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Abstract: In Nepal, there are many mathematics subjects taught at university
level. Among them, complex analysis is the most powerful. In complex analysis,
the Laurent series expansion is a well-known subject because it may be used to
find the residues of complex functions around their singularities. It turns out that
computing the Laurent series of a function around its singularities is an effective
way to calculate the integral of the function along any closed contour around the
singularities as well as the residue of the function. Learning the Laurent series
concepts can be difficult, and many students struggle to develop adequate un-
derstanding, reasoning, and problem-solving skills. Therefore, this article presents
multiple practical examples where the Laurent series of a function is found and then
utilized to compute the integral of the function over any closed contour around the
singularities of the function, based on the theory of the Laurent series.
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larities.
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1. Introduction
The Laurent series expansion method is a vital tool in complex analysis. A

Laurent series can only be used to work around a complex function’s singularities.
To accomplish this, we must first identify the function’s singularities. Based on
these singularities, we can then build a number of concentric rings, each with the
same center z0, and, in the case where the function is analytical, we can then obtain
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a different Laurent series of z−z0 inside each ring. The Laurent series’ construction
is significant since it yields the function’s residue via the coefficient associated with
the 1

(z−z0)
term. Such a residue based on the Residue Theorem may be used to

effectively calculate the integral of the function along any closed contour [1, 7].
The Laurent series has several other uses in physics and engineering in addition to
producing an effective approach for integration. We seldom look at the coefficient of
the 1

(z−z0)
component that appears in the outer rings of a Laurent series expansion,

despite the fact that the residue of the function has been employed extensively in
calculations of both complex and real integration. This study helps to discuss the
relevance of this coefficient in the outer rings by offering various practical instances
of the Laurent series outside of the center annulus and utilizing them to calculate
the integral of the function along any closed curve outside of the center annulus
[1].

Theorem 1.1. If f(z) is an analytic throughout an anular region of two concentric
circles C1 and C1 with radius R1, and R2 such that R2 < |z − z0| < R1 and
C denotes any positively oriented simple closed contour around z0 and lying in
that domain, then at each z in the domain f(z) has series representation f(z) =
∞∑
n=0

an(z − z0)
n +

∞∑
n=1

bn(z − z0)
−n, where an = 1

2πi

∫
C1

f(s)ds
(s−z)n+1 , n = 0, 1, 2, · · · and

bn = 1
2πi

∫
C2

f(s)ds
(s−z)−n+1 , n = 1, 2, 3, · · · [1, 5].

Proof. Let us suppose that f(z) is an analytic in the closed annular region bounded
by two concentric circles C1 and C1 with centre z0 radius R1, and R2 respectively,
then D is the annular region made by them. Let |z − z0| = R satisfying R2 <
|z − z0| < R1. Since, the function f(z) is analytic throughout the annular region
D. Hence by extension of Cauchy integral formula we have

f(z) =
1

2πi

∫
C1

f(s)ds

(s− z)
− 1

2πi

∫
C2

f(s)ds

(s− z)
(1.1)

Now, the first integral of equation (1.1).

1

s− z
=

1

(s− z0)− (z − z0)
=

1

(s− z0)

 1

1−
(

z−z0
s−z0

)


=
1

s− z0

1 + (
z − z0
s− z0

)
+

(
z − z0
s− z0

)2

+ · · ·+
(
z − z0
s− z0

)n
1{

1−
(

z−z0
s−z0

)}
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1

s− z
=

[
1

(s− z0)
+

(z − z0)

(s− z0)
2 +

(z − z0)
2

(s− z0)
3 +

(z − z0)
3

(s− z0)
4 + · · ·+ (z − z0)

n

(s− z0)
n

1

(s− z)

]
(1.2)

Now, multiply both side of equation (1.2) by f(s)
2πi

and integrating along C1, then
we have

1

2πi

∫
C1

f(s)ds

(s− z)
=

1

2πi

∫
C1

f(s)ds

(s− z0)
+

1

2πi

∫
C1

(z − z0) f(s)ds

(s− z0)2
+ · · ·+Rn

where Rn =
1

2πi

∫
C1

(z − z0)
n f(s)ds

(s− z0)n(s− z)
(1.3)

Now, we have an = 1
2πi

∫
C1

f(s)ds
(s−z0)n+1 for n = 0, 1, 2, 3, · · · , then we have

a0 = 1
2πi

∫
C1

f(s)ds
(s−z0)

a1 = 1
2πi

∫
C1

f(s)ds
(s−z0)2

a2 = 1
2πi

∫
C1

f(s)ds
(s−z0)3

 (1.4)

Now from equations (1.3) and (1.4), we have
1

2πi

∫
C1

f(s)ds
(s−z)

= a0+a1(z−z0)+a2(z−z0)
2+a3(z−z0)

3+ · · ·+an(z−z0)
n+ · · ·+Rn.

Here, C1, we have |z−z0| = R,|f(s)| ≤ M , |s−z0| = R1, |s−z| = |s−z0+z0−z| ≥
|s− z0| − |z − z0| = R1 −R.
Therefore,

Rn =
1

2πi

∫
C1

(z − z0)
n

(s− z0)
n

f(s)ds

(s− z)

|Rn| =
1

2π

∫
C1

|z − z0|n

|s− z0|n
|f(s)||ds|
|s− z|

≤ 1

2π

Rn

Rn
1

M

R1 −R
2πR1

|Rn| ≤
(

R

R1

)n
MR1

R1 −R
→ 0 as n → ∞.

Thus,
1

2πi

∫
C1

f(s)ds

(s− z)
=

∞∑
n=0

an (z − z0)
n (1.5)
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Again, for second integral of equation (1.5), then we have

−1

s− z
=

1

z − s
=

1

(z − z0)− (s− z0)
=

1

(z − z0)

 1

1−
(

s−z0
z−z0

)


=
1

z − z0

1 + (
s− z0
z − z0

)
+

(
s− z0
z − z0

)2

+ · · ·+
(
s− z0
z − z0

)n
1{

1−
(

s−z0
z−z0

)}


=

[
1

(z − z0)
+

(s− z0)

(z − z0)
2 +

(s− z0)
2

(z − z0)
3 +

(s− z0)
3

(z − z0)
4 + · · ·+ (s− z0)

n

(z − z0)
n

1

(z − s)

]
(1.6)

Multiplying both sides of equation (1.6) by f(s)
2πi

and integrating along C1, then we
have

− 1

2πi

∫
C2

f(s)ds

(s− z)
=

1

2πi

∫
C2

f(s)ds

(z − z0)
+

1

2πi

∫
C2

(s− z0) f(s)ds

(z − z0)2
+ · · ·+Qn

where Qn =
1

2πi

∫
C2

(s− z0)
n f(s)ds

(z − z0)n(z − s)
(1.7)

Now, we have bn = 1
2πi

∫
C2

f(s)ds
(s−z0)−n+1 for n = 1, 2, 3, · · · , then we have

b1 = 1
2πi

∫
C2

f(s)ds
(s−z0)0

= 1
2πi

∫
C2

f(s)ds

b2 = 1
2πi

∫
C2

f(s)ds
(s−z0)−1

b3 = 1
2πi

∫
C2

f(s)ds
(s−z0)−2

. = ...

. = ...

. = ...


(1.8)

Now, from equation (1.7), we have

− 1

2πi

∫
C2

f(s)ds

(s− z)
=

1

(z − z0)

1

2πi

∫
C2

f(s)ds+
1

(z − z0)
2

1

2πi

∫
C2

f(s)ds

(s− z)−1
+ · · ·+Qn

(1.9)
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Thus, from equations (1.8) and (1.9), then we have

− 1

2πi

∫
C2

f(s)ds

(s− z)
=

b1
(z − z0)

+
b2

(z − z0)
2 +

b3

(z − z0)
3 + · · ·+Qn (1.10)

For, C2 :- |z − z0| = R, |s − z0| = R2 and |f(s)| ≤ M . Also, |z − s| = |(z − z0) −
(s− z0)| ≥ |z − z0| − |s− z0| = R−R2

Therefore, |Qn| ≤
(
R2

R

)n MR2

R−R2
→ 0 as n → ∞

∴

− 1

2πi

∫
C2

f(s)ds

(s− z)
=

∞∑
n=1

bn
(z − z0)n

(1.11)

Therefore, from the equations (1.1), (1.5) and (1.11), we have

f(z) =
∞∑
n=1

an(z − z0)
n +

∞∑
n=1

bn
(z − z0)

n (1.12)

Hence, f(z) =
∞∑
n=1

an(z − z0)
n +

∞∑
n=1

bn
(z−z0)

n is called the Laurent series of f(z).

The first part
∞∑
n=1

an(z − z0)
n is called the Analytic part and the second part

∞∑
n=1

bn
(z−z0)

n is called the principal part of the function f(z).

Example 1.1. Expand f(z) = z
(z+1)(z+2)

in Laurent’s series with centre at z = −2

[1].
Solution. Since, f(z) = z

(z+1)(z+2)
. Let us z + 2 = u, then z = u− 2

Thus,

f(z) =
u− 2

(u− 1)u

=
(2− u)

u

1

(1− u)

=
(2− u)

u

[
1 + u+ u2 + u3 + · · ·

]
=

2

u

(
1 + u+ u2 + u3 + · · ·

)
−
(
1 + u+ u2 + u3 + · · ·

)
=

2

u
+ 1 + u+ u2 + u3 + · · ·

=
2

(z + 2)
+ 1 + (z + 2) + (z + 2)2 + (z + 2)3 + · · ·
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Hence, f(z) = 1 + (z + 2) + (z + 2)2 + (z + 2)3 + · · · + 2
(z+2)

, which is required

Laurent’s series at z = −2.

Example 1.2. Find the Laurent’s series of f(z) = 7z−2
z(z+1)(z−2)

in the region 1 <

z + 1 < 3 [1, 2].
Solution: Since, f(z) = 7z−2

z(z+1)(z−2)
. Let u = z + 1, then z = u− 1

Therefore,

f(u− 1) =
7 (u− 1)− 2

u (u− 1) (u− 3)
=

(7u− 9)

u (u− 1) (u− 3)

=
−3

u
+

1

(u− 1)
+

2

(u− 3)

=
−3

u
+

1

u
(
1− 1

u

) +
2

−3
(
1− u

3

)
=

−3

u
+

1

u

[(
1− 1

u

)−1
]
− 2

3

[(
1− u

3

)−1
]

= −
[
−2

u
+

1

u2
+

1

u3
+ · · ·

]
− 2

3

[
1 +

u

3
+

u2

32
+ · · ·

]
f(z) =

[
−2

(z + 1)
+

1

(z + 1)2
+

1

(z + 1)3
+ · · ·

]
− 2

3

[
1 +

(z + 1)

3
+

(z + 1)2

32
+ · · ·

]

which is the required expansion in a Laurent’s series and is valid for 1 < z+1 < 3.
Let’s go on to discuss classification of singularity, which is essential to creating a
Laurent series. A point z0 is said to be singular point of an analytic function f(z),
if f(z) is not analytic at point z0, but it is analytic at some every point of the
neighbourhood of z0. For a complex function, singularities are not always simple
to find. Singularities come in a variety of forms and categories, which we will now
define.

Definition 1.1. (Isolated Singularity) An isolated singularity of the function f(z)
is one that has no other singularity within a small circle surrounding the point
z = z0 and is expressed as [2]:

f(z) = · · ·+ bn
(z − z0)

n + · · ·+ b1
(z − z0)

+ · · ·+ a0 + a1 (z − z0) + · · ·

The Laurent series is convergent if and only if we can discover a laurent ex-
pansion centered at a single singularity in an annulus that omits that singularity.
In a region excluding points where f is not differentiable, the Laurent expansion
provides for a series representation in both negative and positive powers of (z−z0).
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Example 1.3. Let f(z) = 1
z
, then z = 0 is an isolated singular point of f(z). f(z)

is clearly an analytic in the domain 0 < |z| < ∞.
Isolated singularities can be categorized in several ways, as follows:

Definition 1.2. (Removable Singularity) If all bn coefficients in the principal part
of f(z) are zero at that point z = z0, In other words, if there are no terms in the
principal parts, z0 is referred to as the removable singular point of f(z) [1].

Example 1.4. Let f(z) = sinz
z
, then f(z) has removable singularity at point z = 0.

Definition 1.3. (Essential Singularity) If the principal part of f(z) at z = z0 con-
tains an infinite number of terms, then the point z0 is called the essential singular
point of f(z) [1, 4].

Example 1.5. Let f(z) = e
1
z = 1 + 1

z
+ 1

2!

(
1
z

)2
+ 1

3!

(
1
z

)3
+ · · · , then f(z) has

essential singularity at point z = 0.

Definition 1.4. (Pole Singularity) If the principal part of f(z) at z = z0 contains
finite number of terms say ′m′ such that bm ̸= 0, and bm+1 = bm+1 = · · · = 0,

then the series (1.12) becomes as f(z) =
∞∑
n=0

an (z − z0)
n + b1

(z−z0)
+ b2

(z−z0)
2 + · · · +

bm
(z−z0)

m [1, 3]. In this case, the singular point z0 is called the pole of order m. If
m = 1, then z0 is the pole of simple order.

Example 1.6. Let

f(z) = sin(z−z0)

(z−z0)
4 = 1

(z−z0)
4

[
(z − z0)− (z−z0)

3

3!
+ (z−z0)

5

5!
− (z−z0)

7

7!
+ · · ·

]
, then the

point z = z0 is a pole of order 3 of f(z).
We will concentrate on the Laurent series’ main application: determining the
residue of a function. While some complex functions have useful formulas for
calculating the residue, it is primarily dependent on the type of singularity you are
dealing with.

Definition 1.5. (Residue of a function f(z)) Let z0 be an isolated singularity of a
function f(z), then there is a positive number R2 such that f(z) is analytic at all
points z for which 0 < |z − z0| < R1. Then f(z) has Laurent series of expansion
[1, 5]

f(z) =
∞∑
n=0

an(z − z0)
n +

∞∑
n=1

bn(z − z0)
−n

=
∞∑
n=0

an(z − z0)
n +

b1
(z − z0)

+
b2

(z − z0)
2 +

b1

(z − z0)
2 + · · ·
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where an =
1

2πi

∫
C

f(z)dz

(z − z0)n+1
, n = 0, 1, 2, · · ·

and bn =
1

2πi

∫
C

f(z)dz

(z − z0)−n+1
, n = 1, 2, 3, · · ·

where C is any positively oriented closed contour arround z0 lying in the domain
0 < |z − z0| < R2. When n = 1, then b1 = 1

2πi

∫
C

f(z)dz ⇒
∫
C

f(z)dz = 2πi × b1,

where b1 is coefficient of 1
(z−z0)

. This complex number b1 called residue of f(z) at

z = z0. It can be expressed as b1 = Res
z=z0

f(z).It can assist us in computing the

integral of f(z) along any closed contour situated inside those annuli.

Theorem 1.2. Let f(z) be analytic inside and on simple closed contour C except
at finite number of singularities z1, z2, · · · , zn inside C at which the residual are

β1, β2, β3, · · · , βn respectively of f(z), then
∫
C

f(z)dz = 2πi×
n∑

k=1

βk [1, 5, 3].

Proof. Let C1, C2, C3, · · · , Cn be the circle with centre at z1, z2, z3, · · · , zn re-
spectively and radii so small such that they lie entirely within positively oriented
simple closed contour C and having no common point, then by extension of Cauchy
Goursat’s theorem we have ∫

C

f(z)dz −
n∑

k=1

∫
Ck

f(z)dz = 0

⇒
∫
C

f(z)dz =
n∑

k=1

∫
Ck

f(z)dz (1.13)

But, by definition of residue, we have∫
Ck

f(z)dz = 2πi×Res
z=z0

f(z) for k = 1, 2, · · · , n. (1.14)

Therefore, from equations (1.13) and (1.14), we have∫
C

f(z)dz =
n∑

k=1

∫
Ck

f(z)dz = 2πi
n∑

k=1

Res
z=zk

f(z).

If we suppose Res
z=zk

f(z) = βk, for k = 1, 2, 3, · · · , n. Thus, we have
∫
C

f(z)dz =

2πi
n∑

k=1

βkfor k = 1, 2, 3, · · · , n.



Expanding the Laurent Series with its Applications 181

Example 1.7. Let us find the Laurent series of f(z) = sinz
z2

at z = 0 and find∫
C

sinz
z2

dz [1, 4].

Solution. Since, f(z) = sinz
z2

= 1
z2

[
z − z3

3!
+ z5

5!
+ z7

7!
+ · · ·

]
= 1

z
− z

3!
+ z3

5!
− z5

7!
+ · · · ,

which is required Laurent series at z = 0.
Now, the residue of f(z) at z = 0 is the coefficient of 1

(z−0)
.

Therefore, b1 = Res
z=0

f(z) = 1. As a result of the Cauchy Residue theorem, we get∫
C

sinz
z2

dz = 2πi×Res
z=0

f(z) = 2πi× 1. Hence,
∫
C

sinz
z2

dz = 2πi.

Example 1.8. Find the Laurent’s series of f(z) = z
(z−1)(2−z)

in the regions (a) |z−
1| > 1 and (b) 0 < |z− 2| < 1. Also, find

∫
c1

z
(z−1)(2−z)

dz,where C1 : |z− 1| > 1 and∫
c2

z
(z−1)(2−z)

,where C2 : 0 < |z − 1| < 1 [3].

Solution. Since, f(z) = z
(z−1)(2−z)

for (a) C1 : |z − 1| > 1. Let us suppose

u = z − 1, then z = u + 1. Therefore, f(u + 1) = u+1
(u+1−1)(2−u−1)

= u+1
u(1−u)

=
−(u+1)

u2(1− 1
u)

= −(u+1)
u2

(
1− 1

u

)−1
.

⇒ f(u+ 1) =
−(u+ 1)

u2

[
1 +

1

u
+

(
1

u

)2

+

(
1

u

)3

+ · · ·

]

=
−1

u

[
1 +

1

u
+

(
1

u

)2

+

(
1

u

)3

+ · · ·

]
− 1

u2

[
1 +

1

u
+

(
1

u

)2

+

(
1

u

)3

+ · · ·

]

=

[
−1

u
− 1

u2
− 2

u3
− · · ·

]
⇒ f(z) =

[
−1

(z − 1)
− 1

(z − 1)2
− 2

(z − 1)3
− 2

(z − 1)4
− · · ·

]
,

which is the required expansion in a Laurent’s series and valid for C1 : |z − 1| > 1.
Now, the residue of f(z) at z = 1 is the coefficient of 1

(z−1)
.

Therefore, b1 = Res
z=1

f(z) = −1.As a result of the Cauchy Residue theorem, we get∫
C1

z
(z−1)(2−z)

dz = 2πi×Res
z=1

f(z) = 2πi×−1. Hence,
∫
C1

z
(z−1)(2−z)

dz = −2πi.

For (b) C2 : 0 < |z− 2| < 1. Let u = z− 2, then z = u+2. Since, f(z) = z
(z−1)(2−z)

.

⇒ f(u+ 2) =
u+ 2

(u+ 1)(−u)
= − (u+ 2)

u(1 + u)
= −(u+ 2)

u
(1 + u)−1
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= −
(
1 +

2

u

)[
1− u+ u2 − u3 + u4 − · · ·

]
= −1

[
1− u+ u2 − u3 + u4 − · · ·

]
− 2

u

[
1− u+ u2 − u3 + u4 − · · ·

]
=

−2

u
+ 1− u+ u2 − u3 + · · ·

⇒ f(z) =
−2

(z − 2)
+ 1− (z − 2) + (z + 2)2 − (z − 2)3 + · · · ,

which is the required expansion in a Laurent’s series and valid for 0 < |z − 2| < 1.
Now, the residue of f(z) at z = 2 is the coefficient of 1

(z−2)
.

Therefore, b1 = Res
z=2

f(z) = −2. As a result of the Cauchy Residue theorem, we get∫
C2

z
(z−1)(2−z)

dz = 2πi×Res
z=2

f(z) = 2πi×−2. Hence,
∫
C2

z
(z−1)(2−z)

dz = −4πi.

Example 1.9. Evaluate
∫
C

1−2z
z(z−1)(2−z)

dz,where C : |z| = 1.5 [1].

Solution. Since, the function is
∫
C

1−2z
z(z−1)(2−z)

dz, then the poles of f(z) are given

by
z(z − 1)(2 − z) = 0 i.e. z = 0, 1, and 2 are simple poles where 0 and 1 lies inside
the circle C : |z| = 1.5. Therefor, the residue of z = 0 of f(z) is

β1 = Res
z=0

f(z) = lim
z→0

z
(1− 2z)

z(z − 1)(z − 2)

= lim
z→0

(1− 2z)

(z − 1)(z − 2)
=

1

2

Thus, β1 = Res
z=0

f(z) =
1

2

Similarly, β2 = Res
z=1

f(z) = 1.

Now, by Cauchy Residue theorem, we have∫
C

f(z)dz =

∫
C

1− 2z

z(z − 1)(2− z)
dz = 2πi

(
1

2
+ 1

)
= 3πi

2. Conclusion
Complex analysis and its applications are fundamentally based on the Laurent

series. It is possible to quickly locate the residue of some functions using well-
known formulae, however this is not always the case. For instance, the Laurent
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expansion is the sole means to ascertain the function residue at a singularity for
a function with an essential singularity for which no such simple formula exists.
Complex integration, which has applications outside of pure mathematics, will be
substantially facilitated by the residues uncovered by the Laurent series [1].
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