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Abstract: The main object of this paper is to present 6 new interrelationships
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1. Introduction and Definitions
In his last letter to Hardy, dated three months before his death in early 1920,

(see [6], pp. 33-34; [8], pp. 354-355; [10], pp. 127-131), Ramanujan gave a list of
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17 functions which he called ”mock theta functions”. He separated these functions
into three groups, which were described as four of third order, ten of fifth order, and
three of seventh order. Further, the fifth order mock theta functions he divided
into two groups. The mock theta functions are functions of a complex variable
q, defined by q-series convergent for |q| < 1. He stated that they have certain
asymptotic properties as q approaches a root of unity, similar to the properties of
theta functions.

Throughout this paper, we denote by N, Z, and C the set of positive integers,
the set of integers and the set of complex numbers, respectively. We also let

N0 := N ∪ {0} = {0, 1, 2, · · · }.

The q-shifted factorial (a; q)n is defined (for |q| < 1) by

(a; q)n :=


1 (n = 0)

n−1∏
k=0

(1− aqk) (n ∈ N),

where a, q ∈ C and it is assumed tacitly that a ̸= q−m (m ∈ N0). We also write

(a; q)∞ :=
∞∏
n=0

(1− aqn) =
∞∏
n=1

(1− aqn−1) (a, q ∈ C; |q| < 1).

It should be noted that, when a ̸= 0 and |q| ≧ 1, the infinite product in the equation
(2) diverges. So, whenever (a; q)∞ is involved in a given formula, the constraint
|q| < 1 will be tacitly assumed to be satisfied.

The following notations are also frequently used in our investigation:

(a1, a2, a3, · · · , ak; q)n = (a1; q)n(a2; q)n(a3; q)n . . . (ak; q)n

and
(a1, a2, a3, · · · , ak; q)∞ = (a1; q)∞(a2; q)∞(a3; q)∞ . . . (ak; q)∞.

Ramanujan (see [9] and [10]) defined the general theta function f(a, b) as follows:

f(a, b) = 1 +
∞∑
n=1

(ab)
n(n−1)

2 (an + bn)

=
∞∑

n=−∞

a
n(n+1)

2 b
n(n−1)

2 = f(b, a) (|ab| < 1).
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where a and b are two complex numbers. The three most important special cases
of f(a, b) are defined as:

ϕ(q) = f(q, q) = 1 + 2
∞∑
n=1

qn
2

= (−q; q2)2∞(q2; q2)∞ =
(−q; q2)∞(q2; q2)∞
(q; q2)∞(−q2; q2)∞

,

ψ(q) = f(q, q3) =
∞∑
n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

and

f(−q) = f(−q,−q2) =
+∞∑

n=−∞

(−1)nq
n(3n−1)

2 = (q; q)∞.

The last equality is known as Euler’s Pentagonal Number Theorem. Remarkably,
the following q-series identity:

(−q; q)∞ =
1

(q; q2)∞
=

1

χ(−q)
.

provides the analytic equivalent form of Euler’s famous theorem.
Ramanujan also defined the following function

χ(q) = (−q; q2)∞.

We also recall the Rogers-Ramanujan continued fraction R(q) given by

R(q) := q
1
5
H(q)

G(q)
= q

1
5
f(−q,−q4)
f(−q2,−q3)

= q
1
5
(q; q5)∞ (q4; q5)∞
(q2; q5)∞ (q3; q5)∞

=
q

1
5

1+

q

1+

q2

1+

q3

1+
(|q| < 1).

Here G(q) and H(q), which are associated with the widely-investigated Rogers-
Ramanujan identities, are defined as follows:

G(q) :=
∞∑
n=0

qn
2

(q; q)n
=

f(−q5)
f(−q,−q4)

=
1

(q; q5)∞ (q4; q5)∞
=

(q2; q5)∞ (q3; q5)∞ (q5; q5)∞
(q; q)∞

(1)



82 J. of Ramanujan Society of Mathematics and Mathematical Sciences

and

H(q) =
∞∑
n=0

qn(n+1)

(q; q)n
=

f(−q5)
f(−q2,−q3)

=
1

(q2; q5)∞(q3; q5)∞
=

(q; q5)∞(q4; q5)∞(q5; q5)∞
(q; q)∞

(2)
and the functions f(a, b) and f(−q) are given by the equations (5) and (8), respec-
tively.

Remark 1.1.

� In the equation (12), the left side can be interpreted as the number of parti-
tions of n whose parts differ by at least 2, and the right side is the number of
partitions of n in parts congruent to 1 or 4 modulo 5.

� In the equation (13), the left-hand side is the generating series of partitions
into n parts such that two adjacent parts differ by is at least 2 and such that
the smallest part is at minus 2. The right side 1

(q2;q5)∞(q3;q5)∞
is the generating

series of the partitions such that each part is congruent to 2 or 3 modulo 5.
Then, the number of partitions of n such that two adjacent shares differ by
at least 2 and such that the smallest part is at least 2 is equal to the number
of partitions of n such that each part is congruent to 2 or 3 modulo 5.

Andrews et al. [4], introduces the general family R(s, t, l, u, v, w) as follows:

R(s, t, l, u, v, w) :=
∞∑
n=0

qs(
n
2)+tnr(l, u, v, w : n), (3)

where

r(l, u, v, w : n) :=

[n
u
]∑

j=0

(−1)j
quv(

j
2)+(w−ul)j

(q; q)n−uj(quv; quv)j
. (4)

In the following proposition, we give three particular cases of double q-hypergeometric
series R.

Proposition 1.1. Recently (see [11], [7]), following notations have been introduced:

Rα(q) := R(2, 1, 1, 1, 2, 2) = (−q; q2)∞, (5)

Rβ(q) := R(2, 2, 1, 1, 2, 2) = (−q2; q2)∞ (6)

and

Rm := R(m,m, 1, 1, 1, 2) =
(q2m; q2m)∞
(qm; q2m)∞

, (m ∈ N∗). (7)
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2. Third and Fifth Order Mock Theta Functions
Third order mock theta functions are defined as (see [6]):

f3(q) :=
∞∑
n=0

qn
2

(−q)2n
, (8)

χ3(q) := 1 +
∞∑
n=1

qn
2∏n

m=1(1− qm + q2m)
, (9)

ω3(q) :=
∞∑
n=0

q2n(n+1)

(q; q2)2n+1

(10)

and

ρ3(q) :=
∞∑
n=0

q2n(n+1)∏n
m=1(1 + q2m+1 + q4m+2)

. (11)

Fifth order mock theta functions are defined as (see [12]; [6]):

χ0(q) =
∞∑
n≥0

qn

(qn+1; q)n
(12)

and

χ1(q) =
∞∑
n≥0

qn

(qn+1; q)n+1

. (13)

Where all symbols and notations are having their usual meaning.

Combinatorial Interpretation (see [1])

� qχ1(q) is the generating function for partitions in which no part is as large
as twice the smallest part.

� χ0(q) is the generating function for partitions with unique smallest part and
the largest part at most twice the smallest part.

In [5], following identities have been recorded:

ρ3(q) + ρ3(−q) +
1

2
(ω3(q) + ω3(−q))

=
3(q12; q12)∞(−q12; q24)2∞(q24; q24)∞

(q2; q2)∞(q6; q12)∞
. (14)
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(q2; q2)∞(ρ3(q) +
1

2
ω3(q)) =

3

2

(q6; q6)2∞
(q3; q6)2∞

. (15)

B(z; q) =
∞∑
−∞

(−1)nqn(n+1)/4

1 + zq(n+1)/2)

=
(q1/2, q)∞(q2, zq, z−1q; q2)∞

(−zq1/2,−z−1/2q1/2)∞
. (16)

A(−q2; q8) =
∞∑
−∞

(−1)nq4n(n+1)

1− q(8n+2)
. (17)

A(−q2; q8) = (q8; q8)2∞
(q2; q4)∞

. (18)

V1(q)− V1(−q) = 2q
(−q4; q4)∞
(q4; q4)∞

∞∑
−∞

(−1)nq4n(n+1)

1− q(8n+2)
. (19)

U0(q) + 2U1(q) = (−q; q2)3∞(q2; q2)∞(q2; q4)∞. (20)

U0(−q) + 2u1(−q) = 2
(q; q2)∞
q2; q2)∞

. (21)

3. Main Results
We first state our main results as follows.

Theorem 3.1. Each of the following inter-relations between mock theta functions
and combinatorial partition identities holds true:

ρ3(q) + ρ3(−q) +
1

2
(ω3(q) + ω3(−q))

= 3R(6, 6, 1, 1, 1, 2)R2
α(q

6)
(q24; q24)∞
(q2; q2)∞

. (22)

(q2; q2)∞(ρ3(q) +
1

2
ω3(q)) =

3

2
R2(3, 3, 1, 1, 1, 2). (23)

V1(q)− V1(−q) = 2qRβ(q)R
2
β(q

2)(q8; q8)∞. (24)

V1(q)− V1(−q) = 2qRβ(q
2)
(q8; q8)∞
(q2; q2)

. (25)

U0(q) + 2U1(q) = Rα(q)ϕ(q)(q
2; q4)∞. (26)
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U0(−q) + 2U1(−q) =
2B(q−1; q2)

R1

. (27)

Proof of Theorem 3.1. In the proof of Theorem 1, first of all, in order to prove
our first assertion (22), we apply the identity (14) into identity (5) and further
apply identity (7), after computation by means of use of little algebra, we obtain
(22). Now, we have to attempt for proof of our second assertion (23), use the
identity (15) into identity (7), after computation by means of use of little algebra,
we obtain (23). Similarly, with help of identities (19) and (6), and by use of little
algebra, we obtain (24).
Further, we can prove other three identities (25)-(27) on the similar techniques,
which are easy and left for the readers.
We thus have completed our proof of the Theorem 3.1.
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