) FR2(t,ta) Aty Aty
to t/
A Az Aoy I\ pA
= 6@3 (t1:t0) 1(ta, t0) f 2@1%2)) 7(69L(t2’t0)f 2(t1,t2)>}At2 Aty
P
1 o0
L e k) | = 2ot +- / €, (t2, 1) f22(t1,12) Atz | Aty
v O

1 1 o
= - / e@s(t17 to) (tlatO) Atl ) / egls(tlato)f(tht/O) Atl
P J, b7 Jig

1 o (7 g
i P/ eDuT (s o, to, 1) (11, 12) Aty Aty
t/

0

:pifﬂ [F(trta)] — ;f (b1, 2)] f%zl 722 (b1, 8))]

4. Some Important Results

Theorem 4.1. Let f(t1,t2) : Ty X Ty — C, is requlated and
F(ty,ty) = / / f(r,72) Ay Ay for (t1,t2) € Ty x Ty
to t6

then LT [ [ (11, 12)] = § L, Ty [ [ (11, 15)]
Proof.
9%1%2 tla t2>:|

/ / 0102 t1,t2,t07to) F(ty,t) Aty Aty
to

€os tlat27t07t0)
/ / S F(ti,t2) Aty At
to Jty 1 + M18 1 + M2%>

1
]—?/t /t/ os @5 6989%(151,752,150,156) F(tl,tQ) Atl Atg
0 0

Applying integration by parts and Fundamental theorem of Calculus and using
F(to,ty) = 0 we obtain

°%51<5/t2 [f(tl, tQ)} - g %1%2 [f(tla t2)]
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Theorem 4.2. If a; € Ty and ay € Ty with ay, ay > 0 we have

0 tleTl,tQETg & t1 < ap,ty < Qo
1 theT,taeTy & t1 > ag,ts >

Hal,ag(tl7t2) - {
with Hy, o, (t1,t2) = Hay, @ Hy,, where ® denotes tensor product then

1
9%1%2[ a1,a2(tlat2):| == geesei(alaa%tmté))

Proof.

%1, [Hay 0 (t1, 12)] / / es t17t27t07t0) Hy, o, (th,t2) Aty Aty

* Cosol tlv ta, lo, tp)
/ / 1 He, 0, (t1,t2) Aty Aty
1+ uls 1 + m—)

o0 e@s@ t17t27t07t0>
/ / Aty Aty
aq

L+ MlS 1 + Mzé)

p Aty 1/°° N
== ent(ty,t €3 (tg, ty) At
5/al as (h O)L Ny @%(2 0) Aty

= gees(al, to) 69%(042, té))

1 /
- gegsei(al7 Qa, t(]? t[))

Aty

Theorem 4.3. If F(s,p) = 4,.%, | f(t1,t2)] then
Zﬁ%z [ 1,0 (tla t?)f<t1a t?)] == 6959% (ala Ao, tla t2)$1%2 [f(th t?):|

= eese%(%,@mtl;tz) F(s,p)
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Proof.
%1%2 [ 1,02 (tl’ t2)f<t1’ t2)]

/ / 0102 tl)t27tOvtO)HOChaQ(tl?tQ)f(tl?tz) Aty At

o 6986 t17t27t07t0>
Hey oo (t1, t2) f(t1,t2) Aty At
/to /, 1—1—,u13 14_“2) ao (B, t2) f (1, 12) Aty Aty

Ooeese (t1, 2, a1, ag) A
e 1 (o, g, Lo, t ti,t t At
/al/ (14 pas) (14 pay) S50\ 52, 10 o) f(t1,t2) Aty Aty

= Cosol 1 (a, ag, to, ty) — / / g;g (t1, b2, 01, 2) f(t1,t2) Aty Aty
«aq
- eeseg(ah a2, lo, tO) °%15ﬂt2 [f(tlv tQ)]

Next we prove convolution theorem for Laplace-Sumudu transform.

Definition 4.1. [6] Let f1<t1,t2) Ty x Ty — C and fg(tth) Ty x Ty — C are
A— integrable functions then the double convolution of fi(t1,t2) and fo(ty,t2) is
given by

(frexfa )(tr,t2) = /tl/t,Qfl(t17t2,01(71),02(7'2))f2(7'1,7'2)A7’1 ATy

Theorem 4.4. [Convolution Theorem| If fi(t1,t2) : Ty xTy — C and f5(t1,t2) :
T, x Ty — C are rd-continuous functions of exponential type II having dou-
ble Laplace-Sumudu transform £,,.%, [fl (t1, tz)] and £, -5, [fg(tl,tg)] respectively
then

LS [(frxxfo)(t,02)] = p L, [ it t)] - LS5 [ foltr, t2)]
Proof.
L S, [(f1# % f2) (t1, t2)]

/to /t, é:ez (t1,t2,t0,t0) [(f1**f2)(t1,t2)]

to
/ / t17t27t07t0 l/ fi(t1,ta,01(m1), 02(72)) f2 (71, 72) AT ATy | Aty Aty
to t/ to t/

/ / Ja(T1, 72 l / / 1(t1,t2,01(71), 02(72)) - € @ (tl,t27t07to)At1At2
0'1 Tl U'l 7'2

ATlATQ
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:/t:o t:" fa(71,72) Ll? /t:O /t:’f1<t1,t2,01(71)7g2(7-2))

Ho\ (11),05(r2) (t1, t2) €] (t17t27t0,t0) Aty Aty| A1y ATy

:/ fa(T1,72) L4, s |:H0'1(7'1),02(7'2)(t1;t2) f1(t1,t2,01(71)702(72))} AT ATy
to t!
:/ / f2(T177'2)[6936;(01(71),02(72),t0,t6) LS [f1(f1,t2)ﬂ Aty ATy

=p L, S, [ fo(t1,12)] / / 7177'2,750,%) f2(11,72) A1 A
t/
=p LS [f (tl,tz)] L, [fl(tlatQ)}

5. Applications
In this section we will find solution of partial-integro dynamic equation and
partial dynamic equation using our discussed theory.

Example 5.1. Consider following partial-integro dynamic equation

Of (t1,t2) Of (t1,t2)

= —1 (t1,0 ty,0 t1,12,0,0
A Aot + e1(t1,0) + ea(ta, 0) + e1g1(t1, to )

/ / f(t1,t2,02(11), 02(T2)) T1 T2
with initial conditions

f(t1,0) = e1(t1,0)  f(0,t2) = e1(t2,0)

Taking Laplace -Sumudu transform of given equation

s L0 Tuftt)] — Fulf0.1)] + }%ﬂ [f(tr12)] — —ztl [£(t1,0)]

UL RS S SR 1

s (s=1)  s(l-p  (s=1(1-p)

Taking Laplace transform of f(¢;,0) = e;(t1,0) and Sumudu transform of f(0, ;)
= e1(tq,0) we get

+ 2%5@ [f(t1,1)]

0%1 [f(tb )} =

1%2 [f(()? t2)} =
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Now substituting it into above equation,

S 0%1%2 [f(tlth)} - (1 ip) + %ﬂl‘%Z [f(t17t2):| B %(8 i ]_)
1l 1 1 1 p
TSt e D T T Gna g s ATelitn)]
1 »p _ 1 1 _1
<8+§_E>"§“ﬂ“‘%2 St =02 * -

L 1
s(l—=p)  (s=1D( —p)

On simplifying we get

+

1

L ftut)] = g,

On taking inverse transform we get

f(t1,ta) = exa(t, Lo, to, t)
is required solution.

Example 5.2. Consider the following partial dynamic equation

Pg(ti,ts) Pyt ta)  9g(ti,ta)

g(t1,t2) + ha(t1,0) + hi(t2,0) =1

A2 AZt2 AT
with initial conditions
0g(t1,0 dg(0,t
g(t1,0) = ha(t1,0), ,g(0,t2) = hi(t2,0), M =1, M =0
Agtg Altl

Taking Laplace-Sumudu transform of given equation

1 1
829%51‘%2 [g(th t2)] - 3%2 [9(07 tQ)] - ‘5/752 [gAl (07 t2)] - P"%l %2 [g(tb t2)] + ?9%1 [g(tla 0)]

1 1 1 1 1
4T lg (0,0)] = S, I gl )]+ L lo(11,0)] = Lo Slat ) + 5+ =

Taking Laplace and Sumudu transforms of initial conditions as appropriate

%1 [9(0’ tQ)] = %2 [hl(t2> 0)] =D, ‘%2 [gAl (Ov t2)] = igﬂtz [O] =0

"%1 [g(tlao)] = "%1 [hQ(tbO)] = i? 0%1 [gAQ(tlﬂ 0)] = 9%1[1] - é

g3
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After substitution and simplification we get,

1 1 1 1 1 1 1
2
e AT R LI I P i
|:8 p2 p t1 tQ[g( 1, 2)] Sp p283 pS p83 83 s + 3
1 2
Lo T ollt )] = 5+

On taking inverse transform we get,

g(tl>t2) = hl(tbo) + h2<t270)

6. Conclusion

In this paper, the Laplace-Sumudu integral transform on time scales is studied.
Existence theorem and some important properties including convolution theorem
are proved. Using Laplace-Sumudu integral transform partial dynamic and partial-
integro dynamic equations can be solved efficiently. Further we try to study linear
and non-linear partial dynamic equations and partial-integro dynamic equations in
our future work.
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