South Fast Asian J. of Mathematics and Mathematical Sciences
Vol. 19, No. 1 (2023), pp. 17-28

DOTI: 10.56827/SEAJMMS.2023.1901.2 ISSN (Online): 2582-0850
ISSN (Print): 0972-7752

SYMMETRIC IDENTITIES FOR DEGENERATE
¢-POLY-GENOCCHI NUMBERS AND POLYNOMIALS

Mohd Nadeem and Waseem Ahmad Khan*

Department of Natural and Applied Sciences,
Glocal University, Saharanpur, Uttar Pradesh - 247121, INDIA

E-mail : nadeem0621@gmail.com

*Department of Mathematics and Natural Sciences,
Prince Mohammad Bin Fahd University,
P.O Box 1664, Al Khobar 31952, SAUDI ARABIA

E-mail : wkhanl@pmu.edu.sa

(Received: Jan. 28, 2022 Accepted: Dec. 15, 2022 Published: Apr. 30, 2023)

Abstract: In the present article, we introduce a new class of degenerate g-poly-
Genocchi polynomials and numbers including g¢-logarithm function. We derive
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and investigate some symmetric identities using special functions that are involving
these polynomials.
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1. Introduction
Throughout this presentation, we use the following standard notions N =
{1,2,---}, Ny = {0,1,2,---} = NU{0}, Z= = {-1,—2,---}. Also as usual Z
denotes the set of integers, R denotes the set of real numbers and C denotes the
set of complex numbers. For any n € N, the g-number can be defined as follows
1—q"

[nlq = 1—q°
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Note that lim,_,;[n], = n.

The classical Genocchi numbers G, the classical Genocchi polynomials G,,(z)
and the generalized Genocchi polynomials Gﬁﬁ)(a:) of (real or complex) order « are
usually defined by means of the following generating functions (see [11, 12, 15-24]):

2t =t
=SNG, — t< ), 1.1
= g (1t1<m) (1)
2 . tn
R WS (1 1<), (12
and
2t \" oy " qa
(ﬁ) e :;Gn (x)m (|t [<m1™=1), (1.3)
with
GL0) = G,.
The degenerate exponential function [4, 8, 9] is defined by
eX(t) = (1+ )% and e\(t) =ex(t),(N €R). (1.4)
Note that
. z - xntn xt
lim (1+ At)> :2% - =c

In [2, 3], Carlitz introduced the degenerate Bernoulli and degenerate Euler poly-
nomials defined by

t t o~ tn
———e{(t) = ———(1+ M)» = Bn(x; N)—, 1.5
S0 = T = e 09
and
2 o~ tn
——ef(t)= ———(1+ M)x = E(z; N)—. 1.6
PGBk e RS VLD DRV S0
In the case when x = 0, B,, \(0) := B, , are called the degenerate Bernoulli numbers
and E, ,(0) := E, » are called the degenerate Euler numbers.

Let (z), be the degenerate falling factorial sequence given by

(@)pr =z —A)--- (= (n—1)A), (n > 1),
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with the assumption (x)p ) = 1.
The the degenerate Genocchi polynomials are defined by (see [14])

2t - tn
——€f(t) = G, —. 1.7
ST = Gl (17)
In the case when © = 0, G, = GpA(0) are called the degenerate Genocchi

numbers.
The classical polylogarithm function Lig(z) is defined by (see [5])

. w Zm
Lig(2) = Zl - (k€ Z) (1.8)
so for k <1,
Lis(z) = =In(1 - 2), Lig(z) = +—. Lia(2) = e

The poly-Bernoulli polynomials are given by (see [13])

Lij(1 — eit)ext _ i B(k)(x)ﬁ7 (see [11]) (1.9)

et —1

For k=1 1in (1.9), we have

Lll(l _ e_t) xt t xt - "

From (1.9) and (1.10), we have
BW(z) = B,(z).

Very recently, Jung and Ryoo [6] introduced the degenerate g-poly-Bernoulli poly-
nomials B (z; A) defined by

Lijq(1 — ™) s e t"
(14 MY =) Bz A, 1.11
ST v T A (L11)
where
oo t"
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is the k-th g-polylogarithm function.
Note that

Li (1 — ¢! -~ t”
n eI g S i B ()

A0 (14 M)x — 1 =30

n!

[e.e]

leqi—_ Z & (1.12)

=0

We recall the following definition as:
The Stirling numbers of the first kind are defined by

() =x(x—1)--(x —n+1) Zslnz ,(n>0). (1.13)
and the Stirling numbers of the second kind are defined by (see [1-12])
t - tl
(ef —1)" = nl ZSg(l,n)ﬁ. (1.14)
l=n

A generalized falling factorial sum 74 (n; A) can be defined by the generating function
[25]:

(n+1)

Zrk(n;x);—i: — (0 + M) (1.15)

1+ (14 M)x

where limy_,o 7(n; \) = T(n).

In thls paper, we consider a new class of degenerate ¢ poly-Genocchi polyno-
mials Gn q(x A) and develop some elementary properties and derive some implicit
formulae and symmetric identities for the degenerate q poly-Genocchi polynomials
by using different analytical means of their respective generating functions.

2. Degenerate ¢-poly-Genocchi Numbers and Polynomials

In this section, we introduce degenerate g-poly-Genocchi numbers and polyno-
mials and investigate some basic properties of these polynomials. We start with
the following definition as.

Definition 2.1. Let A\ € C,k € Z, n > 0 and 0 < g < 1. We consider the degen-
erate q-poly-Genocchi polynomials by means of the following generating function

’T'L

2Ligq(1 —e” ) 1+At§:ZG’“ : (2.1)
(1+)\t) — !
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When z =0 in (2.1), G )()\) =GP0 A) are called the degenerate q-poly-Genocchi

numbers.
Note that
Gt (3A) = Gala: V),
and

. B) (oo \\ _ vk
lim GH(@:\) = G) (kez)
where Gﬁlk()l(:r) are called the q-poly-Genocchi polynomials.
Theorem 2.1. Forn > 0, we have
& n
W) =Y ( " ) G (@)
m=0

Proof. Using definition (2.1), we have

> Gl A Zqum. Z Dury
n=0
- (Z Gﬁ’i?q<x>nm») A

n=0 \m=0

Comparing the coefficients of % in both sides, we get (2.3).
Theorem 2.2. Forn >0, we hcwe

n |
G2 (mN) =Y ( " ) Bmm'Enfm(x; A).

m /m+1

m=0

Proof. Applying Definition (2.1), we have

- t" 2Lig(1 — et .
> GG = 2 s
’ nl (14 M)x + 1

n=0

2(1 + At)x /t 1 /t 1 1 /t 2o
(1+)\t)§+1 g €6—1)Jy e#—1 e —1J, e =1

-~

(k—2)—times

For k =2 in (2.5), we have

iG@ 2(1 + At)% /t c 4
o n' (1+At)% o €2—1

n=

(2.2)

(2.3)

(2.4)

(2.5)
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Replacing n by n —m in above equation, we have

= [ < B,,m! tn
_ Z(” ) Bt gy o 0)
e m ) m+1 nl’

m=0

On equating the coefficients of the like powers of in the above equation, we get
the result (2.4).

Theorem 2.3. Forn > 0, we have

N =3 ( " ) (Z (-1) ?fgéi?(ff 1,z)> ) (26)

p=0 =1

Proof. From equation (2.1), we have

gt (Lieg(L—e ™)\ [ 26(1+ A3
;Gn}](x; )‘)H = < ; ) ((1 £ AR 4 1) ' 27
Now 00 ! ¢
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p:

+1

(= 1)””“y52(p+1’l)> £ (2.8)
p

My p+1

From equations (2.7) and (2.8), we have

> XL (N (1) Sy(p+1,1)
ZGn]fz;(gj;)‘)H:Z( ( [;]k l! <§+1 )p' (ZG (z; \) >
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Replacing n by n — p in the r.h.s of above equation and comparing the coefficients
of L, we get the result (2.6).

Theorem 2.4. Forn > 1, we have

G;’“;(x +1;0) + Ggfg(x; A)

=22 ( ) ) (Z C 1 1Sl + 1)) Dpr (29)

k
— [l +1],

Proof. Using the definition (2.1), we have

= 2Lij (1 — ™) (1 + M)A

> _ —t)l+1

_ 22%‘3—1]qk(1 + )%

1=0
(_1)l+p+1

=2) (Z W(l + DSy (p, 1 + 1)) %p!(l + )3 (14 A5

o0 p—Ll o Ni4ptl P oo n
) (Z( %(zu)!&(p,w 1)) %) (Z(w)m,\%> .

Replacing n by n — p in the above equation and comparing the coefficients of tn—n!,
we get the result (2.9).

Theorem 2.5. Forn >0, d € N and k € Z, we have

EITERTEED D () S BT (2.10)

m=0

Proof. From equation (2.1), we have
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On comparing the coefficient of £;, we get the result (2.10).

3. Symmetry Identities for Degenerate g-poly-Genocchi Polynomials

In this section, we 1ntroduce general symmetry identities for the degenerate
g-poly-Genocchi polynomials GV (m A) by applying the generating function (2.1).
We begin following identities as.

Theorem 3.1. Leta,b > 0 anda # b. Forxz € R andn > 0, the following identity

holds true:
(0 g AN\ k) A
5 (1) (o2 o
"/ n A A
_ZO< " )b Gn mq(ax,b)ijq (ba@a). (3.1)
Proof. Let
2L, (1 — e~ 2L, (1 — et 2at
Ofr) = [ Pnall =2y (L =T ) () e (3.2)
(T+M)x + (1 +X)x + 1)

Then G(t) is symmetric in @ and b and we can written

™ h) ()" $~ k) AN ()™
ZGM< ) nl mz_onﬂq Y3 ) Tm

n=0
( ) b Gn myq (bl’, a) G'En)q (ax, E)) m

Similarly, we can show that

i(i

=0 \m=0
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Comparing the coefficients of ’;L—", on the right hand sides of the last two equations,
we arrive the desired result.

Corollary 3.1. On setting b = 1 in Theorem 3.1, we get

(N ) A
S (0 )6, (o) 6wy

m=0

- i ( “m ) a"G¥ (ax, ) GE) (m 2) : (3.3)

Theorem 3.2. For all integers a > 0,b > 0, and n > 0, the following identity
holds true:

5 (2 Yot ()55 (7 Yt et (o)

m=0 =0
_ - n n—m m (k) M m ) (k) A
- Z_O ( m ) b Gn m,q (CLQ’J, E) ZO < i ) Tz(b - 17)‘)Gm—z’,q (by7 5) )
(3.4)

where generalized falling factorial sum 1,(n; \) is given by (1.15).
Proof. We now use

H(t) = Ptba(l = ™) 2Likg (1= e)(1 - (=(1 + M) E) (1 + At 5
(L4 AD)5 + (14 A)F +1)2
to find that
1 _ ,—at I ab
H(t) = <2L1k,q(1 Ee )> (1+)\t)% 1—( (1+b>\,5))A
(1+/\t)x-|-1 (1+)\t)X—|—1
' _ bt .
2L1k7q(1 i € ) (1 i At)%
(1+X)x +1
- ZG"’?} <bx, 2) (CZ') ZTn a—1; )\ Zggk()] (a ) (b;‘)
n=0 Y =0 et [
_ k) A . - “ A
— ZOGM (bxv a) n! ZOZO ( ; )b Ti(a — 1, NG, (ay, b) —
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— S - n n—mpm ~(k) A u m . (k) A tm
B ZO (Z ( m ) ¢ b Gnim’q (bx7 CL) ZO ( 7 ) Ti(a o 1’)‘)Gm—i,q (ay, b)> E

m=0
(3.5)
By using a similar plan, we get

- = n n—m m M = m A t"

)= 3 (3 (5, Y (a3 (1 ) mo- it () )
n=0 \m=0 i=0

(3.6)

After comparing the coefficients of 7;—”, on the right hand sides of the last two equa-
tions, we arrive at the desired result.
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