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1. Introduction and Definitions
Throughout this paper, we refer to [6] for definitions and notations. We also

suppose that 0 < q < 1. For complex numbers a, the q-shifted factorials are defined
by

(a; q)0 := 1, (a; q)n =
n−1∏
k=0

(1− aqk) and (a; q)∞ :=
∞∏
k=0

(1− aqk), (1)

where (see, for example, [6] and [12])

(a; q)n =
(a; q)∞
(aqn; q)∞

.

Here, in our present investigation, we are mainly concerned with the homoge-
neous version of the Cauchy identity or the following q-binomial theorem (see, for
example, [6], [12] and [17]):

∞∑
k=0

(a; q)k
(q; q)k

zk =
(az; q)∞
(z; q)∞

(|z| < 1). (2)

Upon further setting a = 0, the relation (2) becomes Euler’s identity (see, for
example, [6]):

∞∑
k=0

zk

(q; q)k
=

1

(z; q)∞
(|z| < 1) (3)

and its inverse relation given below [6]:

∞∑
k=0

(−1)kq(
k
2)

(q; q)k
zk = (z; q)∞. (4)

Based upon the q-binomial theorem (2) and Heine’s transformations, Srivastava et
al. [15] have considered the function (10) and established a set of two presumably
new theta-function identities (see, for details,[15]).

Proposition 1. ([15, Theorem 2.1]) If φ(q) =
∞∑

n=−∞

qn
2

, then

∞∑
n=0

(a; q2)n
(−q; q)n

qn + φ(−q)
∞∑
n=0

(a; q2)n
(q; q)n

qn = 2
∞∑
n=0

(−a)nqn2

(5)
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and

∞∑
n=0

(−1)n
q

n(n+3)
2

(q; q)n(1 + qn+1)2
=
φ(−q)
q

∞∑
n=0

qn

1 + qn
, (6)

where φ(q) is defined in (10).
In fact, Ramanujan (see 10] and [11]) also rediscovered Jacobi’s famous triple-

product identity which, in Ramanujan’s notation, is given by (see [2, p. 35, Entry
19]):

f(a, b) = (−a, ab)∞(−b; ab)∞(ab; ab)∞. (7)

Equivalently, we have [8]:

∞∑
n=−∞

qn
2

zn = (q2; q2)∞(−zq; q2)∞
(
−q
z
; q2

)
∞
, (|q| < 1, z ̸= 0). (8)

As a consequence of (8), we have the following corollary.

Corollary 1. For |q| < 1, we have:

∞∑
n=−∞

qn
2+2nk = q−2k2+kφ(q). (9)

Several q-series identities, which emerge naturally from Jacobi’s triple-product
identity (7), are worthy of note here (see, for details, [2, pp. 36–37, Entry 22]):

φ(q) : =
∞∑

n=−∞

qn
2

= (q2; q2)∞{(−q; q2)∞}2 = (−q; q2)∞(q2; q2)∞
(q; q2)∞(−q2; q2)∞

, (10)

ψ(q) : = f(q, q3) =
∞∑
n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

. (11)

In [1, Corollary 7. 9, p. 113], Andrews proved that for |q| < 1

G(q) = 1 +
∞∑
n=1

qn
2

(1− q)(1− q2) · · · (1− qn)
=

1

(q, q4; q5)∞
. (12)

Rogers–Ramanujan–Slater [7, Eq. (11.2.3)] gave the following relation

∞∑
n=0

qn
2+n

(q; q)2n
=

G(−q)
(q; q2)∞

. (13)
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2. Main Theorems
In this section, we establish a Rogers–Ramanujan–Slater type theta function

identity.

Theorem 1. If φ(q) and G(q) are defined as in (10) and (12), then the following
assertion holds true:

∞∑
n=0

qn
2

(−q; q)n
+ φ(−q)

∞∏
n=1

1

(1− q5n−1)(1− q5n−4)
= 2G(−q)φ(q). (14)

Proof of Theorem 1. In the proof of Theorem 1, we assume that an empty
product is interpreted to be unity. The left-hand side of (14) equals to

∞∑
n=0

qn
2

(−q; q)n
+ φ(−q)

∞∏
n=1

1

(1− q5n−1)(1− q5n−4)

=
∞∑
n=0

qn
2

(−q; q)n
+

(q; q)∞
(−q; q)∞

∞∏
n=1

1

(1− q5n−1)(1− q5n−4)
by (12)

=
∞∑
n=0

qn
2

(−q; q)n
+

(q; q)∞
(−q; q)∞

∞∑
n=0

qn
2

(1− q)(1− q2) · · · (1− qn)

=
1

(−q; q)∞

∞∑
n=0

qn
2

{
(q; q)∞
(q; q)n

+
(−q; q)∞
(−q; q)n

}
=

1

(−q; q)∞

∞∑
n=0

qn
2 {

(q1+n; q)∞ + (−q1+n; q)∞
}

=
1

(−q; q)∞

∞∑
n=−∞

qn
2 {

(q1+n; q)∞ + (−q1+n; q)∞
}

(15)

since (q1+n; q)∞ = 0 when n is a negative integer. Now applying (4), we get:

∞∑
n=0

qn
2

(−q; q)n
+ φ(−q)

∞∏
n=1

1

(1− q5n−1)(1− q5n−4)

=
1

(−q; q)∞

∞∑
n=−∞

qn
2

{
∞∑
k=0

(−1)kq(
k
2)(q1+n)k

(q; q)k
+

∞∑
k=0

q(
k
2)(q1+n)k

(q; q)k

}

=
1

(−q; q)∞

∞∑
n=−∞

∞∑
k=0

q(
k
2)(q1+n)k

(q; q)k

{
1 + (−1)k

}
qn

2

=
2

(−q; q)∞

∞∑
k=0

qk
2+k

(q; q)2k

∞∑
n=−∞

q(n
2+2kn+k2)
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=
2

(−q; q)∞

∞∑
k=0

qk
2+k

(q; q)2k

∞∑
n=−∞

q(n+k)2

=
2

(−q; q)∞

∞∑
k=0

qk
2+k

(q; q)2k

∞∑
m=−∞

qm
2

. (16)

Next, by using (13) and (10), in the right-hand side of (16), we get:

∞∑
n=0

qn
2

(−q; q)n
+ φ(−q)

∞∏
n=1

1

(1− q5n−1)(1− q5n−4)
=

2

(−q; q)∞
G(−q)
(q; q2)∞

φ(q)

= 2G(−q)φ(q)

where the identity (−q; q)∞(q; q2)∞ ≡ 1 is used. The proof of Theorem is complete.

3. Concluding Remarks and Observations
The present investigation was motivated by several recent developments deal-

ing essentially with theta-function identities and combinatorial partition-theoretic
identities. We have established a Rogers–Ramanujan–Slater type theta function
identity related to G(q) and φ(q).

A view to further motivating researches involving theta-function identities and
combinatorial partition theoretic identities, we have chosen to indicate rather briefly
a number of recent developments on the subject-matter of this article. The list of
citations, which we have included in this article, is believed to be potentially useful
for indicating some of the directions for further researches and related develop-
ments on the subject-matter which we have dealt with here. In particular, we have
cited the recent works by Chaudhary et al. (see [3] to [6]) and Srivastava et al.
(see [14] to [15]).
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