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Abstract: We establish new functional relations for the dilogarithm involving two
variables, which adhere the properties of Polylogarithm. We also considered sev-
eral closely-related identities such as (for example) polylogarithm (also known as
Jonquiere’s function), Euler dilogarithm function and Clausen’s function.
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1. Introduction and Definitions

Alfre Jonquiere introduced the concept of polylogarithm (also known as Jon-
quiere’s function) (see, for details [6]; [8]; [10]; and [20]), which is a special function
represented as Lig(z) of order s and argument z. The polylogarithm reduces to
an elementary function such as natural logarithm or rational functions for special
values of s. The polylogarithm function appears as closed form of integrals such as
Fermi-Dirac integral and Bose-FEinstein integral (see [12] and [15]) etc. The poly-
logarithm of positive integer order arise in the calculation of processes represented
by the Feynman diagrams; and it is also equivalent to Hurwitz Zeta function (see
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[10]).
The polylogarithm function is defined by a power series in z, which is also a Dirich-
let series in s:

n 3

z
Liy(z) = it 1. 1
iu(2) —= +23+38+ 2] < (1)

which can be extended to |z| > 1 by the method of analytic continuation. The

particular case (s = 1) involves the natural logarithm, Li;(z) = —log(1 — z); for
s =2 and s = 3, and are known as dilogarithm and trilogarithm, respectively (see
[15]).

The Euler dilogarithm function (see, for details, [5]; [7] and [9]) is defined as:

Liy(z Z—z—/ Mdt, 0<z<l1. (2)

t
n>1
is one of the lesser transcendental function. It has many intriguing properties has
appeared in various branches of mathematics and physics.
2. Main Theorems

In this section, we state and prove a new identity, which adhere the properties of
Polylogarithm.

Theorem 1. The following relation holds true;
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Proof. In order to prove our result, we begin with basic identity;
(14 ax)(1 +bz) =1+ (a+ b)z + abx?

Consider a + b = —ab, after arrangements of terms, we obtain;
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Applying the properties of logarithm function on both the sides of (4), after
simplification we obtain the following series

n n
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Multiply the right hand side of (5) with ;1(1__23, and after integrating between limits
0 and y, we arrived

> (_1)n62n /y . > nb2n n(l _ y)n
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We can write 5(1_—23;) = % ~ T w) Let us multiply by in the left hand side of (5);
and then integrate between the limits 0 to y, we obtamed
o0 b Y pn n nfl o0 bnyn o0 (_1)nbnyn
d b" —d = —_ —_
e A O S e M ke P

(7)
When we replace © — (1 — z) in (5), the right hand side is remain the same and
we can be write

= (1 —2)" = (=1 (1 —2)" = (=D (1 — x)"
+ = . (8)
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Multiplying left hand side of (8) by — ), and integrate between limits 0 to vy,
we obtain
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with the help of (6)(7) and (8) we obtained our required identity (3).
We thus have completed our proof of the Theorem 1.

Note. The equation (3) can be expressed in terms of the dilogarithm function as
follows:

Lis < % )+L12( by) + Lis (b(l—_éy))) + Lz (=b(1 — y))

1+0b (1+
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3. Analysis of Theorem 1.
In order to analyse identity (3) as given in Theorem 1, we split it into parts.
First of all we analyse the part > 77 5 +b L+ > (= )"bn 4" in this way, mul-

tiply it by y*~! (u # 1) and then mtegrate between the limits 0 and 1, finally we
obtain:
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Now, we study the sum of the series >~ 1+b n2 T (- )”% mul-
tiply by y#~!: and integrate with respect to y between limits 0 to 1, we have;
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Further, we the sums of the series —{> >~ (1+b L 430 (-1)"%}, multiply by
y*~!; and integrate with respect to y between limits 0 to 1, we have;
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At last, we study the sum of the series at the right hand side >~ (llfz) Y (};y)n,

multiply by y#~!; and integrate with respect to y between limits 0 to 1, we have;
2n

= ! = 1 (p4n)n!
n+p—1 1— "dy = R
Z 1+b /Oy (1=y)"dy ;(1+b)"n2(u+2n+1)

n=1

o1 n!
(1+b)n2(u+n)(p+n+1)--(u+2n)

[
Mg

3
Il
_-

2n 1

Mx

: (13)
n1(1+b n3(1+ B+ ghy) -+ 40)
Combining identities (10)-(13) together, we have;
0 8 1 1 1
Z 1 b 2 1 1 H 1 H +Z 1 1 I3 1 122
= (L+0)n? p(1+ p)(1+ + A+ma+5)---(1+7)

2
n
n=1 K

b L = b S S B b
S [ ) - _1)"
+;(1+b)nn3(1+%)+2( ) 713(1—}-%) Zl(l"‘b)nﬂ.?”ﬂ—i_z( )

Z v 1 1
(1+b)"n3 (1+ B+ ghy) L+ 40)

(14)

We can develop (3) into series of O(u") coefficients, upon analysing each term, we
obtain an infinite set of polylogarithm’s identities. Further, we obtain a series of
O(u°) coefficients, as;
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4. Further Result to the Theorem 1.
We begin with our main result (theorem 1) of section 2. Let us multiply in the
right hand side of equation (3) by — = %y)and then integrate between

i
y(1—y) y) y (1
limits 0 and ¢, we obtain following;
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Now, we multiply in the left hand side of equation (3) by i, upon integrating
between limits 0 and ¢, we obtain;
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Remark: In order to establish (17), we use following results;
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Further multiply the left hand side of equat10n (3) by —
between limits 0 and ¢, we obtain;
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using [J Lody = [y S8, yidy = Lngy — S
Now combining (16), (17) and (18), we obtain following result corresponding to
the main result (3) of our theorem 1;
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5. Concluding Remarks and Observations
The present investigation was motivated by several recent developments dealing
essentially with dilogarithm and polylogarithm (for example see [3] and [16]). Here,
in this article, we have established presumably a set of new identities. We have also
considered several closely-related identities such as (for example) polylogarithm
(also known as Jonquiere’s function) and Euler dilogarithm function etc. We have
chosen to indicate rather briefly a number of recent developments on the subject-
matter of this article.
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