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Abstract: In this paper, we define enriched (ψ, φλ)-weakly contractive map in
convex metric spaces where ψ is continuous on [0,+∞) and φλ is not continuous
on [0,+∞) and prove the existence and uniqueness of fixed points of these maps in
complete convex metric spaces. We provide an example in support of our result.
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1. Introduction
Weakly contractive maps in Hilbert spaces were introduced by Alber and Guerre-

Delabriere [2] as a generalization of contraction maps and they established the ex-
istence of fixed points in Hilbert spaces. Rhoades [11] extended it to the setting of
metric spaces.

Definition 1. (Rhoades [11]) Let (X, d) be a metric space. A map T : X → X is
said to be weakly contractive if

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)) (1)

for all x, y ∈ X, where φ : [0,+∞) → [0,+∞) is continuous, monotone
nondecreasing with φ(t) = 0 if and only if t = 0.
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Here we note that every contraction map is weakly contractive, but its converse is
not true (Example 2.1.4, [9]). Rhoades [11] proved that every weakly contractive
map has a unique fixed point in complete metric spaces.

In 2008, Dutta and Choudhury [10] proved the following theorem.

Theorem 1. (Dutta and Choudhury [10]) Let (X, d) be a complete metric space
and let T : X → X be a map satisfying the inequality

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− φ(d(x, y)) (2)

for all x, y ∈ X where ψ, φ : [0,+∞) → [0,+∞) are both continuous and monotone
nondecreasing functions with ψ(t) = 0 = φ(t) if and only if t = 0. Then T has a
unique fixed point in X.
If ψ is the identity map in (2), then clearly T is a weakly contractive map that
was introduced by Rhoades [11]. For more works on the existence of fixed points
of weakly contractive maps, we refer [3, 4, 8, 11] and for applications of fixed point
theory in Science and Engineering, we refer [1].

On the other hand, Takahashi [12] introduced the concept of convexity in metric
spaces namely convex metric spaces and studied the existence of fixed points of
nonexpansive maps in convex metric spaces.

In 2020, Berinde and Păcurar [5] introduced enriched contraction maps in a
normed linear space and proved the existence of fixed points in Banach spaces.
Further, Berinde and Păcurar [6] extended enriched contraction maps in convex
metric spaces and proved the existence of fixed points.

Motivated by the works of Takahashi [12], Berinde and Păcurar [5, 6] and Dutta
and Choudhury [10], in this paper, we define enriched (ψ, φλ)-weakly contractive
maps in convex metric spaces and prove the existence and uniqueness of fixed
points. An example is provided in support of our result.

2. Comparison of various contraction maps
In the following, we compare contraction maps, nonexpansive maps, enriched

contraction maps, (λ, c)-enriched contraction maps.

Definition 2. Let (X, d) be a metric space. Let T : X → X be a selfmap of X. If
there exists a real number c ∈ [0, 1) such that

d(Tx, Ty) ≤ c d(x, y) (3)

for all x, y ∈ X, then we say that T is a contraction on X.
In this case, we say that T is a contraction with contraction constant c. If c = 1
then we call T a nonexpansive map on X.
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Definition 3. (Berinde and Păcurar [6]) Let (X, ∥.∥) be a normed linear space.
Let T : X → X be a selfmap. If there exist b ∈ [0,+∞) and θ ∈ [0, b+1) such that

∥b(x− y) + Tx− Ty∥ ≤ θ∥x− y∥ (4)

for all x, y ∈ X, then we say that T is a (b, θ)-enriched contraction.
Here we observe that if b = 0 then θ ∈ [0, b + 1) so that every contraction is a

(0, θ)-enriched contraction.

Example 1. Let X = [0, 1] and T : X → X be given by Tx = 1 − x, x ∈ [0, 1].
Then
|b(x− y) + Tx− Ty| = |b(x− y) + 1− x− 1 + y|

= |b(x− y)− (x− y)|
= |b− 1||x− y|
≤ θ|x− y| for any 0 ≤ θ < b+ 1, b ≥ 0,

so that T is a (b, θ)-enriched contraction. But it is not a contraction. In fact, it is
nonexpansive.

Now the following question is possible.
Is every non-expansive map a (b, θ)-enriched contraction map?
The following example shows that its answer is not affirmative.

Example 2. Define T : X → X by Tx = x. Then, for any x, y in X,
|b(x− y) + Tx− Ty| = |b(x− y) + x− y|

= |(b+ 1)(x− y)|
= |b+ 1||x− y|
≰ θ|x− y| for any θ ∈ [0, b+ 1).

Therefore nonexpansive maps are not (b, θ)-enriched contraction maps.

Definition 4. (Takahashi [12]) Let (X, d) be a metric space. Let W : X × X ×
[0, 1] → X be a map. If for all x, y ∈ X and for any λ ∈ [0, 1],

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y) (5)

for any u ∈ X, then we say that W is a convex structure on X.
A metric space (X, d) endowed with a convex structure W is called a convex

metric space and we denote by (X, d,W ). We observe that any normed linear space
is a convex metric space, with convex structure

W (x, y, λ) = λx+ (1− λ)y (6)

for all x, y ∈ X and λ ∈ [0, 1]. But its converse is not valid; there are several
examples of convex metric spaces which cannot be embedded in any Banach space
(see [12], Example 1 and Example 2).
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The following lemmas present some fundamental properties of a convex metric
space.

Lemma 1. (Takahashi [12]) Let (X, d,W ) be a convex metric space. For each
x, y ∈ X and λ, λ1, λ2 ∈ [0, 1], we have the following:
(i) d(x,W (x, y, λ)) = (1− λ)d(x, y) (ii) d(W (x, y, λ), y) = λd(x, y)
(iii) W (x, x, λ) = x (iv) W (x, y, 0) = y (v) W (x, y, 1) = x and
(vi) |λ1 − λ2|d(x, y) ≤ d(W (x, y, λ1),W (x, y, λ2)).

Let (X, d,W ) be a convex metric space and T : X → X be a selfmap. We
denote the set of all fixed points of T by Fix(T ), i.e., Fix(T ) = {x ∈ X : Tx = x}.
Lemma 2. (Berinde and Păcurar [6]) Let (X, d,W ) be a convex metric space and
T : X → X be a selfmap. Let λ ∈ [0, 1). We define the map Tλ : X → X by

Tλx = W (x, Tx;λ) (7)

x ∈ X. Then, for any λ ∈ [0, 1),

Fix(T ) = Fix(Tλ). (8)

Definition 5. (Berinde and Păcurar [5]) Let (X, d,W ) be a convex metric space.
Let T : X → X be a selfmap. If there exist 0 ≤ c < 1 and λ ∈ [0, 1) such that

d(W (x, Tx, λ),W (y, Ty, λ)) ≤ c d(x, y) (9)

for all x, y ∈ X, then we say that T is a (λ, c)-enriched contraction.

We define Tλ : X → X by Tλ(x) = W (x, Tx, λ), x ∈ X. Then (9) reduces to
d(Tλx, Tλy) ≤ c d(x, y) for all x, y ∈ X.

Note. In a normed linear space, every (b, θ)-enriched contraction is a (λ, c)-
enriched contraction with λ = 1

b+1
and c = λθ.

Example 3. Let X = [−2, 0] and T : X → X be defined by Tx = −x− 2. Then
d(W (x, Tx, λ),W (y, Ty, λ)) = d((1− λ)x+ λTx, (1− λ)y + λTy)

= |(1− λ)x+ λTx− (1− λ)y − λTy|
= |(1− λ)x+ λ(−x− 2)− (1− λ)y − λ(−y − 2)|
= |(x− y)− 2λ(x− y)|
= |1− 2λ||x− y|
≤ c|x− y| where λ = 1

3
and c = 1

3
.

Therefore T is a (λ, c)-enriched contraction with λ = 1
3
, c = 1

3
but not a contrac-

tion.
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Example 4. Let X = R and T : R → R be defined by Tx = 2x− 1. Then
d(W (x, Tx, λ),W (y, Ty, λ)) = d((1− λ)x+ λTx, (1− λ)y + λTy)

= |(1− λ)x+ λTx− (1− λ)y − λTy|
= |(1− λ)x+ λ(2x− 1)− (1− λ)y − λ(2y − 1)|
= |(x− y) + λ(x− y)|
= |1 + λ||x− y|
≰ c|x− y|

for any 0 ≤ c < 1 and for any λ ∈ [0, 1).
Therefore T is not a (λ, c)-enriched contraction.

Theorem 2. (Berinde and Păcurar [6]) Let (X, d,W ) be a complete convex metric
space and T : X → X be a (λ, c)-enriched contraction. Let x0 ∈ X. Then the
sequence {xn}+∞

n=1 defined by the iterative process

xn+1 = W (xn, Txn, λ), n = 0, 1, 2, ... (10)

converges to p (say) in X and p is the unique fixed point of T .

3. Enriched (ψ, φλ)−weakly contractive maps and fixed points

We denote Ψ = {ψ/ψ : [0,+∞) → [0,+∞) satisfying
(i) ψ is continuous,
(ii) ψ is nondecreasing and
(iii) ψ(t) = 0 if and only if t = 0}.

We now introduce enriched (ψ, φλ)−weakly contractive maps.

Definition 6. Let (X, d,W ) be a convex metric space. Let T : X → X be a
selfmap. If there exist ψ ∈ Ψ and λ ∈ (0, 1) and corresponding to this λ, there
exists φλ : [0,+∞) → [0,+∞) such that

ψ(d(W (x, Tx, λ),W (y, Ty, λ))) ≤ ψ(d(x, y))− φλ(d(x, y)) (11)

for all x, y ∈ X, where φλ is nondecreasing and φλ(t) = 0 if and only if t = 0, then
we say that T is an enriched (ψ, φλ)-weakly contractive map on the convex metric
space X.

If ψ is the identity map of X then we say that T is an enriched φλ-weakly con-
tractive map on X.

Remark 1. (i) We observe that every (λ, c)-enriched contraction is an enriched
φλ-weakly contractive map on X. For, d(W (x, Tx, λ),W (y, Ty, λ)) ≤ cd(x, y) =
d(x, y) − (1 − c)d(x, y) = d(x, y) − φλ(d(x, y)) where φλ(t) = (1 − c)t, t ≥ 0 and
λ ∈ (0, 1).
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(ii) Every contraction is a (b, θ)-enriched contraction, every (b, θ)-enriched con-
traction is a (λ, c)-enriched contraction and hence it is an enriched (ψ, φλ)-weakly
contractive map.

Example 5. Let X = R and T : X → X be defined by Tx = −2x− 1, x ∈ R. We
define ψ on [0,+∞) by ψ(t) = t, t ≥ 0. For λ ∈ (0, 1), we define φλ on [0,+∞) by

φλ(t) = 3λt, t ≥ 0.

Then clearly φλ satisfies nondecreasing property and φλ(t) = 0 if and only if t = 0
for each λ ∈ (0, 1). Now, consider
ψ(d(W (x, Tx, λ),W (y, Ty, λ))) = d(W (x, Tx, λ),W (y, Ty, λ))

= d((1− λ)x+ λTx, (1− λ)y + λTy)
= |(1− λ)x+ λTx− ((1− λ)y + λTy)|
= |(1− λ)x+ λ(−2x− 1)− (1− λ)y− λ(−2y− 1)|
= |(x− y)− 3λ(x− y)|

=

{
(x− y)− 3λ(x− y) if (x > y and λ ≤ 1

3
) or (x < y and λ ≥ 1

3
)

(y − x)− 3λ(y − x) if (x < y and λ < 1
3
) or (x > y and λ ≥ 1

3
)

= ψ(d(x, y))− φλ(d(x, y)).
Hence T is an enriched (ψ, φλ)-weakly contractive map.

We use the following lemma to prove our main result.

Lemma 3. (Babu and Sailaja [4], Berzig, Karapinar, Radenović, Kadelburg,
Jandrlić and Jandrlić [7]) Suppose (X, d) is a metric space. Let {xn} be a se-
quence in X such that d(xn, xn+1) → 0 as n → +∞. If {xn} is not a Cauchy
sequence then there exist ϵ > 0 and sequences of positive integers {mk} and {nk}
with mk > nk > k such that d(xmk

, xnk
) ≥ ϵ, d(xmk−1, xnk

) < ϵ and
(i) lim

k→+∞
d(xmk

, xnk
) = ϵ (ii) lim

k→+∞
d(xmk−1, xnk

) = ϵ

(iii) lim
k→+∞

d(xmk−1, xnk+1) = ϵ (iv) lim
k→+∞

d(xmk−1, xnk−1) = ϵ.

Theorem 3. Let (X, d,W ) be a complete convex metric space. Suppose that
T : X → X is an enriched (ψ, φλ)−weakly contractive map. Then T has a unique
fixed point in X.
Proof. Let λ be as in the Definition 6. We define Tλ : X → X by
Tλx = W (x, Tx;λ), x ∈ X.
Then (11) becomes

ψ(d(Tλx, Tλy)) ≤ ψ(d(x, y))− φλ(d(x, y)) (12)

for all x, y ∈ X. Let x0 ∈ X. We define xn+1 = Tλxn, n = 0, 1, 2, ... .
By taking x = xn−1 and y = xn in (12), we get
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ψ(d(Tλxn−1, Tλxn)) ≤ ψ(d(xn−1, xn))− φλ(d(xn−1, xn))
≤ ψ(d(xn−1, xn)) that implies

d(xn, xn+1) ≤ d(xn−1, xn) for n = 1, 2, 3, ... .
For, if there exists n ∈ Z+ such that d(xn, xn+1) > d(xn−1, xn) that implies
ψ(d(xn−1, xn)) ≤ ψ(d(xn, xn+1))

≤ ψ(d(xn−1, xn))− φλ(d(xn−1, xn))
< ψ(d(xn−1, xn)),

a contradiction.
Hence, we have {d(xn, xn+1)} is a decreasing sequence of non-negative reals.
Suppose that lim

n→+∞
d(xn, xn+1) = β, β ≥ 0.

We now show that β = 0.
Since ψ, φλ are nondecreasing, we have

ψ(d(xn, xn+1)) ≤ ψ(d(xn, xn−1))− φλ(d(xn, xn−1)). (13)

Let αn = d(xn, xn+1). Thus, from (13), we have

ψ(αn) ≤ ψ(αn−1)− φλ(αn−1). (14)

Since β ≤ αn for all n, we have φλ(β) ≤ φλ(αn) for all n.
Hence from (14) we have ψ(αn) ≤ ψ(αn−1)− φλ(β).
Now on letting n→ +∞ and using the continuity of ψ, it follows that
ψ(β) ≤ ψ(β)− φλ(β). Hence φλ(β) = 0. So β = 0.
Therefore lim

n→+∞
d(xn, xn+1) = 0.

We now prove that {xn} is a Cauchy sequence.
If {xn} is not Cauchy, then by Lemma 3, there exist ϵ > 0 and sequences of positive
integers {mk} and {nk} with nk > mk > k such that

d(xnk
, xmk

) ≥ ϵ and d(xnk−1, xmk
) < ϵ, (15)

and (i) to (iv) of Lemma 3 hold.
From (15), we have
ψ(ϵ) ≤ ψ(d(xnk

, xmk
)) ≤ ψ(d(xnk−1, xmk−1)) − φλ(d(xnk−1, xmk−1)) and it implies

that
φλ(d(xnk−1, xmk−1)) ≤ ψ(d(xnk−1, xmk−1))− ψ(ϵ).
Therefore 0 ≤ lim inf φλ(d(xnk−1, xmk−1)) ≤ lim supφλ(d(xnk−1, xmk−1))

≤ lim supψ(d(xnk−1, xmk−1))− ψ(ϵ)
= ψ(ϵ)−ψ(ϵ) (By (iv) of Lemma 3)
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= 0.
Therefore lim inf φλ(d(xnk−1, xmk−1)) = lim supφλ(d(xnk−1, xmk−1)) = 0 so

lim
n→+∞

φλ(d(xnk−1, xmk−1)) = 0. (16)

Let η = ϵ
2
> 0. So there exists L1 ∈ Z+ such that |d(xnk−1, xmk−1)− ϵ| < η for all

l ≥ L1, by Lemma 3 (iv).
Therefore for l ≥ L1, we have ϵ− η < d(xnk−1, xmk−1) < ϵ+ η.
That is, ϵ− ϵ

2
< d(xnk−1, xmk−1) < ϵ+ ϵ

2
.

That is, ϵ
2
< d(xnk−1, xmk−1).

Therefore φλ(
ϵ
2
) ≤ φλ(d(xnk−1, xmk−1)) −→ 0 as l −→ +∞, by (16).

Hence it follows that φλ(
ϵ
2
) = 0 so that ϵ = 0,

a contradiction.
Hence {xn} is a Cauchy sequence.

Since X is complete, there exists x∗ ∈ X such that d(xn, x
∗) −→ 0 as n −→ +∞.

Now, from (12) we have
ψ(d(Tλx

∗, xn+1)) = ψ(Tλx
∗, Tλxn)

≤ ψ(d(x∗, xn))− φλ(d(x
∗, xn))

≤ ψ(d(x∗, xn)) −→ 0 as n→ +∞.
Therefore lim

n→+∞
ψ(d(Tλx

∗, xn+1)) = 0

which implies that ψ( lim
n→+∞

d(Tλx
∗, xn+1)) = 0 so that ψ(d(Tλx

∗, x∗)) = 0.

Hence d(Tλx
∗, x∗) = 0. Therefore Tλx

∗ = x∗.
Now suppose that x∗, x∗1 are two distinct fixed points of Tλ. Then
0 < ψ(d(x∗, x∗1)) = ψ(d(Tλx

∗, Tλx
∗
1)) ≤ ψ(d(x∗, x∗1))− φλ(d(x

∗, x∗1))
which implies that φλ(d(x

∗, x∗1)) ≤ 0 so that φλ(d(x
∗, x∗1)) = 0.

Hence, we have d(x∗, x∗1) = 0.
Therefore x∗ = x∗1.
Therefore Tλ has a unique fixed point x∗ so that Fix(Tλ) = {x∗}.
Now, by Lemma 2, we have Fix(T ) = {x∗}.

This completes the proof of the theorem.

Remark 2. In the proof of Theorem 1, Dutta and Choudhury [10] assumed the
continuity of φ, where as, in Theorem 3, we did not use the continuity of φλ.

By choosing ψ(t) = t, t ≥ 0 in Theorem 3, we have the following corollary.

Corollary 1. Let (X, d,W ) be a complete convex metric space. If T : X → X is
an enriched φλ-weakly contractive map of X, then T has a unique fixed point in
X.

Corollary 2. Let (X, d) be a complete metric space. If T : X → X is a weakly
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contractive map, then T has a unique fixed point in X.
Proof. By choosing ψ as the identity mapping and λ = 0, we get the conclusion.

Remark 3. From Remark 1 (i), clearly Theorem 2 follows as a corollary to Corol-
lary 1.

The following is an example in support of Theorem 3.

Example 6. Let T : [0, 1] → [0, 1] be defined by Tx = x − x
2+x

, if 0 ≤ x ≤ 1.
To avoid cumbersome computations, we choose ψ(t) = t, t ≥ 0. Let λ ∈ (0, 1). We
choose

φλ(t) =

{
2
9
λt, if 0 ≤ t ≤ 1,
2
9
, if t > 1.

Then, for each λ ∈ (0, 1), clearly φλ is nondecreasing for t ≥ 0 and φλ(t) = 0 if
and only if t = 0.
Here we note that φλ is not continuous on [0,+∞). Let x, y ∈ [0, 1].
We consider,
ψ(d(W (x, Tx, λ),W (y, Ty, λ))) = d(W (x, Tx, λ),W (y, Ty, λ))

= d((1− λ)x+ λTx, (1− λ)y + λTy)
= |(1− λ)x+ λ(x− x

2+x
)− (1− λ)y − λ(y − y

2+y
)|

= |(1− λ)(x− y) + λ(x− y)− λ( x
2+x

− y
2+y

)|
= |(x− y)− 2λ(x−y)

(2+x)(2+y)
|

=

{
(x− y)− 2λ(x−y)

(2+x)(2+y)
if x > y

(y − x)− 2λ(y−x)
(2+x)(2+y)

if x < y

≤
{

(x− y)− 2λ
9
(x− y) if x > y

(y − x)− 2λ
9
(y − x) if x < y

= ψ(d(x, y))− φλ(d(x, y)).
Hence T satisfies the inequality (11). So T satisfies all the hypotheses of Theorem
3 and T has a unique fixed point 0.
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[5] Berinde V. and Păcurar M., Approximating fixed points of enriched con-
tractions in Banach spaces, J. Fixed Point Theory Appl., 22:38, (2020), 10
pages.
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