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Abstract: In this paper, we define LGc-fuzzy Euclidean topological space with
countable basis, which L denotes a complete distributive lattice and we show that
each LGc-fuzzy open covering of this space can be refined to an LGc-fuzzy open
covering that is locally finite. We introduce C∞ LG-fuzzy manifold (X, Tc), with
countable basis of LG-fuzzy open sets which X is an L-fuzzy subset of a crisp set
M and T : LM

X → L, is an L-gradation of openness on X. We prove that for any
LG-fuzzy topological manifold (X,T), there exists an LG-fuzzy exhaustion. We
prove LG-Urysohn lemma and also existence of LG-partitions of unity on every
LG-fuzzy topological manifold.
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1. Introduction and Definitions
In 1968 Chang [2] has introduced the concept of the fuzzy topological space and

later many authors like Katsaras [15], Shostak [31], Chattopadhyay et. al. [3] and
Gregori et. al. [10] have presented various kinds of definitions of fuzzy topological
spaces. The approach in our manuscript [25] was different from what they have
constructed here, since we have answered two questions: What will these structures
look like if we assume that the fuzzy topological space X is itself an L-fuzzy subset
of a crisp set in Goguen’s sense [9], where L denotes a complete distributive lattice
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set with atleast 2 elements and also if we consider L-gradation of openness of L-
fuzzy subsets ofX instead of the collection of fuzzy subsets ofX as a fuzzy topology
on it? This approach has resulted into our definition of C∞ LG-fuzzy manifolds
in [9], which is different from C1 fuzzy manifolds have been introduced by Ferraro
and Foster [5] and others.

One of the main problems, in the theory of fuzzy topological spaces was to
obtain an appropriate notion of a fuzzy metric space. Many authors have rapidly
developed the fuzzy metric space theory. For example various kinds of fuzzy metric
spaces and their properties are discussed in [6], [7-8], [11-14], [16-17], [28], [29], [33].
These different fuzzy metrics have applications in Artificial Intelligence, Computer
Science, Economics and Geology. For example the process of digital signals and
images, and particularly colour image processing, are two of the most modern
applications of fuzzy metrics. (See [1], [12], [26], [30]).

In 1944 Dieudonne [4] has studied some of the properties of paracompact spaces
and later Stone [32] and Michael, [24] have investigated paracompact spaces. About
three decades later Lowen [19], [20] has discussed compact Housdorff fuzzy topolog-
ical spaces and Kudri and Warner [18] have established L-fuzzy local compactness.
Paracompactness is extraordinarily useful weaker than compactness and it is widely
used in many fields of mathematics.
Luo [23] has initiated the concept of paracompactness in fuzzy topological spaces
in 1988 and later Lupianez [21-22] has discussed three paracompactness-type prop-
erties of fuzzy topological spaces. Recently Wali [34] investigated the compactness
of Hausdorff fuzzy metric spaces.
The most important tool to pass “from local to global” in many branches of Geom-
etry and Analysis, is the theory of “partitions of unity”. For more familiarity see
[27]. The goal of this paper is to develop the partitions of unity to C∞ LG-fuzzy
manifolds. Firstly it would be extremely interesting to show that each LG-locally
compact Hausdorff space (X,T) that is second countable, then it admits a count-
able base of LG-fuzzy open subsets {Vn} with LG-compact closures. Next we show
that the following properties of X are equivalent: its connected LG-components
are countable unions of LG-compact sets, its connected LG-components are second
countable, and it is LG-paracompact. Moreover we prove the Urysohn lemma for
LG-normal LG-fuzzy topological spaces and then we use this to introduce LG-
partitions of unity. Also we give several interesting examples.

2. Preliminary Theorems

We recall some of the fundamental concepts and definition, which are necessary
for this paper. For more information about C∞ LG-fuzzy manifolds, LGP -related
functions of them and LG-fuzzy submanifolds, we refer the readers to [28], although
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we are sure now that the condition of countability on the LG-structure of an LG-
fuzzy manifold in the Definition 3.3 is necessary.

Definition 2.1. Let X be an L-fuzzy subset of the nonempty crisp set M . Then
any L-fuzzy subset of M which is less than or equal to X is called an L-fuzzy subset
of X and the set of such subsets is denoted by LM

X . If T : LM
X → L, be a mapping

satisfying:

i) T(X) = T(0̃) = 1.

ii) T(A ∩B) ≥ T(A) ∧ T(B).

iii) T(
⋃

j∈J Aj) ≥
∧

j∈J T(Aj)

Then T is called a L-gradation of openness on X and (X, T) is called an LG-fuzzy
topological space (L-gfts).

Definition 2.2. Let B(a, r, b) be an L-fuzzy subset of 1Rn, that is equal to zero
outside or on the sphere Br(a) for a ∈ Rn, r ∈ R+ and equal to the function b with
values in L, inside Br(a). Let TLn be any L-gradation of openness on 1Rn, such
that suppT = τ

Ln
, where τ

Ln
is the L-fuzzy topology induced by

βLn = {B(a, r, b), a ∈ Rn, r ∈ R+, b : Br(a) → L is a function}.

Then we call (1Rn , TLn) the LG-fuzzy Euclidean topological space.

Example 2.3. As two useful examples of L-gradations of openness on 1Rn , we
define

TLn : IMX → L TLn(B) =

{
1 B ∈ τ

Ln
,

0 elsewhere.

and

TLinf : LM
X → L, TLinf (B) =


1 B = 0̃
inf{B(x) : x ∈M} 0̃ ̸= B ∈ τ

Ln

0 elsewhere,

Definition 2.4. Let (X,T) be an LG-fuzzy topological space, p ∈ X and A be an
L-fuzzy subset of X, Set suppT = {A ∈ LM

X : T(A) > 0}. then A is called an
LG-fuzzy open subset of X if A ∈ suppT.
An L-fuzzy subset V of X is called an LG-neighborhood of p ∈ X, if there exists
an LG-fuzzy open subset U of X such that p ∈ U ≤ N .

Definition 2.5. Let X ∈ LM1 , Y ∈ LM2 such that (X,T), (Y,R) are LG-fuzzy
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topological spaces. Let f : M1 → M2 be a function and f [X] be an L-fuzzy subset
of M2, defined by f [X](y) =

∨
{X(x) | x ∈ f−1(y)}. If we have f [X] ≤ Y , then f

is called an LG-related function from X to Y and the set of all these functions is
denoted by LGRf(X, Y ).

i) f is called an one-to-one LG-related function if f |suppX : suppX → suppY
is one-to-one function.

ii) f is called an onto LG-related function if f [X] = Y .

Further more if we have R(H) ≤ T(f−1[H]), for all LG-fuzzy subset H of Y , then
f is an L-gradation preserving LG-related function so it is called an LGP -related
function from X to Y or briefly f ∈ LGPRf(X, Y ).

Remark 2.6. Let A ∈ suppT and B ∈ suppR. Let f : M1 → M2 be a function
such that f [A] ≤ B, then f can be considered as an L-related function of two
Lgfts’s, (A,TA) and (B,RB). So we write f ∈ LGRf(A, B).

Definition 2.7. Let (X, T), (Y, R) be two Lgfts’s and f ∈ LGRf(X, Y ) then

i) f is called LG-open if f [A] ∈ suppR, ∀A ∈ suppT.

ii) f is called LG-continuous if f−1[G] ∩X ∈ suppT, ∀G ∈ suppR.

iii) f is called LG-homeomorphism if is one -to -one, onto, LG-continuous and
LG-open.

Definition 2.8. An LG-fuzzy topological space (X,T) is called an LG-fuzzy topo-
logical space of dimention n, if for any x ∈ X, there exists an LG-fuzzy open
subset A of X such that x ∈ A and B ∈ TLn along with an LGP -homeomorphism
ψ ∈ LGPRf(A,B).
An LG-fuzzy manifold of dimension n is a second countable Hausdorff LG-fuzzy
topological space of dimention n. An C∞ LG-fuzzy manifold is an LG-fuzzy topo-
logical manifold with an C∞ LG-structure on it.

3. C∞ LG-fuzzy manifolds with countable basis of LG-fuzzy open sets
From now on we assume that there exists a countable subset J dence in the

Lattice set L, hence L = J̄ .

Definition 3.1. We denote by βc
Ln the set of all constant L-fuzzy subsets B(a, r, b)

as in Definition 2.2. Since for each real number, there exists an increasing sequences
of rational numbers limited to it, hence the L-fuzzy topology τ c

Ln
, induced by βc

Ln

has a countable basis.

{ B(a, r, b), a ∈ Qn, r ∈ Q+, b : Br(a) → J is a constant function }
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We call (1Rn , Tc
Ln), the LG

c-fuzzy Euclidean topological space.

Proposition 3.2. Each LGc-fuzzy open covering {Ai} of the LGc-fuzzy Euclidean
topological space can be refined to an LGc-fuzzy open covering that is locally finite.
Proof. For each x ∈ Rn, we can consider an LGc-fuzzy open subset B(x, rx, bx)
contained in some Ai(x) with rx ≤ 1 in this manner: Since Ai(x) ∈ τ c

In
, then

Ai(x) =
⋃

j∈J B(aj, rj, bj). Hence there exists at least one j1 ∈ J such that x ∈
B(aj1 , rj1 , bj1). Setting rx = min{1, (rj1 − ∥x − aj1∥)} and bx = bj1 , we have
rx ≤ 1 and B(x, rx, bx) ≤ B(aj1 , rj1 , bj1). If we haxe x ∈

⋂s
k=1B(ajk , rjk , bjk), then

Ai(x)(x) = sup{ bjk | 1 ≤ k ≤ s}. Thus B(x, rx, bx) ≤ Ai(x).
For each integer N > 0 finitely many of LGc-fuzzy open subsets B(x, rx, b0) cover
the LG-fuzzy compact set B(0, N, b0)−B(0, N − 1, b0), say B(x1, rx1 , b0), . . . ,
B(xm, rxm , b0). Hence we may write {Vj,N} to denote these finitely many LGc-
fuzzy open subsets. As we rechange j and N , the Vj,N ’s assuredly cover the whole
(1Rn , Tc

In) (even the origin), and this covering refines {Ai} in the sense that every
Vj,N lies in some Ai and the collection Vj,N is locally finite in the sense that any point
x ∈ Rn has an LGc-neighborhood meeting only finitely many Vj,N ’s. Indeed, since
Vj,N is an LGc-fuzzy open subset of radius at most 1 and it intersects B(0, N, b0)−
B(0, N−1, b0), by elementary investigation with the triangle inequality we see that
a bounded region of Rn encounter only finitely many Vj,N ’s. Thus, we have refined
{Ai} to an LGc-fuzzy open covering that is locally finite.

Example 3.3. Let I = [0, 1]. Then J = Q ∩ [0, 1] is dence in I. Consider the
IGc-fuzzy Euclidean topological space (1R, Tc

I1) and define for each n ∈ Z, the
IGc-fuzzy subset An by

An(x) =


1

n
if x ∈

(
n− 1

n
, n+ 1 +

1

n

)
0 elsewhere

Since for each x ∈ R, we have n ≤ x < n + 1 for some n ∈ Z. Then x ∈
(n− 1

n
, n+1+

1

n
). Hence x ∈ An. Also setting Bn,k = B

(
n+

k

n
,
1

n
,
1

n

)
, we have

Bn,k ∈ τ c
I1

and we see An =
⋃n

k=0Bn,k. Therefore {An} is a locally finite IGc-fuzzy
open covering of 1R.

Definition 3.4. Let (X,T) be an LG-fuzzy topological space and A be a given set
of real valued LG-continuous related functions of X. Then

i) A is called LG-normal if for any two LG-fuzzy closed disjoint subsets A,B ⊆
X, there exists f : X → [0, 1] which belongs to A and such that f |A =
0, f |B = 1.
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ii) A is called LG-locally compact if each p ∈ A admits a compact LG-neighborhood
V such that V ≤ A. It means that for each p ∈ A, there exists an open set
U and an LG-compact set K with p ∈ U ≤ K.

Proposition 3.5. The existence of an LG-normal set A of real valued LG-
continuous related functions of X, implies that X must be LG-normal.
Proof. We show that any two LG-fuzzy closed disjoint subsets A,B ⊆ X can
be separated topologically. Since there exists LG-continuous related function f :
X → [0, 1] which belongs to A and such that f |A = 0, f |B = 1. Hence for
H1 = B(0, 1

3
, 1), H2 = B(1, 1

3
, 1) we have H1 ∩H2 = ϕ and 0 ∈ H1, 1 ∈ H2. Thus

f−1[H1] is an LG-fuzzy open subset of X containing B and f−1[H2] is an LG-fuzzy
open subset of X containing A and f−1[H1] ∩ f−1[H2] = ϕ.

Lemma 3.6. In an LG-normal space X, for any LG-fuzzy closed subset A and
LG-fuzzy open subset U , that A ⊆ U ⊆ X, there exists an LG-fuzzy open subset V
in X such that A ⊆ V ⊆ LGV ⊆ U .
Proof. Since A ⊆ U , A and X − U are disjoint. They are both LG-fuzzy closed,
hence we know that we can find disjoint LG-fuzzy open subsetsW and V such that
A ⊆ V, X−U ⊆ W . The condition V ∩W = ϕ is equivalent to V ⊆ X−W . Since
X−W is an LG-fuzzy closed subset containing V , this implies V ⊆ X−W . On the
other hand, X−U ⊆ W can be re-written as X−W ⊆ U . Hence V ⊆ X−W ⊆ U .

Lemma 3.7. If (X,T) is an LG-locally compact Hausdorff space that is second
countable, then it admits a countable base of LG-fuzzy open subsets {Vn} with LG-
compact closure.
Proof. Since X is an LG-locally compact, each p ∈ X admits an LG-compact
LG-neighborhood Np. Hence by Proposition 3.5, Np is LG-fuzzy closed and so Np

contains the closure of N◦
p around p. Hence, in such cases every point p ∈ X lies in

an LG-fuzzy open subset Up whose closure is LG-compact. Let {Vn} be a countable
base of LG-fuzzy open subsets of X. Then some Vn(p) contains p and is contained
in Up. The LG-closure of Vn(p) is an LG-closed subset of the LG-compact set Up,
and so Vn(p) is also LG-compact. Thus, the {Vn}’s with LG-compact closure are a
countable base of LG-fuzzy open subsets.

Theorem 3.8. Any second countable Hausdorff LG-fuzzy space (X,T) that is LG-
locally compact is LG-paracompact.
Proof. Let {Vn} be a countable base of LG-fuzzy open subsets in X. Let {Ui} be
an LG-fuzzy open cover of X for which we search a locally finite refinement. Each
p ∈ X lies in some Ui and so there exists a Vn(p) containing p with Vn(p) ⊆ Ui. The
Vn(p)’s therefore organize a refinement of Ui that is countable. Since the exclusivity
of one LG-fuzzy open covering refining another is transitive, we therefore lose no
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generality by finding locally finite refinements of countable LG-fuzzy covers. As-
sume that all V n are LG-compact. Hence, we can curb our attention to countable
covers by LG-fuzzy opens Un for which Un is LG-compact. Since closure commutes
with finite unions, by replacing Un with

⋃
j<n Uj, we retain the LG-compactness

condition (as a finite union of LG-compact subsets is LG-compact) and so we can
suppose that Un is an increasing collection of LG-opens with LG-compact closure
(with n ≥ 0). Since Un is LG-compact yet is covered by the open Ui’s, for suffi-
ciently large N we have Un ⊆ UN . If we recursively replace Un+1 with such a UN

for each n, then we can arrange that Un ⊆ Un+1 for each n. Let K0 = U0 and for
n ≥ 1 let Kn = Un − Un−1 = Un ∩ (X − Un−1), so Kn is LG-compact for every n
(as it is LG-fuzzy closed subset in the LG-compact Un but for any fixed N we see
that UN is disjoint from Kn for all n > N . Now we have a situation similar to the
concentric shells in our earlier proof of paracompactness of Rn, and so we can carry
over the argument from LGc-fuzzy Euclidean spaces as follows. We search a locally
finite refinement of {Un}. For n ≥ 2 the LG-fuzzy open set Wn = Un+1 − LGUn

contains Kn, so for each p ∈ Kn there exists some Vm ⊆ Wn around p. There are
finitely many such Vm’s that cover the LG-compact Kn, and the collection of Vm’s
that arise in this way as we vary n ≥ 2 is a locally finite collection of LG-fuzzy
open subsets in X whose union contains X − U0. Throwing in finitely many Vm’s
contained in U1 that cover the LG-compact U0 thereby gives an open cover of X
that refines {Ui} and is locally finite.

Corollary 3.9. Let (X,T) be an LG-fuzzy topological space of dimention n. The
following properties of X are equivalent: its connected LG-components are count-
able unions of LG-compact sets, its connected LG-components are second countable,
and it is LG-paracompact.
Proof. If {U, V } is a separation ofX and X is LG-paracompact then it is clear that
both U and V are LG-paracompact. Hence, since the connected LG-components
of X are LG-fuzzy open, X is LG-paracompact if and only if its connected LG-
components are LG-paracompact. We may therefore restrict our attention to con-
nected X. For such X, we claim that it is equivalent to require that X be a
countable union of LG- compact sets, that X be second countable, and that X
be LG-paracompact. By the preceding theorem, if X is second countable then it
is LG-paracompact. Since X is connected, Hausdorff, and locally LG- compact,
if it is LG-paracompact then it is a countable union of LG-compacts. Hence, to
complete the cycle of implications it remains to check that if X is a countable union
of LG-compacts then it is second countable. Let {Kn} be a countable collection
of LG-compacts that cover X, so if {Ui} is a covering of X by LG-fuzzy open sets
LGPRf -homeomorphic to an LG-fuzzy open set in an LGc-fuzzy Euclidean space
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we may find finitely many Ui’s that cover each Kn. As there are only countably
many Kn’s, in this way we find countably many Ui’s that cover X. Since each Ui is
certainly second countable (being open in a Euclidean space), a countable base of
LG-fuzzy opens for X is given by the union of countable bases of LG-fuzzy open
subsets for each of the Ui’s. Hence, X is second countable.

Lemma 3.10. For any LG-fuzzy topological n-manifold (X,T), there exists an
LG-fuzzy exhaustion of X, that is a countable collection of LG-fuzzy open subsets
{Zj} such that

(1) For each j, the LG-closure LGZj is LG-compact,

(2) For each j, LGZj ⊆ Zj+1,

(3) X =
⋃

j Zj.

Proof. According to the definition 2.8, X is second countable, hence there is a
countable basis of the LG-topology of X. We choose those LG-fuzzy open subsets
of this countable basis that have LG-compact LG-closures, and denote them by
Y1, Y2, . . . Since X is locally LGc-fuzzy Euclidean, it is easy to see that Y = {Yj}
is an LG-fuzzy open cover of X. Set Z1 = Y1. Since LGZ1 is compact, there exist
finitely many LG-fuzzy open sets Yi1 , . . . , Yik so that LGZ1 ⊆ Yi1 ∪ · · · ∪ Yik . Let
Z2 = Y2 ∪ Yi1 ∪ · · · ∪ Yik Clearly Z2 is LG-compact. By repeating this procedure,
we obtain a sequence of LG-fuzzy open sets {Zj} which obviously satisfies (1) and

(2). It satisfies (3) since
⋃k

j=1 Yj ⊆ Zk and Y is is an LG-fuzzy open cover of X.

Lemma 3.11. Let (X,T) be any LG-fuzzy topological manifold. For any LG-fuzzy
open cover U = {Uα} of X, one can find two countable family of LG-fuzzy open
covers V = {Vj} and W = {Wj} of X so that

(1) For each j, the LG-closure LGV j is LG-compact and V j ⊆ Wj,

(2) W is a refinement of U ,

(3) W is a locally finite cover of X.

Proof. For each p ∈ X, there is an j and an α(p) such that p ∈ LGZj+1 −
Zj and p ∈ Uα(p). Since X is locally LGc-fuzzy Euclidean, we can choose open
neighborhoods Vp, Wp of p so that LGV p is LG-compact and

LGV p ⊆ Wp ⊆ Uα(p) ∩
(
Xj+2 − LGZj−1

)
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Now for each j, since the ”stripe” p ∈ LGZj+1 − Xj is compact, one can choose
finitely many points pj1, . . . , p

j
kj

so that Vpj1
, . . . , Vpjkj

an open cover of LGZj+1−Zj.

Denote all these Vpjk
’s by V1, V2, . . . and the corresponding Wpjk

’s by W1,W2, . . . .

Then V = {Vj} and W = {Wj} are open covers of X that satisfies all above
conditions.

Example 3.12. Let M = R2, X : R2 → I, X(x) =
{ 1 ∥x∥ = 1,

0 ∥x∥ ≠ 1.
Then suppX = S1, the unit circle. Set

T : IMX → I, T(A) =

{
inf{A(x) | x ∈ X} A ∈ τ

I1
, A ≤ X,

0 elsewhere.

Let J = {1, 2}. We define four IG-open subsets covering X by:

∀x = (x1, x2), A±
j (x) =

{ ±xj ± xj > 0, ∥x∥ = 1,
0 otherwise.

Then we show that all A±
j are diffeomorphic to IG-open subset B : R → I,

defined by:

B(y) =
{ √

1− y2 ∥y∥ < 1,
0 otherwise.

Since suppB = B(0, 1), so B ∈ τ
I2
. We define four bijections ψ±

j from suppA±
j =

{(x1, x2) | ± xj > 0, ∥x∥ = 1} to suppB = (0, 1), for all j ∈ J by:

ψ±
1 (x1, x2) = (x2) , (ψ±

1 )
−1(y) = (±

√
1− y2 , y)

ψ±
2 (x1, x2) = (x1) , (ψ±

2 )
−1(y) = (y,±

√
1− y2)

Then we can prove in a similar manner to the Example 3.5 of [27], that ψ±
j ∈

IGPRf(A±
j , B) is an IGP -homeomorphism for all j ∈ J and therefore (X,T) is an

IG-fuzzy manifold of dimension 1. Now we define an uncountable LG-fuzzy open
covering U = {Uy | y ∈ (0, 1)} of (0, 1) defined by

Uy = B

(
y,

1

2⌈1
y
⌉(⌈1

y
⌉ − 1)

, ⌈1
y
⌉
)

Where ⌈x⌉ is the smallest integer grater than or equal to x. So U±
j = {(ψ±

j )
−1(Uy) | y ∈

(0, 1)} is an uncountable LG-fuzzy open covering of A±
j . Hence The union of these
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four family is an LG-fuzzy open covering of X. We define two countable family of
LG-fuzzy open covers W = {Vn} and W = {Wn} of (0, 1) by

Wn = B

(
n+ 1

2

n(n+ 1)
, (

1

n(n+ 1)
+

1

2n−1
),

1

n+ 2

)

=⇒ suppWn =

(
(

1

n+ 1
− 1

2n
), (

1

n
+

1

2n
)

)
Vn = B

(
n+ 1

2

n(n+ 1)
,

1

2n(n+ 1)
,

1

n+ 2

)
=⇒ suppVn =

( 1

n+ 1
,
1

n

)
We see that suppVn ⊆ suppWn and furtheremore LGVn ⊂ Wn for all n ∈ N and
for all y ∈ Vn

1

n+ 1
< y <

1

n
=⇒ n <

1

r
< n+ 1 =⇒ 1

⌈1
y
⌉
=

1

n+ 1

Hence W is a refinement of U .
4. LG-fuzzy partition of unity

Theorem 4.1. If X is an LG-normal LG-fuzzy topological space then for any two
LG-fuzzy closed disjoint subsets A,B ⊆ X, there exists an LG-continuous function
f : X → [0, 1] such that f |A = 0, f |B = 1, so C(X) is LG-normal.
Proof. Our proof contains three steps:
Step 1:
We show that there is a family of LG-fuzzy open subsets {Uq : q ∈ Q} such that

(i) Uq = ϕ for q < 0, U0 contains A, U1 = X −B, Uq = X for q > 1.

(ii) Uq ⊆ Uq′ for all q < q′.

The condition (i) force the definition of Uq for q < 0 and for q ≥ 1. We set
U1 = X − B. Since A ∩ B = ϕ so A ⊆ X − B = U1, hence we can apply Lemma
3.6 and choose U0 to be any LG-fuzzy open set such that A ⊆ U0 ⊆ LGU0 ⊆ U1.
We will repeatedly use Lemma 3.6 to construct Uq for q ∈ Q ∩ (0, 1). Writing
Q ∩ [0, 1] = {q0, q1, q2, . . .}, with q0 = 0, q1 = 1, we will define Uqn by induction
on n such that (ii) holds for all q = qi, q

′ = qj with 0 ≤ i, j ≤ n. Assume that Uq is
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constructed for q ∈ {q0, q1, . . . , qn} and we construct it for q = qn+1. Looking at
all intervals of type (qi, qj) with 0 ≤ i, j ≤ n, there is a smallest one containing qn+1.
Call it (qa, qb). Since qa < qb, by the induction hypothesis we have LGUa ⊆ Ub

hence, by Lemma 3.6, we find an open U such that

LGUa ⊆ U ⊆ LGU ⊆ Ub

Define Uqn+1 = U . We have to check that (ii) holds for q, q′ ∈ {q0, . . . , qn+1}. Fix
q, q′ If q ̸= qn+1 and q′ ̸= qn+1, LGU q ⊆ Uq′ holds by the induction hypothesis.
Hence we may assume that q = qn+1 or q′ = qn+1. In the case q = qn+1, our
behavior is similar. Write q′ = qj with j ∈ {0, 1, . . . , n}. The assumption is that
qn+1 < qj and we want to show that

LGU qn+1 ⊆ Uqj

But, since qn+1 < qj and (qa, qb) is the smallest interval of this type containing
qn+1, we must have qj ≥ qb. Then

LGU qn+1 = LGU ⊆ Uqb ⊆ Uqj .

step 2:
We define the function f : X → [0, 1], f(x) = inf{q ∈ Q : x ∈ Uq} satisfies:

(1) f(x) > q ⇒ x /∈ LGU q.

(2) f(x) < q ⇒ x ∈ Uq. (in particular, f(x) = q for x ∈ LG∂Uq).

For (1), we prove its negation, i.e. that x ∈ LGU q implies f(x) ≤ q. Hence assume
that x ∈ LGU q. From (i) we deduce that x ∈ Uq′ for all q

′ > q. Hence f(x) ≤ q′

for all q′ > q. This implies f(x) ≤ q. For (2), we assume that f(x) < q. By the
definition of f(x) (as an infimum), there exists q′ < q such that x ∈ Uq′ . But
q′ < q implies Uq′ ⊆ Uq, hence x ∈ Uq.
Step 3:
We show that f |A = 0, f |B = 1, and f is LG-continuous.
The first two conditions are immediate from the definition of f and properties (i)
of the first step. We now prove that f is LG-continuous. We have to prove that
for any LG-fuzzy open subset χ(a,b) of 1R and any x ∈ f−1(χ(a,b)), there exists an
LG-fuzzy open U containing x such that f(U) ⊆ (a, b). Fix (a, b) and x such that
f(x) ∈ (a, b) and look for U satisfying this condition. Choosing p, q ∈ Q such that
a < p < f(x) < q < b, then U := Uq − LGUp will do the job. Indeed: 1. using
step 2, f(x) > p implies x /∈ LGUp, while f(x) < q implies x ∈ Uq. Hence x ∈ U .
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2. for y ∈ U arbitrary, we have f(y) ∈ (a, b) because: y ∈ Uq ⊆ LGU q which, by
the previous step, implies f(y) ≤ q < b. y /∈ LGUp, hence y /∈ Up which, by the
previous step, implies f(y) ≥ p > a.

Now we define the support of each LG-related function σ : X → R by

supp σ = LG{p|σ(p) ̸= 0}

The condition LG-closure in this definition allows us to perform globalization.
Thus we prove the fundamental theorem of existence of partitions of unity of any
LG-fuzzy open cover of any LG-fuzzy topological manifold:

Theorem 4.2. Let (X,T) be any LG-fuzzy topological manifold and {Uα} be an
LG-fuzzy open cover of X, Then there exists an LG-partitions of unity {σα} sub-
ordinate to {Uα}. It means we need to find a family {σα} of smooth LG-related
functions σα : X → [0, 1] so that

(1) supp σα ⊆ Uα for all α,

(2) For each p ∈ X , there is only a finite number of α such that σα(x) ̸= 0 (point
finiteness condition)

(2)
∑

α σα(x) = 1

Proof. By Lemma 3.11, we can find two countable family of LG-fuzzy open covers
V and W of X, such that for each j, the LG-closure LGV j is LG-compact and
LGV j ⊆ Wj. Now use Urysohn’s Lemma to find for each j an LG-continuous
function such that 0 ≤ φj ≤ 1, φj ≡ 1 on LGV j and φ(x) = 0 for x /∈ Wj. Since
W is a locally finite cover, the function φ =

∑
j φj is a well-defined smooth function

on X. Since each φj is non-negative, and V is cover of X, φ is strictly positive on

X. It follows that the functions ρj =
φj

φ
are smooth and satisfy 0 ≤ ρj ≤ 1 and∑

j ρj = 1 Now we re-index the family ρj to get the demanded partial of unity.
For each j, we fix an index α(j) such that Wj ⊆ Uα(j), and define

σα =
∑

α(j)=α

ρj

Since the right hand side is a finite sum near any point p ∈ X, so it defines a
smooth function.

supp σα = LG
⋃

α(j)=α

supp ρj =
⋃

α(j)=α

LG(ρ−1
j (0, 1]) =

⋃
α(j)=α

supp ρj ⊆ Uα
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Obviously the family σα is a partial of unity subordinate to {Uα}.
Definition 4.3. Let ρ be a metric on the nonempty set M and X be an L-fuzzy
subset of M . Let S(p, r) be the sphere with center p and radius r. Then the L-
fuzzy topology τ

Lρ
induced by βLρ = {S(p, r, s), p ∈ X, r ∈ R+, s : S(p, r) →

L is a constant function less than or equal to X} is called L-fuzzy topology
induced by the metric ρ.
Also we call any L-gradation of openness on X, with support equal to τ

Lρ
, the L-

gradation of openness induced by the metric ρ and denote by TLρ. Also (X,TLρ) is
called an LG-fuzzy topological metric space.

Example 4.4. LetM = R and ρ(x, y) = |x−y| be the ordinary metring on it. Let

X be an I-fuzzy subset of M defined by X(x) =
1

|⌊x⌋|+ 2
where |⌊x⌋| denotes the

absolute value of the greatest integer less than or equal to x. For each x ∈ S(k, 1),
we have two cases:

if x ∈ (k−1, k) =⇒ X(x) =
1

k + 1
= S

(
k−1, 1,

1

k + 1

)
(x)

∨
S
(
k, 1,

1

k + 2

)
(x)

if x ∈ [k, k+1) =⇒ X(x) =
1

k + 2
= S(k, 1,

1

k + 2
)(x)

∨
S
(
k+1, 1,

1

k + 3

)
(x)

Hence X =
⋃

k∈Z S
(
k, 1,

1

k + 2

)
. Therefore (X, τLρ) has an countable LG-fuzzy

open covering.

Theorem 4.5. Let (X,TLρ) be an LG-fuzzy topological metric space. Then X is
an LG-paracompact.

Corollary 4.6. Let (X,T) be an LG-fuzzy manifold. Let the collection {(Aα, ϕα)}α∈I
be an LG-fuzzy open covering of X such that for each α ∈ I the pair {(Aα, ϕα)} is
an LG-chart on X. Then there exists

(i) an locally finite LG-fuzzy open refinement {Vβ}β∈J such that for all β ∈ J ,
Vβ is an LG-fuzzy open neighbourhood for a chart {(Vβ, ϕβ)}β∈J , and

(ii) a partition of unity {fβ}β∈J such that supp(fβ) ⊂ Vβ.

5. Conclusion
In this article, using the notions we have introduced in [28], we construct C∞

LG-fuzzy manifolds with countable basis of LG-fuzzy open sets which X is itself
an L-fuzzy subset of a crisp set and T : LM

X → L, is an L-gradation of openness
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on X. Also we show the existence of an LG-fuzzy exhaustion. Finally we prove
LG-Urysohn lemma and LG-partitions of unity.

Since the existence of suitable LG-partitions of unity, plays a very important
role in LG-fuzzification of Riemannian Geometry and Finsler Geometry, for a de-
velopment of knowledge frontiers, an interesting question is that under what con-
ditions we can construct LG-fuzzy Minkowski or Finsler manifolds?
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