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1. n–color Overpartition

A partition of a positive integer n is a weakly decreasing sequence of positive
integers (λ1, λ2, · · · , λr) such that λ1+λ2+ · · ·+λr = n. We use l(λ) to denote the
number of parts in a partition λ and |λ| to denote the number being partitioned.
As a convention, we consider the number of partitions of 0 to be 1. Partitions
can also be represented graphically by a Ferrers diagram. A Ferrers diagram of a
partition (λ1, λ2, ..., λr) of n consist of r rows of left aligned cells, with the ith row
having λi cells. For example, the partition λ = (6, 4, 3, 1) of 14 has the following
Ferrers diagram:
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Figure 1: Ferrers diagram for partition λ=(6,4,3,1)

In this paper, we make use of Ferrers diagrams with some variations such
as modular Ferrers diagram for combinatorial interpretations of some Rogers–
Ramanujan type identities. We start by defining a modular Ferrers diagram.
Modular Ferrers diagrams are also called p−modular Ferrers diagrams. For a par-
tition λ into parts λi congruent to k modulo p where 0 < k ≤ p, its p−modular
Ferrers diagram is the diagram in which the ith row has ⌈λi

p
⌉ cells, the cells in the

last column have k and others have p. The sum of the numbers in all the cells
equals |λ|. For example, 2−modular Ferrers diagram for the partition (9, 7, 5, 3, 1)
of 25 is shown in Figure 1.
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Figure 2: 2−modular Ferrers diagram for the partition λ=(9,7,5,3,1)

Motivated by [6], we make use of p−modular Ferrers diagrams to visualise the n–
color overpartitions of the following Rogers–Ramanujan type identity that appears
in [7] as Identity No. 195.

f(q) =
∞∑
ν=1

(−q2; q2)ν−1q
ν2

(q; q)2ν
=

[q16, q2, q14; q16]∞[q20, q12; q32]∞
(q; q)∞

(1.1)

and employ the standard notations as:

(a1; q)0 = 1, (a1; q)n = (1− a1)(1− a1q)(1− a1q
2) · · · (1− a1q

n−1),

(a1; q)∞ = lim
n→∞

(a1; q)n,

and [a1, a2, a3; q]∞ = (a1; q)∞(a2; q)∞(a3; q)∞,
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where a1, a2, a3, q are complex numbers with |q| < 1.
Before proceeding we recall n–color partitions and n–color overpartitions. The

n−color partition was introduced by Agarwal and Andrews [2], and its overpartition
analogue was launched by Lovejoy and Mallet [10].

An n−color partition of a positive integer ν is a partition in which each part of
size n may appear with up to n different colors denoted by subscripts from 1 to n,
and parts are ordered first by their size and then according to the color. The parts
satisfy the order,

11 < 21 < 22 < 31 < 32 < 33 < 41 < 42 < 43 < 44 · · · .

Let ((λ1)x1
, (λ1)x2

, · · · , (λr)xr
) represent the n−color partition into r parts. Since

we have n different copies of part n, we also call it a partition with “n copies of
n”. For example, there are six n−color partitions of 3:

33, 32, 31, 2211, 2111, 111111.

We define the weighted difference of two parts (λi)xi
, (λj)xj

denoted by (((λi)xi
−

(λj)xj
)), as λi − λj − xi − xj provided that λi ≥ λj. For convenience, we denote

δi = (((λi)xi
− (λi+1)xi+1

)) where λi ≥ λi+1. When we plot the modular Ferrers
diagram for the n−color partitions, we color only the last cell on the right of each
row, the remaining boxes are uncolored as done in [5]. For instance, modular
Ferrers diagram for the n–color partition (82, 53, 22, 11) of 16 is shown in Figure 3.
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Figure 3: Modular Ferrers diagram for n–color partition (82, 53, 22, 11).

An n−color overpartition of a positive integer ν is an n−color partition of ν in
which we may overline the final occurrence of each part (λi)xi

. For example, the
n−color overpartitions of 3 are:

33, 33, 32, 32, 31, 31, 2211, 2211, 2211, 2211, 2111, 2111, 2111, 2111, 111111, 111111.

The overlined part in n–color overpartitions is shown by shading the last cell in
the modular Ferrers diagram of corresponding part. For example, modular Ferrers
diagram for n–color overpartition (82, 53, 42, 11) of 18 is shown in Figure 4.
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Figure 4: Modular Ferrers diagram for n–color overpartition (82, 53, 42, 11).

Now we provide the n–color overpartition theoretic interpretation of (1.1). Con-
sider f(q) and letting

∞∑
ν=1

A(ν)qν =
∞∑
ν=1

(−q2; q2)ν−1q
ν2

(q; q)2ν
=

∞∑
ν=1

qν
2
(−q2; q2)ν−1

(q; q2)ν(q2; q2)ν
. (1.2)

Theorem 1.1. For ν ≥ 1, let A(ν) represent the number of n–color overpartitions
satisfying the following conditions

(1.1.a) λi ≡ xi (mod 2) ∀ i,

(1.1.b) λr is not overlined,

(1.1.c) δi ≥ 0, ∀ i < r. For δi = 0, λi is not overlined.

Let B(ν) represent the count of partitions of ν in which the parts are ≡ ±1, ±3,
±5, ±6 (mod 32). Then

f(q) =
∞∑
ν=1

A(ν)qν =
∞∑
ν=1

B(ν)qν .

Proof. The term qν
2
generates the partition λ(1) into parts 1, 3, · · · , (2ν − 1).

Assign color 1 to each part so δi between two consecutive parts is 0 for 1 ≤ i <
r. The term (q2; q2)−1

ν generates partition λ(2) into even parts ≤ 2ν. From the

largest part of λ(2), we attach each part λ
(2)
j in the following manner: We join

2 starting from the first row to ((λ
(2)
j )/2)th row, so δj remains unchanged. The

factor (q; q2)−1
ν give rise to partition λ(3) that generates odd parts ≤ 2ν − 1. Now,

we attach these parts to the earlier partition and append 2 starting from the first
row upto ((λ

(3)
j − 1)/2)th row and 1 to ((λ

(3)
j + 1)/2)th row. Also, we increase

the color of ((λ
(3)
j + 1)/2)th part by 1. Here, δi between the parts where different

enteries are attached increases by 1 and for rest of the cases it remains same. At
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the end, (−q2; q2)ν−1 generates partition λ(4) into distinct even parts with largest

part ≤ 2ν − 2. We fix λ
(4)
j in a similar way as done for λ

(2)
j . But now, we

overline (λ
(4)
j /2)th part. This step does not make any changes in δi but give rise to

overpartition.
For a better understanding, consider the following example:

Figure 5: Insertion of λ(2) = (4, 4) into λ(1) = (7, 5, 3, 1) followed by the insertion
of λ(3) = (5, 3, 3) and λ(4) = (4, 2).

Remark 1.1. Figure 5 represents the n−color overpartition (211, 153, 42, 11) with
the steps described above.

2. Split part (n+ t)–color Partitions

Recently in [3] Agarwal and Sood interpreted two eighth order, ‘mock theta
functions’ of Gordon and McIntosh using split (n+ t)–colored partitions. Inspired
from their work we introduce split part (n+ t)–color partition, defined as:

Definition 2.1. The split part (n+ t)–color partition is (n+ t)–color partition in
which the part splits into two parts. Consider a part (λi)xi

from the partition and
we split λi into two parts as (λi)xi

= (λ
′
i + λ

′′
i )xi

, 1 ≤ λ
′
i ≤ λi and 0 ≤ λ

′′
i ≤ λi − 1.

Example 2.1. The split part n–color partitions of 3 are:

31, (2 + 1)1, (1 + 2)1, 32, (2 + 1)2, (1 + 2)2, 33, (2 + 1)3, (1 + 2)3

2111, (1 + 1)111, 2211, (1 + 1)211, 111111.

In this section we provide the combinatorial interpretations in terms of split part

n–color partition for f(q) =
∑∞

ν=1 A(ν)q
ν =

∑∞
ν=1

qν
2
(−q2;q2)ν−1

(q;q2)ν(q2;q2)ν
, given in Theorem

2.1.

Theorem 2.1. Let A(ν) enumerate the number of split part n–color partitions of
ν such that

(2.1.a) λi ≡ xi (mod 2) ∀ i,
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(2.1.b) λr should not be splitted,

(2.1.c) δi ≥ 0, and δi ≡ 0 (mod 2), if δi = 0 then the part λi should not be splitted
otherwise (λi)xi

= (λ
′
i + λ

′′
i )xi

where λ
′
i = λi+1 + xi + xi+1 and λ

′′
i = λi − λ

′
i ≡

0 (mod 2). Then

f(q) =
∞∑
ν=1

A(ν)qν =
∞∑
ν=1

A(ν)qν =
∞∑
ν=1

B(ν)qν .

Classical Proof. The proof of A(ν) has same technique as presented in [1, 9, 11].
Here we mention only classes and the remaining proof can be elaborated easily. To
obtain the proof of A(ν) we first enumerate M(ν), in terms of split part n–color
partitions, where

∞∑
ν=0

M(ν)qν =
∞∑
ν=0

(−q2; q2)νq
ν2

(q; q)2ν
. (2.1)

Lemma 2.1. Let M(ν) enumerate the number of split part n–color partitions of ν
satisfying (2.1.a), (2.1.c) and for λr ̸= xr then it should be splitted as (λ

′
r + λ

′′
r )xr

where λ
′
r = xr and λ

′′
r ≡ 0(mod 2), Then (2.1) holds.

We illustrate the idea with the help of following example:

Example 2.2. Obtaining first few terms in the expansion for

∞∑
ν=0

(−q2; q2)νq
ν2

(q; q)2ν
= 1 + q + q2 + 3q3 + 4q4 + 6q5 + 8q6 + 11q7 + 15q8 +

20q9 + 27q10 + · · · .

We see that, for ν = 8, fifteen partitions satisfying the conditions of M(ν) are

82, (2 + 6)2, 84, (4 + 4)4, 86, (6 + 2)6, 88, 7111, (3 + 4)111, 7311,

(5 + 2)311, 7511, 6222, 5131, 51(1 + 2)1.

Sketch proof of Lemma 2.1. Divide the partitions into four classes:

(i) (λr)xr
is not of the form (λi)λi

or (λ
′
i + 2)λ′

i
,

(ii) (λr)xr
is of the form 11,

(iii) (λr)xr
is of the form (1 + 2)1,

(iv) (λr)xr
is of the form (λr)λr (λr ≥ 2) or (λ

′
r + 2)λ′

r
(λ

′
r ≥ 2).
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The remaining proof can be elaborated as in [9]. The proof of Theorem 2.1 can
proceed in the same manner as in the proof of Lemma 2.1, we get the desired result.

Bijective Proof. We can naturally connect the interpretations of f(q) in terms of
n–color overpartitions and split part n–color partitions. Let (λi)xi

and (λi+1)xi+1

be ith and (i+ 1)th parts of a n–color overpartition, then the corresponding ith part
of split part n–color partition be (λ

′
i + λ

′′
i )xi

, that is given by

ϕ : (λi)xi
→


(λi)xi

if λi is not overlined,

(λ
′
i + λ

′′
i )xi

if λi is overlined,

(2.2)

where λ
′
i = λi+1 + xi+1 + xi and λ

′′
i = λi − λ

′
i.

In the reverse implication, let (λ
′
i + λ

′′
i )xi

be any part of split part n–color
partitions then the corresponding part in an n–color overpartition (λi)xi

, is given
by

ϕ−1 : (λ
′

i + λ
′′

i )xi
→


(λ

′
i)xi

if λ
′′
i = 0,

(λ
′
i + λ

′′
i )xi

if λ
′′
i ̸= 0.

(2.3)

In a sequel, we give a connection for f(q) in terms of overpartitions and 2–color
F–partition. Before procceding ahead we recall some definitions.

Definition 2.2. [8] The F–partitions of a positive integer ν, which is a two-rowed
array of distinct non–negative integers(

a1 a2 · · · ar
b1 b2 · · · br

)
such that integers are arranged in a non-increasing order in each row and

ν =
r∑

i=1

(ai + bi + 1).

Definition 2.3. [4] The m–color F–partitions is the color F–partitions with m
copies of the non negative integer ‘x’ with color ‘l’, so

xl : 0 ≤ x ≤ l − 1, 1 ≤ l ≤ x,

and xl ̸= x′
l′ , unless x = x′ and l = l′. There is a strict decrease among the parts

along the rows and the parts follow the order

01 < 02 < · · · < 11 < 12 < · · · < 21 < 22 < · · · < 31 < 32 < · · · .
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Consider colored F–partitions of ν in which the parts in either row appear from m
copies and are distinct. Let cFm(ν) denote the number of all such partitions.

Example 2.3. For ν = 2, the 2–color F–partitions enumerated by cF2(2) are(
11
01

)
,

(
12
01

)
,

(
11
02

)
,

(
12
02

)
,

(
01
11

)
,

(
01
12

)
,

(
02
11

)
,

(
02
12

)
,

(
02 01
02 01

)
.

Remark 2.1. In the main results, we use 2–color F–partitions in which top and
bottom row entries of each column appear with same subscripts. For the notation
purpose 2–color F–partitions with each column having same subscript array as
follows: (

(a1)l1 (a2)l2 · · · (ar)lr
(b1)l1 (b2)l2 · · · (br)lr

)
where a1 > a2 > · · · > ar; b1 > b2 > · · · > br and li = 1 or 2, for 1 ≤ i ≤ r.

Theorem 2.2. For ν ≥ 1, let cF2(ν) enumerate the number of 2–color F–partitions
of ν such that

(2.2.a) for each array

(
(ai)li
(bi)li

)
, ai − bi ≥ 0,

(2.2.b) lr = 1,

(2.2.c) for two consecutive arrays

(
(ai)li (ai+1)li+1

(bi)li (bi+1)li+1

)
, bi − ai+1 ≥ 1 and for bi −

ai+1 = 1, li = 1. Then

cF2(ν) = A(ν) ∀ ν ≥ 1.

Example 2.4. For ν = 6,
A(6) = cF2(6) = 7.

The partitions enumerated by A(6) are

62, 64, 66, 5311, 5111, 5111, 4211.

And corresponding to cF2(6), the relevant partitions are(
31
21

)
,

(
41
11

)
,

(
51
01

)
,

(
31 01
11 01

)
,

(
21 01
21 01

)
,

(
22 01
22 01

)
,

(
21 01
11 01

)
.
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Proof. We establish a bijection between the 2–color F–partitions enumerated by
cF2(ν) and n–color overpartitions enumerated by A(ν). We do this by defining a

map ϕ from each column

(
(ai)li
(bi)li

)
of the 2–color F–partition enumerated by cF2(ν)

to a single part (λi)xi
or (λi)xi

of n–color overpartition enumerated by A(ν). The
mapping ϕ is

ϕ :

(
(ai)li
(bi)li

)
→

{
(ai + bi + 1)ai−bi+1 if li = 1,

(ai + bi + 1)ai−bi+1 if li = 2.
(2.4)

Now suppose we have

ϕ :

(
(ai)li
(bi)li

)
→

{
(λi)xi if li = 1,

(λi)xi if li = 2,

and

ϕ :

(
(ai+1)li+1

(bi+1)li+1

)
→

{
(λi+1)xi+1 if li = 1,

(λi+1)xi+1 if li = 2.

Then the weighted difference for two parts (λi)xi
and (λi+1)xi+1

is given by

δi = (((λi)xi
− (λi+1)xi+1

)) = λi − λi+1 − xi − xi+1,

= 2(bi − ai+1 − 1). (2.5)

Also,
λi − xi = (ai + bi + 1)− (ai − bi + 1) = 2bi, (2.6)

which imply λi − xi ≡ 0 (mod 2).
Using (2.5), (2.6) and the given conditions (1.1.a)–(1.1.c) we get the desired condi-
tions (2.2.a)–(2.2.c). To see the reverse implications, we consider the inverse images
of two consecutive parts (λi)xi

or (λi)xi
, (λi+1)xi+1

or (λi+1)xi+1
of n–color overpar-

tition enumerated by A(ν) as:

ϕ−1 : (λi)xi
=

(
(λi+xi−2

2 )1
(λi−xi

2 )1

)
or ϕ−1 : (λi)xi

=

(
(λi+xi−2

2 )2
(λi−xi

2 )2

)
, and

ϕ−1 : (λi+1)xi+1
=

(
(λi+1+xi+1−2

2 )1
(λi+1−xi+1

2 )1

)
or ϕ−1 : (λi+1)xi+1

=

(
(λi+1+xi+1−2

2 )2
(λi+1−xi+1

2 )2

)
.

So,

λi − xi =2bi, (2.7)

λi+1 + xi+1 =2ai+1 + 2, (2.8)



10 South East Asian J. of Mathematics and Mathematical Sciences

hence

δi = (ai + bi + 1)− (ai+1 + bi+1 + 1)− (ai − bi + 1)− (ai+1 − bi+1 + 1),

= 2(bi − ai+1 − 1). (2.9)

bi − ai+1 =
λi − λi+1 − xi − xi+1 + 2

2
− λi − xi

2
,

= xi − 1. (2.10)

From (2.9), (2.10) and the conditions (2.2.a)–(2.2.c), we easily get (1.1.a)–(1.1.c).

3. Some More Combinatorial Interpretations

In the spirit of results in Section 1 and 2, and in our endeavor to contribute
further towards the legacy for studying Rogers–Ramanujan Identities, here, we in-
terpret additional Rogers–Ramanujan type identities given in [7, 12]. The following
identities appear in [7] with Identity No. 45, 46, 11, 12, 37, 106, 40, respectively,
given below:

f1(q) =
∑∞

ν=0
(−1;q2)νqν(ν+1)

(q;q)2ν
=

(−q2; q2)∞
(q2; q2)∞

[q6,−q3,−q3; q6]∞,

f2(q) =
∑∞

ν=0
(−q2;q2)νqν(ν+1)

(q;q)2ν+1
=

(−q2, q2)∞
(q2; q2)∞

[q6,−q,−q5; q6]∞,

f3(q) =
∑∞

ν=0
(−1;q4)νqν

2

(q;q2)ν(q4;q4)ν
=

(−q; q2)∞
(q2; q2)∞

[−q4,−q, q3;−q4]∞,

f4(q) =
∑∞

ν=0
(−1;q4)νqν(ν+2)

(q;q2)ν(q4;q4)ν
=

(−q; q2)∞
(q2; q2)∞

[−q4, q,−q3;−q4]∞,

f5(q) =
∑∞

ν=0
(−1;q)νqν

2

(q;q2)ν(q;q)ν
=

(−q; q)∞
(q; q)∞

[q6, q3, q3; q6]∞,

f6(q) =
∑∞

ν=1
(−q;q)ν−1qν

2

(q;q2)ν(q;q)ν
=

[q12,−q5,−q7; q12]∞
(q; q)∞

,

f7(q) =
∑∞

ν=0
(−q;q)νqν(ν+1)

(q;q2)ν+1(q;q)ν
=

(−q; q)∞
(q; q)∞

[q6, q, q5; q6]∞.

Throughout this section, sums in Rogers–Ramanujan type identities represent
generating functions fi(q) for either Ai(ν), which count partitions in terms of split
parts n–color partitions, or Ai(ν), which count n–color overpartitions, where 1 ≤
i ≤ 7. Additionally, cFi(ν), counts the number of 2–colored F–partitions for 1 ≤
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i ≤ 4. The generating function for Bi(ν), which counts ordinary partitions, is
expressed without a sum and instead only uses products from the q–series notation
described above. These lead to 4-way combinatorial interpretations that satisfy:

fi(q) =
∞∑
ν=0

Ai(ν)q
ν =

∞∑
ν=0

Ai(ν)q
ν =

∞∑
ν=0

cFi(ν)q
ν =

∞∑
ν=0

Bi(ν)q
ν , 1 ≤ i ≤ 4, (3.1)

and 3-way combinatorial interpretations for fi(q) where 5 ≤ i ≤ 7.

fi(q) =
∞∑
ν=0

Ai(ν)q
ν =

∞∑
ν=0

Ai(ν)q
ν =

∞∑
ν=0

Bi(ν)q
ν , 5 ≤ i ≤ 7. (3.2)

Now, we will summarize the combinatorial interpretations that involve all the com-
binatorial tools discussed in this paper. To do this, let’s consider the left-hand side
of f1(q),

∞∑
ν=0

(−1; q2)νq
ν(ν+1)

(q; q)2ν
= 1 + 2

∞∑
ν=1

(−q2; q2)ν−1q
ν(ν+1)

(q; q)2ν

= 1 + 2
∞∑
ν=1

Â1(ν)q
ν , (3.3)

where
∑∞

ν=1 Â1(ν)q
ν =

∑∞
ν=1

(−q2;q2)ν−1qν(ν+1)

(q;q)2ν
. Now we give the combinatorial

interpretation of f1(q) in the following theorem.

Theorem 3.1. Let Â1(ν) count the number of n–color overpartitions of ν satisfying

(3.1.a) λi ≡ xi (mod 2) ∀ i,

(3.1.b) λr, xr > 1,

(3.1.c) λr is not overlined,

(3.1.d) δi ≥ −2, and δi ≡ 0 (mod 2) ∀ i < r, for δi = −2, λi is not overlined.

Let Â1(ν) enumerate the number of split part n–color partitions of ν satisfying
(3.1.a) along with

(3.1.e) λr should not be splitted,

(3.1.f) δi ≥ −2 and δi ≡ 0 (mod 2) ∀ i < r, if δi = −2 then the part λi should not
be splitted otherwise (λi)xi

= (λ
′
i + λ

′′
i )xi

where λ
′
i = λi+1 + xi + xi+1 − 2 and

λ
′′
i = λi−λ

′
i ≡ 0 (mod 2) for δi = 0, λ

′
i = λi+1+xi+xi+1 and λ

′′
i = λi−λ

′
i ≡ 0

(mod 2) for δi > 0.
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Let cF̂1(ν) enumerate the number of 2–color F–partitions of ν such that

(3.1.g) for each array

(
(ai)li
(bi)li

)
, ai − bi ≥ 1,

(3.1.h) lr = 1,

(3.1.i) for two consecutive arrays

(
(ai)li (ai+1)li+1

(bi)li (bi+1)li+1

)
, bi − ai+1 ≥ 0 and for bi −

ai+1 = 0, li = 1.

Let B1(ν) is the number of overpartitions of ν in which the parts are ≡ ±2, 3 (mod 6).
Then,

2Â1(ν) = A1(ν) = 2Â1(ν) = A1(ν) = 2cF̂1(ν) = B1(ν) ∀ ν ≥ 1.

Theorem 3.2. Let A2(ν) counts the number of (n + 1)–color overpartitions of ν
satisfying (3.1.c)

(3.2.a) xr = λr + 1,

(3.2.b) λi − xi ≡ 1 (mod 2) ∀ i,

(3.2.c) δi ≥ 0, and δi ≡ 0 (mod 2) ∀ i < r, for δi = 0, λi is not overlined.

Let A2(ν) enumerate the number of split part (n+1)–color partitions of ν satisfying
(3.1.e), (3.2.a), (3.2.b), along with δi ≥ 0 and δi ≡ 0 (mod 2) ∀ i < r, if δi = 0
then the part λi should not be splitted otherwise (λi)xi

= (λ
′
i + λ

′′
i )xi

where λ
′
i =

λi+1 + xi + xi+1 and λ
′′
i = λi − λ

′
i ≡ 0 (mod 2).

Let cF2(ν) enumerate the number of 2–color F–partitions of ν such that

(3.2.d) for each array

(
(ai)li
(bi)li

)
, bi ≤ ai + 1,

(3.2.e) br = 0, bi ≥ 1 for 2 ≤ i ≤ r − 1 and lr = 1,

(3.2.f) for two consecutive arrays

(
(ai)li (ai+1)li+1

(bi)li (bi+1)li+1

)
, bi − ai+1 ≥ 2 and for bi −

ai+1 = 2, li = 1.
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Let B2(ν) is the number of overpartitions of ν in which the overlined parts are ≡
±2 (mod 6) and non-overlined parts are distinct and ̸≡ 3 (mod 6). Then

A2(ν) = A2(ν) = cF2(ν) = B2(ν) ∀ ν ≥ 0.

Theorem 3.3. Let Â3(ν) count the number of n–color overpartitions of ν satisfying
(3.1.c) and

(3.3.a) λr − xr ≡ 0 (mod 4),

(3.3.b) δi ≥ 0 and δi ≡ 0 (mod 4) ∀ i < r, for δi = 0, λi is not overlined.

Let Â3(ν) enumerate the number of split part n–color partitions of ν satisfying
(3.1.e), (3.3.a) along with

(3.3.c) δi ≥ 0 and ≡ 0 (mod 4) ∀ i < r, if δi = 0 then the part λi should not
be splitted otherwise (λi)xi

= (λ
′
i + λ

′′
i )xi

where λ
′
i = λi+1 + xi + xi+1 and

λ
′′
i = λi − λ

′
i ≡ 0 (mod 4).

Let cF̂3(ν) enumerate the number of 2–color F–partitions of ν such that

(3.3.d) for each array

(
(ai)li
(bi)li

)
, ai − bi ≥ 0,

(3.3.e) br = 0 (mod 2), and lr = 1,

(3.3.f) for two consecutive arrays

(
(ai)li (ai+1)li+1

(bi)li (bi+1)li+1

)
, bi − ai+1 ≥ 1, bi ̸≡ ai+1

(mod 2) and for bi − ai+1 = 1, li = 1.

Let B3(ν) is the number of overpartitions of ν in which the parts are ≡ ±1, 4 (mod 8).
Then,

2Â3(ν) = A3(ν) = 2Â3(ν) = A3(ν) = 2cF̂3(ν) = B3(ν) ∀ ν ≥ 1.

Remark 3.1. In the above theorem, we use similar argument as given in (3.3) and

letting
∑∞

ν=1 Â3(ν)q
ν =

∑∞
ν=1

(−q4;q4)ν−1qν
2

(q;q2)ν(q4,q4)ν
.

Theorem 3.4. Let Â4(ν) count the number of n–color overpartitions of ν satisfying
(3.1.c), (3.3.b), along with

(3.4.a) λr > 2, λr − xr ≡ 2 (mod 4).
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Let Â3(ν) enumerate the number of split part n–color partitions of ν satisfying
(3.1.e), (3.3.c) and (3.4.a).

Let cF̂4(ν) enumerate the number of 2–color F–partitions of ν such that

(3.4.b) for each array

(
(ai)li
(bi)li

)
, ai − bi ≥ 0,

(3.4.c) ar + br ≥ 2, br ≡ 1(mod 2) and lr = 1,

(3.4.d) for two consecutive arrays

(
(ai)li (ai+1)li+1

(bi)li (bi+1)li+1

)
, bi − ai+1 ≥ 1, bi − ai+1 ≡ 1

(mod 2) and for bi − ai+1 = 1, li = 1.

Let B4(ν) is the number of overpartitions of ν in which the parts are ≡ ±3, 4 (mod 8).
Then,

2Â4(ν) = A4(ν) = 2Â4(ν) = A4(ν) = 2cF̂4(ν) = B4(ν) ∀ ν ≥ 1.

Remark 3.2. In the above theorem, we use similar argument as given in (3.3) and

letting
∑∞

ν=1 Â4(ν)q
ν =

∑∞
ν=1

(−q4;q4)ν−1qν(ν+2)

(q;q2)ν(q4,q4)ν
.

Theorem 3.5. Let Â5(ν) count the number of n–color overpartitions of ν satisfying
(3.1.c), and

(3.5.a) δi ≥ 0 ∀ i < r, for δi = 0, λi is not overlined.

Let Â5(ν) enumerate the number of split part n–color partitions of ν satisfying
(3.1.e), and

(3.5.b) δi ≥ 0 ∀ i < r, if δi = 0 then the part λi should not be splitted otherwise
(λi)xi

= (λ
′
i + λ

′′
i )xi

where λ
′
i = λi+1 + xi + xi+1 and λ

′′
i = λi − λ

′
i.

Let B5(ν) is the number of overpartitions of ν in which the parts are ≡ ±1,±2 (mod 6).
Then,

2Â5(ν) = A5(ν) = 2Â5(ν) = A5(ν) = B5(ν) ∀ ν ≥ 1.

Remark 3.3. In the above theorem, we used similar argument as given in (3.3)

and letting
∑∞

ν=1 Â5(ν)q
ν =

∑∞
ν=1

(−q;q)ν−1qν
2

(q;q2)ν(q,q)ν
.

Theorem 3.6. Let A6(ν) and A6(ν) count the number of n–color overpartitions

and split part n–color partitions of ν satisfying all the conditions of Â5(ν) and
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A5(ν) defined in Theorem 3.5, respectively. Let B6(ν) be the number of partitions
of ν in which the overlined parts are ≡ ±5 (mod 12) and the non overlined parts
are ̸≡ 0 (mod 12). Then,

A6(ν) = A6(ν) = B6(ν) ∀ ν ≥ 0.

Theorem 3.7. Let A7(ν) counts the number of (n + 1)–color overpartitions of ν
satisfying (3.1.c), (3.2.a), (3.2.b) and (3.5.a). Let A7(ν) enumerate the number of
split part (n+1)–color partitions of ν satisfying (3.1.e), (3.2.a), (3.2.b), and (3.5.b).
Let B7(ν) is the number of overpartitions of ν in which the overlined parts are ≡
±2, 3 (mod 6) and the non overlined parts are distinct. Then

A7(ν) = A7(ν) = B7(ν) ∀ ν ≥ 0.

Remark 3.4. The proofs of Theorem 3.1− 3.7 can be supplied by reader on lines
of Theorem 1.1 and Theorem 2.1.
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