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Abstract: The main target of this paper is to find out the estimates of the order
and type of a bicomplex valued entire function. Also the famous Lucas’s theorem on
the zeros of a polynomial is deduced in the light of bicomplex analysis. A result is
proved to show that the order and type remain invariant under differentiation of an
entire function in C2. Also we prove some results related to Hadamard composition
of two entire functions in C2. In fact, we find out here an estimate of the type of
the Hadamard composition of two bicomplex valued entire functions. Also we show
that the zeros of the derivative of a polynomial P (z) in C2 are contained within
the convex hull of the zeros of P (z). Some examples are provided to justify the
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results obtained here.
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1. Introduction and Preliminaries

The theory of bicomplex numbers is a matter of active research for quite a
long time since seminal work as carried in [8] and [1] in search of special algebra.
The algebra of bicomplex numbers are widely used in the literature as it becomes
viable commutative alternative [9] to the non skew field of quaternions introduced
by Hamilton [5] (both are four dimensional and generalization of complex numbers).
Now we will discuss some basic definitions and preliminaries of bicomplex analysis.
A bicomplex number is defined as z = x1 + i1x2 + i2x3 + i1i2x4 = (x1 + i1x2) +
i2 (x3 + i1x4) = z1 + i2z2 where xi, i = 1, 2, 3, 4 are all real numbers with i21 = i22 =
−1, i1i2 = i2i1, (i1i2)

2 = 1 and z1, z2 are complex numbers. The set of all bicomplex
numbers, complex numbers and real numbers are respectively denoted by C2,C1

and C0. i2−conjugate bicomplex number of z1+i2z2 is z1−i2z2 and i1i2−conjugate
bicomplex number of z1 + i2z2 is z1 − i2z2.
Addition is the operation on C2 defined by the function ⊕ : C2 × C2 → C2,

(x1 + i1x2 + i2x3 + i1i2x4, y1 + i1y2 + i2y3 + i1i2y4) =

(x1 + y1) + i1 (x2 + y2) + i2 (x3 + y3) + i1i2 (x4 + y4) .

Scalar multiplication is the operation on C2 defined by the function ⊙ : C0×C2 →
C2,

(a, x1 + i1x2 + i2x3 + i1i2x4) = (ax1 + i1ax2 + i2ax3 + i1i2ax4)

where a ∈ C0 be any real number. The system (C2,⊕,⊙) is a linear space. Here
the norm is defined as

|| || : C2 → R≥0,

∥x1 + i1x2 + i2x3 + i1i2x4∥ =
(
x2
1 + x2

2 + x2
3 + x2

4

) 1
2 .

So the system (C2,⊕,⊙, || ||) is a normed linear space. Now, we will discuss
the idempotent representation of bicomplex numbers. There are four idempotent
elements in C2. They are

0, 1,
1 + i1i2

2
,
1− i1i2

2
.



A Note on the order and type of Bicomplex valued Entire Functions 45

We now denote two non trivial idempotent elements by

e1 =
1 + i1i2

2
and e2 =

1− i1i2
2

in C2.

where e21 = e1, e
2
2 = e2, e1e2 = e2e1 = 0, e1 + e2 = 1.

So, e1 and e2 are alternatively called orthogonal idempotents. Every element ξ =
(z1 + i2z2) ∈ C2 has the following unique representation,

ξ = (z1 − i1z2) e1 + (z1 + i1z2) e2

= ξ1e1 + ξ2e2, where ξ1, ξ2 are complex numbers.

This is known as idempotent representation of the element ξ = (z1 + i2z2) ∈ C2.
An element ξ = (z1 + i2z2) ∈ C2 is non-singular iff |z21 + z22 | ≠ 0 and it is singular
iff |z21 + z22 | = 0. The set of all singular elements is denoted by θ2.

If f(z) is a bicomplex valued function, then f can be represented as f (z) =
f1 (z1) e1+f2 (z2) e2 where f1 (z1) , f2 (z2) ∈ C1 and f1, f2 are both functions in C1.
This type of decomposition is known as Ringleb decomposition [6] in C2. Let
a = (a1 + i1a2 + i2a3 + i1i2a4) be a fixed point in C2. Set α = a1 + i1a2 and
β = a3 + i1a4. Then a = (a1 + i1a2 + i2a3 + i1i2a4) = α + i2β. Let r, r1, r2 denote
numbers in C0 such that r > 0, r1 > 0, r2 > 0. Let A1 = {z1 − i1z2 : z1, z2 in
C1} and A2 = {z1 + i1z2 : z1, z2 in C1}. Let w1 and w2 denote the numbers in A1

and A2, repectively. Observe that w1 and w2 are in fact complex numbers in C1.
We should recall here that the open ball with centre a and radius r is denoted by
B (a, r) and the closed ball is denoted by B (a, r). They are defined respectively as
follows:

B (a, r) = {z1 + i2z2 ∈ C2 : ∥(z1 + i2z2 − (α + i2β))∥ < r} and
B (a, r) = {z1 + i2z2 ∈ C2 : ∥(z1 + i2z2 − (α + i2β))∥ ≤ r} .

Then the open and closed discus with centre a and radii r1, r2 respectively denoted
by D (a; r1, r2) and D (a; r1, r2) are defined as

D (a; r1, r2) =

{
z1 + i2z2 ∈ C2 : z1 + i2z2 = w1e1 + w2e2,

|w1 − (α− i1β)| < r1, |w2 − (α− i1β)| < r2

}
and

D (a; r1, r2) =

{
z1 + i2z2 ∈ C2 : z1 + i2z2 = w1e1 + w2e2,

|w1 − (α− i1β)| ≤ r1, |w2 − (α− i1β)| ≤ r2

}
. If w is any bi-

complex number then the sequence
(
1 + w

n

)n
converges to a bicomplex number

denoted by exp(w) or ew, called the bicomplex exponential function. That is

ew = lim
n→∞

(
1 +

w

n

)n

.
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If w = (z1 + i2z2) , then we get that,

ew = ez1 (cos z2 + i2 sin z2) = e|w|i1
(
cos argi1 w + sin argi1 w

)
where ew /∈ θ2.

Let f : Ω ⊂ C2 → C2 be a bicomplex valued function. The derivative of f at a
point ω0 ∈ Ω is defined by f ′(ω0) = lim

h→0

f(ω0+h)−f(ω0)
h

, provided the limit exists and

the domain is so chosen that h = h0 + i1h1 + i2h2 + i1i2h3 is invertible. It is easy
to prove that h is not invertible only for h0 = −h3, h1 = h2 or h0 = h3, h1 = −h2.

If the bicomplex derivative of f exists at each point of its domain then in similar
to complex function, f will be a bicomplex holomorphic function in Ω. Indeed if f
can be expressed as f(ω) = g1(z1, z2) + i2g2(z1, z2), ω = z1 + i2z2 ∈ Ω then f will
be holomorphic if and only if g1, g2 are both complex holomorphic in z1, z2 and

∂g1
∂z1

=
∂g2
∂z2

,
∂g1
∂z2

= −∂g2
∂z1

.

Moreover, f ′(ω) = ∂g1
∂z1

+ i2
∂g2
∂z1

. A function f is said to be a bicomplex entire
function if f is bicomplex holomorphic in the whole bicomplex plane C2. A func-
tion f is said to be bicomplex meromorphic function in an open set Ω if f is
a quotient g

h
of two functions which are bicomplex holomorphic in Ω where h

/∈ θ2. If f is a bicomplex meromorphic function, then f can be represented as
f (z) = f1 (z1) e1 + f2 (z2) e2 where f1 (z1) , f2 (z2) ∈ C1 and f1 (z1) , f2 (z2) are
both meromorphic functions in C1. A bicomplex entire function f(w) can be ex-
pressed as f(w) = fe1(z1 − i1z2)e1 + fe2(z1 + i1z2)e2 . For more details, one can
refer [7].

A series of the form
∞∑
k=0

ξk, ξk ∈ C2 is called an infinite series in C2. Let {Sn} be

the sequence of partial sum of the above series. Then Sn =
n∑

k=0

ξk, for all n ∈ N.

Then the infinite sum converges iff limn→∞ Sn exists and diverges iff the limit does
not exist. If limn→∞ Sn = ξ∗ then ξ∗ is called the sum of the series and we write
∞∑
k=0

ξk = ξ∗. The infinite series
∞∑
k=0

ξk has the sum ξ∗ = z∗1 + i2z
∗
2 iff the following

two infinite series converge and have the sums

∞∑
k=0

(z1k − i1z2k) = z∗1 − i1z
∗
2 ,

∞∑
k=0

(z1k + i1z2k) = z∗1 + i1z
∗
2 .
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For better understanding of series of bicomplex numbers, one can see [3].
Now let us define the order of a bicomplex entire function. The order ρf of an
entire function f in C1 is defined ([4], [2]) in the following way:

ρf = lim sup
r→∞

log[2] Mf (r)

log r
where Mf (r) = max {|f (z)| : |z| = r} .

The order ρf of a bicomplex entire function f(w) = fe1(z1 − i1z2)e1 + fe2(z1 +
i1z2)e2 is defined by ρf = max{ρfe1 , ρfe2}

where ρfei = lim sup
r→∞

log[2] Mfei
(ri)

log ri
for i = 1, 2.

Now, the type σf of an entire function f in C1 is defined ([4], [2]) as follows:

σf = lim sup
r→∞

logMf (r)

rρf
where Mf (r) = max {|f (z)| : |z| = r} .

The type σf of a bicomplex entire function, f(w) = fe1(z1−i1z2)e1+fe2(z1+i1z2)e2
in C2 is defined as σf = max{σfe1

, σfe2
}

where σfei
= lim sup

r→∞

logMfei
(ri)

rρfei
for i = 1, 2.

In this paper our prime concern is to estimate the order and type of a bicomplex
valued entire function and also to derive the well known Lucas’s theorem on the
zeros of a polynomial in the bicomplexial context. We do not explain the standard
definitions and notatios of the theories of bicomplex valued entire functions as those
are available in [2], [6], [7] and [9].

2. Lemmas
In this section, we present some relevant lemmas which will be needed in the

sequel.

Lemma 2.1. ([7]) Let X be a domain in C2 and f : X → C2 be a differentiable
function on X. Then for each a in X there is a discus D(a;R1, R2) such that

f(z) =
∞∑
n=0

an(z−a)n where an = fn(a)
n!

for n = 0, 1, 2, ... and for all z ∈ D(a;R1, R2).

Remark 2.1. Lemma 2.1 is known as Taylor’s theorem in C2.

Lemma 2.2. Let a bicomplex valued function f (z) has Taylor’s series expansion
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∞∑
n=0

anz
n on a discuss D (0;R1, R2) . Suppose there exists numbers µ > 0, λ > 0 and

an integer N = N (µ;λ) > 0 with ∥an∥ <
(
eµλ
n

)n
µ for all n > N . Then f (z) is

entire and also given any ε > 0, there are numbers R′
0 > 0 and R′′

0 > 0 such that

Mf (R1) = max {|f (z)| : |z| = R1} < exp {(λ+ ε)Rµ
1} for all R1 > R′

0,

Mf (R2) = max {|f (z)| : |z| = R2} < exp {(λ+ ε)Rµ
2} for all R2 > R′′

0.

Proof. By idempotent decomposition, f (z) can be written as f (z) = f1 (z1) e1 +
f2 (z2) e2, where f1 (z1) , f2 (z2) ∈ C1. On the discuss D (0;R1, R2), the maximum
modulus function corresponding to fi denoted byMfi (Ri) can be written asMfi (Ri) =

max
|zi|=Ri

|fi (zi)| for i = 1, 2. Since f (z) =
∞∑
n=0

anz
n =

∞∑
n=0

(a′ne1 + a′′ne2) (z1e1 + z2e2)
n =(

∞∑
n=0

a′nz
n
1

)
e1+

(
∞∑
n=0

a′′nz
n
2

)
e2, therefore we can write f1(z1) =

∑
a′nz

n
1 on |z1| = R1

and f2(z2) =
∑

a′′nz
n
2 on |z2| = R2.

Since ∥an∥ <
(
eµλ
n

)n
µ , ∀ n > N we have |a′n|√

2
≤ ∥an∥ <

(
eµλ
n

)n
µ ,∀ n > N

i.e., |a′n|
1
n <

(
eµλ
n

) 1
µ 2

1
2n ,∀ n > N. Thus |a′n|

1
n → 0 as n → ∞ and hence f1(z1)

is entire. Similarly, f2(z2) is so. Hence f is entire in C2. Further,
n

√
|a′n|
2
Rn

1 <

n
√
∥an∥Rn

1 <
(
eµλ
n

) 1
µ R1 < 1

2
if n > n0 = n0 (R1) = {eµλ2µRµ

1} . Now choose
R′ = R′ (µ, λ) > 1 so large that n0 (R1) > N if R1 > R′, then we have

n

√
|a′n|
2

Rn
1 <

1

2
.

That is

|a′n|Rn
1 <

√
2

2n
provided n > n0.

We now deduce an upper bound for Mf (R1) .

Now, Mf (R1) = max
|z1|=R1

∣∣∣∣∣
∞∑

a′nz
n
1

n=0

∣∣∣∣∣ ≤
∞∑
n=0

|a′n|Rn
1

=

n0∑
n=0

|a′n|Rn
1 +

∞∑
n=n0+1

|a′n|Rn
1

<

n0∑
n=0

|a′n|Rn
1 +

∞∑
n=n0+1

√
2

2n
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<

n0∑
n=0

|a′n|Rn
1 +

√
2 if R1 > R′.

Also,

n0∑
n=0

|a′n|Rn
1 =

N∑
n=0

|a′n|Rn
1 +

n0∑
n=N+1

|a′n|Rn
1

< RN
1

N∑
n=0

|a′n|+ (n0 −N) max
N+1≤n≤n0

|a′n|Rn
1 .

Now, max
N+1≤n≤n0

|a′n|Rn
1 ≤ max

N+1≤n
|a′n|Rn

1 ≤
√
2 max
N+1≤n

∥a′n∥Rn
1 <

√
2 max
N+1≤n

(
eµλ
n

)n
µ Rn

1

=
√
2 exp (λRµ

1 ) . The maximum of
(
eµλ
n

)n
µ is achieved for n = µλRµ

1 , thus we have

max
N+1≤n≤n0

|an|Rn
1 <

√
2 exp (λRµ

1 ) . Hence if R1 > R′, it follows that

Mf (R1) < RN
1

N∑
n=0

∣∣a′n∣∣+√
2 (n0 −N) exp (λRµ

1 ) +
√
2

= RN
1

N∑
n=0

∣∣a′n∣∣+ (2µeµλRµ
1 −N)

√
2 exp (λRµ

1 ) +
√
2

= exp (λRµ
1 )

{
2µ+

1
2 eµλRµ

1 −
√
2N exp (−λRµ

1 )
N∑

n=0

∣∣a′n∣∣+√
2 exp (−λRµ

1 )

}
.

Given any ε > 0, there exists a number R′
0 = R′

0 (ε) > R′ such that the expres-
sion above within brackets is less than exp (εRµ

1 ), provided R1 > R0. Therefore,
Mf (R1) < exp {(λ+ ε)Rµ

1} for all R1 > R′
0. Analogously, we can write for ε > 0,

there exists R′′
0 > 0 such that Mf (R2) < exp {(λ+ ε)Rµ

2} for all R2 > R′′
0. This

completes the proof of the lemma.

Lemma 2.3. If 1
z−k

= 0 then 1
z̄−k̄

= 0 where z, k ∈ C2 and z, k are the respective
i1i2−conjugate of z and k.
Proof. Let us write as z = z1 + i2z2 = (z1 − i1z2) e1 + (z1 + i1z2) e2 and k =
k1 + i2k2 = (k1 − i1k2) e1 + (k1 + i1k2) e2 where z1, z2, k1, k2 ∈ C1. Now,
1

z−k
= 1

(z1−k1)+i2(z2−k2)
=

(z1−k1)−i2(z2−k2)
{(z1−k1)+i2(z2−k2)}{(z1−k1)−i2(z2−k2)}

=
(z1−k1)−i2(z2−k2)

|(z1−k1)−i1(z2−k2)|2e1+|(z1−k1)+i1(z2−k2)|2e2
.

Since, 1
z−k

= 0, we have
(
z1 − k1

)
− i2

(
z2 − k2

)
= 0. i.e.,

[(
z1 − k1

)
+ i1

(
z2 − k2

)]
e1 +

[(
z1 − k1

)
− i1

(
z2 − k2

)]
e2 = 0.

So it follows that
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z1 − k1

)
+ i1

(
z2 − k2

)
= 0 and

(
z1 − k1

)
− i1

(
z2 − k2

)
= 0.

Now from above two equations, we obtain that z1 = k1 and z2 = k2.
In view of above equations, now it follows that
1

z−k
= 1

(z1−i2z2)−(k1−i2k2)

=
(z1−k1)+i2(z2−k2)

{(z1−k1)−i2(z2−k2)}{(z1−k1)+i2(z2−k2)}
=

(z1−k1)+i2(z2−k2)
|(z1−k1)−i1(z2−k2)|2e1+|(z1−k1)+i1(z2−k2)|2e2

= 0. This proves the lemma.

The following lemma [10] says that the order and type remain invariant under
differentiation of an entire function in C1.

Lemma 2.4. The order and type of the derivative of an entire function in C1 is
equal to the order and type of the function.

3. Theorems
In this section we prove the main results of our paper. We prove that the result

stated in Lemma 2.4 is also true if we change the domain from C1 to C2.

Theorem 3.1. Let f(z) ∈ C2 be entire. Then the order and type of f ′(z) are same
as those of f(z).
Proof. Since f(z) ∈ C2, we have by its idempotent representation f(z) = f1(z1−
i1z2)e1 + f2(z1 + i1z2)e2 where f1(z1 − i1z2) and f2(z1 + i1z2) ∈ C1. Now f ′(z) =
f ′
1(z1 − i1z2)e1 + f ′

2(z1 + i1z2)e2. In view of Lemma 2.4, ρf = max {ρf1 , ρf2} =
max

{
ρf ′

1
, ρf ′

2

}
= ρf ′ . Similarly, in view of Lemma 2.4, σf = max {σf1 , σf2} =

max
{
σf ′

1
, σf ′

2

}
= σf ′ . Thus the theorem is established.

Theorem 3.2. If f (z) ∈ C2 is entire of finite order ρ ( 0 < ρ < ∞) and type σ

then σ = 1
eρ
lim sup
n→∞

n ∥an∥
ρ
n .

Proof. Let us suppose that σ is finite. As σ = max {σ1, σ2} then both σ1 and
σ2 are finite. Also ρ = max {ρ1, ρ2} with 0 < ρi < ∞ for i = 1, 2. Now, an =
a′ne1 + a′′ne2 where a′n, a

′′
n ∈ C1.

Case I. Let |a′n| > |a′′n| .
As ∥an∥ < max {|a′n| , |a′′n|} = |a′n| , using Cauchy’s inequality in C1 we may

write

∥an∥ < |a′n| ≤
Mf (R1)

rn1
<

exp (krρ11 )

rn1
<

exp (krρ1)

rn1
for all r1 > R1.

Now the minimum value of
exp(krρ1)

rn1
occurs for r1 =

(
n
kρ

) 1
ρ
. Thus ∥an∥ <(

eρk
n

)n
ρ if n > N and r1 =

(
n
kρ

) 1
ρ
> R1 (k) . Rewriting k > 1

eρ
n ∥an∥

ρ
n , we have
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k ≥ 1
eρ
lim sup
n→∞

n ∥an∥
ρ
n . Since k is an arbitrary number exceeding σ, σ ≥ 1

eρ
lim sup
n→∞

n ∥an∥
ρ
n .

Now, as the right hand side of the above inequality is finite, let k′ be any number
exceeding the same. Then there exists a number N ′ = N ′ (k′) > 0 such that ∥an∥ <(

eρ1k′

n

)n
ρ
for all n > N ′. Applying Lemma 2.2 with λ = k′ and µ = ρ1, given any

ε > 0, there exists R′ > 0 such that Mf (r1) < exp {(k′ + ε) rρ11 } for all r1 > R′.

Thus we have σ1 ≤ k′ and because of the choice of k′, σ ≤ 1
eρ
lim sup
n→∞

n ∥an∥
ρ
n .

Case II. Let |a′n| < |a′′n| .

Now we can write, ∥an∥ < max {|a′n| , |a′′n|} = |a′′n| ≤
Mf (R2)

rn2
<

exp(krρ12 )
rn2

<

exp(krρ2)
rn2

for all r2 > R2. Now the minimum value of
exp(krρ2)

rn2
occurs for r2 =

(
n
kρ

) 1
ρ
.

Thus ∥an∥ <
(
eρk
n

)n
ρ if n > N0 and r2 =

(
n
kρ

) 1
ρ
> R2 (k) . Rewriting k >

1
eρ
n ∥an∥

ρ
n , we have k ≥ 1

eρ
lim sup
n→∞

n ∥an∥
ρ
n . Since k is an arbitrary number exceed-

ing σ, σ ≥ 1
eρ
lim sup
n→∞

n ∥an∥
ρ
n . Now as the right hand side of the above inequality

is finite, let k′′ be any number exceeding the same. Then there exists a number

N ′′ = N ′′ (k′′) > 0 such that ∥an∥ <
(

eρ1k′′

n

) n
ρ2 for all n > N ′′. Applying Lemma

2.2 with λ = k′′ and µ = ρ2, given any ε > 0 there exists R′′ > 0 such that

Mf (r2) < exp {(k′′ + ε) rρ22 } for all r2 > R′′. Thus σ2 ≤ k′′ and because of the

choice of k′, σ2 ≤ 1
eρ
lim sup
n→∞

n ∥an∥
ρ
n .

Case III. Let |a′n| = |a′′n| .Then the case is trivial. Combining Cases I, II and

III, we obtain that max {σ1, σ2} ≤ 1
eρ
lim sup
n→∞

n ∥an∥
ρ
n . i.e., σ ≤ 1

eρ
lim sup
n→∞

n ∥an∥
ρ
n .

Thus we can say that σ = 1
eρ
lim sup
n→∞

n ∥an∥
ρ
n . Thus the theorem is established.

Remark 3.1. The following examples ensure the validity of the above theorem.

Example 3.1. The function f (z) =
∞∑
n=1

(
eϱσ
n

)n
ϱ zn is of order ϱ and type σ.

Example 3.2. Since lim
n→∞

logn

log

(
1

n
√

|an|

) = 0 characterizes an entire function of order

zero, any function with coefficients ∥an∥ = 1

n
n
εn

where {εn} is a sequence of positive

numbers converging to zero is of order zero.
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Example 3.3. As the condition lim sup
n→∞

logn

log

(
1

n
√

|an|

) = ∞ characterizes an entire

function of infinite order, considering ∥an∥ = 1
nnεn , {εn} to a sequence of positive

numbers converging to zero slowly enough with lim
n→∞

εn log n = ∞.

We see that the sequence εn = 1

(logn)1−δ (n = 1, 2, ...) meets these requirements

if 0 < δ < 1, as because εn → 0 but lim
n→∞

εn log n → ∞. Thus the series f (z) =
∞∑
n=0

zn

exp(nδ logn)
, 0 < δ < 1 represents an entire function of infinite order.

Let f (z) =
∞∑
n=0

anz
n and g (z) =

∞∑
n=0

bnz
n be two bicomplex valued entire functions.

Then the Hadamard composition [11] of f (z) and g (z) denoted by f (z) ◦ g (z) is
defined by f (z) ◦ g (z) =

∞∑
n=0

anbnz
n =

∞∑
n=0

cnz
n where cn = anbn.

As a consequence of Theorem 3.2, we may prove the following result related to
the Hadamard composition of two entire functions in C2. In fact we will find out
here an estimate of the type of the Hadamard composition of two bicomplex valued
entire functions.

Theorem 3.3. Let f (z) =
∞∑
n=0

anz
n and g (z) =

∞∑
n=0

bnz
n be entire in C2 with

respective orders and types ρ1, ρ2 and σ1, σ2. Also let ρ, σ denote the order and
type of f (z) ◦ g (z) respectively. Then ( σ

ρ−1
1 +ρ−1

2

)ρ
−1
1 +ρ−1

2 ≤ (σ1ρ1)
ρ−1
1 (σ2ρ2)

ρ−1
2 , if

1
ρ
= 1

ρ1
+ 1

ρ2
.

Proof. In view of Theorem 3.2, we have σ = 1
eρ
lim sup
n→∞

n ∥cn∥
ρ
n . Therefore,

(eρσ)1/ρ = lim sup
n→∞

n1/ρ ∥cn∥
1
n = lim sup

n→∞
n

1
ρ1

+ 1
ρ2 ∥anbn∥

1
n

≤ lim sup
n→∞

n
1
ρ1 ∥an∥

1
n lim sup

n→∞
n

1
ρ2 ∥bn∥

1
n

= (eρ1σ1)
1/ρ1(eρ2σ2)

1/ρ2

= e1/ρ(ρ1σ1)
1/ρ1(ρ2σ2)

1/ρ2

i.e., (ρσ)1/ρ ≤ (ρ1σ1)
1/ρ1(ρ2σ2)

1/ρ2

i.e.,

(
σ

1/ρ

)1/ρ

≤ (ρ1σ1)
1/ρ1(ρ2σ2)

1/ρ2

Hence,

(
σ

ρ−1
1 + ρ−1

2

)ρ−1
1 +ρ−1

2

≤ (σ1ρ1)
ρ−1
1 (σ2ρ2)

ρ−1
2 .
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This completes the proof of the theorem.

The convex hull of a shape is the smallest convex set containing it. The convex
hull may be defined either as the intersection of all convex sets containing a given
subset of a Euclidean space or equivalently as the set of all convex combinations of
points in the subset. A convex polygon is defined as a polygon with all its interior
angles less than 180◦. This means that all the vertices of the polygon will point
outwards away from the interior of the shape. Here, we show that the zeros of the
derivative of a polynomial P (z) in C2 are contained within the convex hull of the
zeros of P (z).

Theorem 3.4. The zeros of the derivative P ′(z) of a polynomial P (z) in C2 are
contained within the convex hull of the zeros of P (z).
Proof. Let P (z) have zeros z1, z2, ..., zn. Let Γ be the least convex polygon con-
taining these zeros. It is sufficient to show that P ′(z) cannot vanish anywhere in
the exterior of Γ.

Since P (z) = (z−z1)(z−z2) · · · (z−zn) then
P ′(z)
P (z)

= d
dz
{logP (z)} =

∑n
k=1

1
z−zk

.

If P ′(z) = 0 then there exists z0 ∈ C2 such that
∑n

k=1
1

z0−zk
= 0 and therefore

in view of Lemma 2.3, we have
∑n

k=1
1

z0−zk
= 0. Thus,

∑n
k=1

z0−zk
(z0−zk)(z0−zk)

= 0.

i.e., z0
n∑

k=1

1
(z0−zk)(z0−zk)

=
n∑

k=1

zk
(z0−zk)(z0−zk)

. That is z0 = 1
K

n∑
akzk
k=1

, where K =

n∑
k=1

1
(z0−zk)(z0−zk)

. Since z0 =
n∑

r=1

brzr with
n∑

r=1

br =
n∑

k=1

ak
K

= 1
K

n∑
k=1

ak = K
K

= 1,

br ≥ 0, we have z0 lies within the convex hull of zr’s where r = 1, 2, ...., n. This
proves the theorem.

Remark 3.2. Above theorem is the bicomplex version of Lucas’s Theorem [4] in
C1.

4. Future Scope

In the line of the works as carried out in the paper one may think of the
formation of the results in the light of in n-dimensional bicomplex numbers with
the help of the idempotents 0, 1, 1+i1i2

2
, 1−i1i2

2
, 1+i1i3

2
, 1−i1i3

2
, 1+i2i3

2
, 1−i2i3

2
,...., 1+in−1in

2

and 1−in−1in
2

in Cn. As a consequence, the derivation of relevant results in this area
is still virgin and may be an active area of research to the future workers of this
branch.
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