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Abstract: In this paper, we define θ-expansions on Branciari metric spaces by
complementing the concept of θ-contractions introduced by Jleli and Samet (J.
Inequal. Appl. 2014:38, 2014). Also, we present some new fixed point results for
θ-expansion mappings on a Branciari metric space.
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1. Introduction and Definitions
Researchers in mathematics and other areas of science and technology, both

past and present, have drawn inspiration from the Banach Contraction Principle
[2]. Even in the twenty-first century, researchers in the fields of computer science,
physics, applied mathematics, etc. are working to apply the Banach Contraction
Principle to improve the quality of life for people. The Banach contraction prin-
ciple, which states that every contraction mapping defined on a complete metric
space X to itself permits a unique fixed point, is one of the key findings of nonlin-
ear analysis. This rule is a very useful and well-liked instrument for ensuring the
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existence and originality of answers to specific issues that arise in and outside of
mathematics. The Banach contraction principle has been extended and generalized
in many directions (see [11], [16], [18], [19], [20], [22], [29] and references therein).

It is a natural activity in the field of mathematics, and particularly nonlin-
ear functional analysis, to generalise existing concepts in order to go beyond the
boundaries of present understanding. In an attempt to generalize the idea of met-
ric, Branciari [5] in 2000 created a new concept known as generalised metric by
substituting a quadrilateral inequality for the triangle inequality axiom in the def-
inition of standard metric. Existence of fixed point in Branciari metric space has
been considered recently by many authors (see, [1], [3], [4], [6], [8], [10-13], [15],
[17], [21] and the references therein.)

In 2014, Jleli and Samet [9] presented a new generalization of the Banach con-
traction principle in the setting of Branciari metric spaces by introducing a new
type of contractive maps. Thereafter, Jleli et al. [7] established a new fixed point
theorem in the setting of Branciari metric spaces which was an extension of the
fixed point theorem established by Jleli and Samet [9].

The aim of this paper is to define θ-expansions in Branciari metric spaces by
complementing the concept of θ-contractions introduced by Jleli and Samet [9].
Also, we present a new fixed point result for θ-expansion mappings on a Branciari
metric space.
A very intriguing idea known as ”ν-generalized metric space” was first suggested
by Branciari in [5] in the year 2000.

Definition 1.1. ([5]) Let X be a set, let d be a function from X ×X into [0,∞)
and let ν ∈ N. Then (X, d) is said to be a ν-generalized metric space if the following
hold:
(N1) d(x, y) = 0 if and only if x = y for any x, y ∈ X.
(N2) d(x, y) = d(y, x) for any x, y ∈ X.
(N3)ν d(x, y) = d(x, u1)+d(u1, u2)+ +d(uν , y) for any x, u1, u2, ..., uν , y ∈ X such
that x, u1, u2, ..., uν , y are all different.

In the case where ν = 2, X is simply called a generalized metric space.

Definition 1.2. ([5]) Let X and d be as in Definition 1.1. Then (X, d) is said
to be a generalized metric space if (N1), (N2) and the following hold: (N3)2
d(x, y) = d(x, u) + d(u, v) + d(v, y) for any x, u, v, y ∈ X such that x, u, v, y are
all different. Metric space and the idea of ”generalised metric space” are extremely
similar. However, because X may not always have the topology that is compati-
ble with d, it is exceedingly challenging to approach this concept. If (X, d) is a
1-generalized metric space, it is apparent that (X, d) is a metric space. Therefore,
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every 1-generalized metric space has a topology that is compatible with d.

However, it is proved in [27] that every 3-generalized metric space has the
compatible topology. On the other hand, see Example 7 in [23] and Example 4.2
in [27] for examples of ν-generalized metric spaces that do not have the compatible
topology for ν ∈ {2, 4, 5, ...}. For further elaboration on this idea, see ([14], [24-26],
[28] and references therein.

Note. [12] Since there are several distinct notions named as generalized metric,
we prefer to use Branciari metric space (BMS) instead of generalized metric space.

Definition 1.3. [5] Let (X, d) be a BMS, {xn} be a sequence in X and x ∈ X.
We say that {xn} is convergent to x if and only if d(xn, x) → 0 as n → ∞. We
denote this by xn → x.

Definition 1.4. [5] Let (X, d) be a BMS and {xn} be a sequence in X. We say
that {xn} is Cauchy if and only if d(xn, xm) → 0 as n,m→ ∞.

Definition 1.5. [5] Let (X, d) be a BMS. We say that (X, d) is complete if and
only if every Cauchy sequence in X converges to some element in X.

2. Preliminary Theorems

Lemma 2.1. [8] Let (X, d) be a BMS, {xn} be a Cauchy sequence in (X, d), and
x, y ∈ X. Suppose that there exists a positive integer N such that
(i) xn ̸= xm, for all n,m > N ;
(ii) xn and x are distinct points in X, for all n > N ;
(iii) xn and y are distinct points in X, for all n > N ;
(iv) lim

n→∞
d(xn, x) = lim

n→∞
d(xn, y).

Then we have x = y.

In 2014, Jleli and Samet [9] utilized the following set of functions to present a
new generalization of the Banach contraction principle in the setting of Branciari
metric spaces.

Definition 2.2. Let Θ denote the set of functions θ : (0,∞) → (1,∞) satisfying
the following conditions:
(Θ1) θ is non-decreasing;
(Θ2) for each sequence {tn} ⊂ (0,∞), lim

n→∞
θ(tn) = 1 if and only if lim

n→∞
tn = 0+;

(Θ3) there exists r ∈ (0, 1) and l ∈ (0,∞] such that lim
t→0+

θ(t)− 1

tr
= l.

Following is the main result of [9]:

Theorem 2.3. Let (X, d) be a complete g.m.s. and T : X → X be a given map.
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Suppose that there exist θ ∈ Θ and k ∈ (0, 1) such that

x, y ∈ X, d(Tx, Ty) ̸= 0 ⇒ θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k.

Then T has a unique fixed point.

3. Main Theorems
Now, we can state and prove our main result in this section.

Theorem 3.1. Let (X, d) be a complete BMS and R : X → X be a given map.
Suppose that there exist θ ∈ Θ and k > 1 such that

x, y ∈ X, d(Rx,Ry) ̸= 0 ⇒ θ(d(Rx,Ry)) ≥ [θ(d(x, y))]k (1)

Then R has a unique fixed point.
Proof. Let us define the sequence {xn} in X by xn = Rxn+1

Consider,

θ(d(Rnx,Rn+1x)) ≤ [θ(d(R(Rnx), R(Rn+1x)))]
1
k

= [θ(d(Rxn, Rxn+1))]
1
k

= [θ(d(xn−1, xn))]
1
k

≤ [θ(d(Rxn−1, Rxn))]
1
k2 = [θ(d(xn−2, xn−1))]

1
k2

= [θ(d(Rn−2x,Rn−1x))]
1
k2

≤ ...[θ(d(x,Rx))]
1
kn

Therefore, we have for all n ∈ N

1 ≤ θ(d(Rnx,Rn+1x)) ≤ θ(d(x,Rx))]
1
kn (2)

Assuming n→ ∞ in (2), we get

θ(d(Rnx,Rn+1x)) → 1,

thereby implying from Definition 2.2 that

lim
n→∞

d(Rnx,Rn+1x) = 0 (3)

In view of condition (Θ3) of Definition 2.2, there exists a ∈ (0, 1) and b ∈ (0,∞]
such that

lim
n→∞

θ(d(Rnx,Rn+1x))− 1

[d(Rnx,Rn+1x)]a
= b.
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Assume that b is a finite number and P = b/2 > 0. The definition of the limit
implies that there exists n0 ∈ N such that∣∣∣∣θ(d(Rnx,Rn+1x))− 1

[d(Rnx,Rn+1x)]a
− l

∣∣∣∣ ≤ P, ∀n ≥ n0,

which further implies that for all n ≥ n0,

θ(d(Rnx,Rn+1x))− 1

[d(Rnx,Rn+1x)]a
≥ b− P = P.

Thus, for all n ≥ n0,

n[d(Rnx,Rn+1x)]a ≤ Qn[θ(d(Rnx,Rn+1x))− 1],

where Q = 1/P .
Suppose now that b = ∞ and P > 0 be an arbitrary positive number. By the
definition of the limit, there exists n0 ∈ N such that for all n ≥ n0,

θ(d(Rnx,Rn+1x))− 1

[d(Rnx,Rn+1x)]a
≥ P.

This suggests that

n[d(Rnx,Rn+1x)]a ≤ Qn[θ(d(Rnx,Rn+1x))− 1],

for all n ≥ n0, where Q = 1/P .
Consequently, there is always Q > 0 and n0 ∈ N such that for all n ≥ n0

n[d(Rnx,Rn+1x)]a ≤ Q.n[θ(d(Rnx,Rn+1x))− 1].

Utilizing (2), we get for all n ≥ n0

n[d(Rnx,Rn+1x)]a ≤ Q.n([θ(d(x,Rx))]
1
kn − 1).

In the above inequality, if n approaches to ∞, we get

lim
n→∞

n[d(Rnx,Rn+1x)]a = 0.

As a result, there exists n1 ∈ N such that

d(Rnx,Rn+1x) ≤ 1

n1/a
, (4)
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for all n ≥ n1.
We will now demonstrate that R has a periodic point. If it is not the case, then
Rnx ̸= Rmx for every n,m ∈ N such that n ̸= m. Using (1), we obtain

θ(d(Rnx,Rn+2x)) ≤ [θ(d(xn−1, xn+1))]
1
k ≤ [θ(d(xn−2, xn))]

1
k2

≤ ... ≤ [θ(d(x,R2x))]
1
kn .

Using (2) and assuming that n approaches to ∞ in the aforementioned inequality,
we get

lim
n→∞

d(Rnx,Rn+2x) = 0. (5)

Similarly, there exists n2 ∈ N such that for all n ≥ n2

d(Rnx,Rn+2x) ≤ 1

n1/r
. (6)

Let N = max{n0, n1}. Let us consider the following two cases:
Case 1. If m > 2 is odd, that is, m = 2L+ 1, L ≥ 1, then using (4), we get for all
n ≥ N

d(Rnx,Rn+mx) ≤ d(Rnx,Rn+1x) + d(Rn+1x,Rn+2x) + ...+ d(Rn+2Lx,Rn+2L+1x)

≤ 1

n1/r
+

1

(n+ 1)1/r
+ ...+

1

(n+ 2L)1/r

≤
∞∑
i=n

1

i1/r

Case 2. If m > 2 is even, that is, m = 2L, L ≥ 2, then using (4) and (6), we get
for all n ≥ N

d(Rnx,Rn+mx) ≤ d(Rnx,Rn+2x) + d(Rn+2x,Rn+3x) + ...+ d(Rn+2L−1x,Rn+2Lx)

≤ 1

n1/r
+

1

(n+ 2)1/r
+ ...+

1

(n+ 2L− 1)1/r

≤
∞∑
i=n

1

i1/r

Consequently, merging all of our cases, we get for all n ≥ N , m ∈ N

d(Rnx,Rn+mx) ≤
∞∑
i=n

1

i1/r



Fixed Point Theorems for θ-expansions in Branciari Metric Spaces 119

Due to the fact that the series
∑

i
1

i1/r
is convergent, we obtain that {Rnx} is a

Cauchy sequence. As X is complete, there is u ∈ X such that Rnx → u. In view
of continuity of R, we have from 1

ln[θ(d(Rx,Ry))] ≥ k ln(θ(d(x, y))) ≥ ln(θ(d(x, y))),

which implies that d(Rx,Ry) ≥ d(x, y) for all x, y ∈ X. Thus, we have for all
n ∈ N,

d(Rnx, u) ≥ d(Rn+1x,Ru).

On letting n→ ∞ in the above inequality, we get Rn+1x→ Ru. In view of Lemma
1, we get u = Ru. This is a contradiction with the fact that R does not have a
periodic point. Thus, R has a periodic point, say u, of period p.
Let us assume that the set of fixed points of R is empty. Then we have p > 1 and
d(u,Ru) > 0.
Utilizing (1), we get

d(u,Ru) ≤ [θ(d(Ru,R2u))]
1
k

≤ ... ≤ [θ(d(Rnu,Rn+1u))]
1
kn

= [θ(d(u,Ru))]
1
kn < θ(d(u,Ru)),

which is a contradiction. This implies that the set of fixed points of R is non-empty,
that is, R has at least one fixed point. Now, we assume that u, v ∈ X are two fixed
points of R such that d(u, v) = d(Ru,Rv) > 0. From (1), we have

θ(d(u, v)) = θ(d(Ru,Rv)) ≥ θ(d(u, v))k > θ(d(u, v)),

which is a contradiction. Thus, there is a unique fixed point.

Corollary 3.2. Let (X, d) be a complete metric space and R : X → X be a given
mapping. Suppose that there exists θ ∈ Θ and k > 1 such that

x, y ∈ X, d(Rx,Ry) ̸= 0 ⇒ θ(d(Rx,Ry)) ≥ [θ(d(x, y))]k.

Then R has a unique fixed point.
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[13] Karapinar, E., Roldán López de Hierro, A. F. and Shahzad, N., Ample spec-
trum contractions in Branciari distance spaces, Journal of Nonlinear and
Covnex Analysis, 22 (2021), 1147-1163.



Fixed Point Theorems for θ-expansions in Branciari Metric Spaces 121

[14] Karapinar, E. and Zhang, D., Properties and principles in Branciari distance,
Journal of Fixed Point Theorey and Applications, 21 (2019), 1-18.

[15] Kirk, W. A. and Shahzad, N., Generalized metrics and Caristis theorem,
Fixed Point Theory Appl., 2013 (2013).

[16] Kirk, W. A., Srinivasan, P. and Veeramani, P., Fixed points for mappings
satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), 79-89.

[17] Lakzian, H. and Samet, B., Fixed points for (ψ, φ)-weakly contractive map-
pings in generalized metric spaces, Appl. Math. Lett., 25 (2012), 902-906.

[18] Matkowski, J., Fixed point theorems for mappings with a contractive iterate
at a point, Proc. Am. Math. Soc., 62 (1977), 344-348.
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